Ma/CS 6a
Class 3: The RSA Algorithm

By Adam Sheffer

Reminder: Putnam Competition

- Signup ends Wednesday 10/08.
- Signup sheets available in all Sloan classrooms, Math office, or contact Kathy Carreon, kcarreon@caltech.edu.
- Math 17 is the Caltech Prep workshop. Liubomir Chiriac Instructor.

http://math.scu.edu/putnam/prizecJan.html
Reminder: Public Key Cryptography

- Idea. Use a public key which is used for encryption and a private key used for decryption.
- Alice encrypts her message with Bob’s public key and sends it.

Reminder #2: Congruences

- If \(r = a \mod m \) and \(r = b \mod m \), we say that “\(a \) is congruent to \(b \) modulo \(m \)”, and write
 \[a \equiv b \mod m. \]
 ◦ Equivalently, \(m| (a - b) \).
- The numbers 3, 10, 17, 73, 1053 are all congruent modulo 7.
Reminder: Some Congruent Properties

- **Addition.** If $a \equiv b \mod m$ and $c \equiv d \mod m$, then $a + c \equiv b + d \mod m$.

- **Products.** If $a \equiv b \mod m$ and $c \equiv d \mod m$, then $ac \equiv bd \mod m$.

- **Cancellation.** If $\text{GCD}(k, m) = 1$ and $ak \equiv bk \mod m$, then $a \equiv b \mod m$.

- **Inverse.** If $\text{GCD}(a, m) = 1$, then there exists $b \in \mathbb{Z}$ such that $ab \equiv 1 \mod m$.

Warm-up: Division by Nine

- **Claim.** A number $a \in \mathbb{N}$ is divisible by 9 if and only if the sum of its digits is divisible by 9.

- Is 123456789 divisible by 9?

 $$1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45$$
 $$4 + 5 = 9$$

 ✔️
Warm-up: Division by Nine (2)

• **Claim.** A number $a \in \mathbb{N}$ is divisible by 9 if and only if the sum of its digits is divisible by 9.

 ◦ **Proof.** Write a as $a_k a_{k-1} \cdots a_1 a_0$ where a_i is the $(i+1)$’th rightmost digit of a.

 $a - (a_0 + a_1 + \cdots + a_k) = (a_0 \cdot 10^0 + a_1 \cdot 10^1 + a_2 \cdot 10^2 + \cdots) - (a_0 + \cdots + a_k) = a_1 \cdot 9 + a_2 \cdot 99 + a_3 \cdot 999 + \cdots$

 ◦ That is, $9 \mid a - (a_0 + a_1 + \cdots + a_k)$

Warm-up: Division by Nine (3)

• **Claim.** A number $a \in \mathbb{N}$ is divisible by 9 if and only if the sum of its digits is divisible by 9.

 ◦ **Proof.** Write a as $a_k a_{k-1} \cdots a_1 a_0$ where a_i is the $(i-1)$’th rightmost digit of a.

 ◦ We have: $9 \mid a - (a_0 + a_1 + \cdots + a_k)$.

 ◦ Equivalently,

 $a \equiv (a_0 + a_1 + \cdots + a_k) \mod 9.$
Casting Out Nines

• **Problem.** Is the following correct?
 \[54,321 \cdot 98,765 = 5,363,013,565.\]

• If this is correct, then
 \[54,321 \cdot 98,765 \equiv 5,363,013,565 \text{ mod } 9.\]

 \[
 5 + 4 + 3 + 2 + 1 \equiv 6 \text{ mod } 9 \\
 9 + 8 + 7 + 6 + 5 \equiv 2 \text{ mod } 9 \\
 5 + 3 + 6 + 3 + 0 + 1 + 3 + 5 + 6 + 5 \equiv 1 \text{ mod } 9.
 \]

 \[6 \cdot 2 \not\equiv 1 \text{ mod } 9 \]

Casting Out Nines (cont.)

• Is the **casting out nines** technique always correct in verifying whether \(a \cdot b = c\)?

 ◦ If the calculation \(\text{mod } 9\) is wrong, the original calculation must be wrong.

 ◦ If the calculation \(\text{mod } 9\) is correct, the original calculation might still be wrong!

 \[1 \cdot 2 \equiv 11 \text{ mod } 9.\]
Casting Out Nines Crank

- In the 1980’s, a crank wrote a 124-page book explaining *the law of conservation of numbers* that he “developed for 24 years”.
- This law “was perfected with 100% effectiveness”.
- The book is basically 124 pages about the casting out nines trick. It does not mention that the method can sometimes fail.

Fermat’s Little Theorem

- **Theorem.** For any prime p and integer a,
 \[a^p \equiv a \mod p. \]
- Examples:
 \[15^7 \equiv 15 \equiv 1 \mod 7 \]
 \[20^{53} \equiv 20 \mod 53 \]
 \[2^{1009} \equiv 2 \mod 1009 \]
Fermat’s Little Theorem

- **Theorem.** For any prime p and integer a,
 \[a^p \equiv a \mod p. \]

- **Proof.** By induction on a:
 - We now prove only the case of $a \geq 0$.
 - **Induction basis:** Obviously holds for $a = 0$.
 - **Induction step:** Assume that the claim holds for a. In a later lecture we prove
 \[(a + b)^p \equiv a^p + b^p \mod p. \]
 - Thus:
 \[(a + 1)^p \equiv a^p + 1 \equiv a + 1 \mod p. \]

A Corollary

- **Corollary.** If $a \in \mathbb{N}$ is not divisible by a prime p then $a^{p-1} \equiv 1 \mod p$.

- **Proof.**
 - We have $\text{GCD}(a, p) = 1$.
 - **Fermat’s little theorem:** $a^p \equiv a \mod p$.
 - Combine with **cancelation property:** If $\text{GCD}(k, m) = 1$ and $ak \equiv bk \mod m$, then $a \equiv b \mod m$.
Euler’s Totient Function

- **Euler’s totient** \(\phi(n) \) is defined as follows:

 Given \(n \in \mathbb{N} \setminus \{0\} \), then

 \[
 \phi(n) = |\{x \mid 1 \leq x < n \text{ and } \gcd(x, n) = 1\}|.
 \]

- In more words: \(\phi(n) \) is the number of natural numbers \(1 \leq x \leq n \) such that \(x \) and \(n \) are relatively prime.

\[
\phi(12) = |\{1, 5, 7, 11\}| = 4
\]

Leonhard Euler

The Totient of a Prime

- **Observation.** If \(p \) is a prime number, then

 \[
 \phi(p) = p - 1.
 \]

The first thousand values of \(\phi(n) \):
Euler’s Theorem

- **Theorem.** For any pair $a, n \in \mathbb{N}$ such that $GCD(a, n) = 1$, we have
 $$a^{\varphi(n)} \equiv 1 \mod n.$$

- This is a generalization of the claim $a^{p-1} \equiv 1 \mod p$ (when p is prime).

The RSA Algorithm

- Public key cryptosystem.
- Discovered in 1977 by Rivest, Shamir, and Adleman.
- Still extremely common!

Rivest, Shamir, and Adleman
RSA Public and Private Keys

1. Choose two LARGE primes \(p, q \) (say, 500 digits).
2. Set \(n = pq \).
3. Compute \(\phi(n) \), and choose \(1 < e < \phi(n) \) such that \(\text{GCD}(e, \phi(n)) = 1 \).
4. Find \(d \) such that \(de \equiv 1 \mod \phi(n) \).

Public key. \(n \) and \(e \).
Private information. \(p, q, \) and \(d \).

Preparing for Secure Communication

- Bob generates \(p, q, n, d, e \), and transmits only \(e \) and \(n \).
Encrypting a Message

- Alice wants to send Bob the number $m < n$ without Eve deciphering it.
- Alice uses n, e to calculate $X = m^e \mod n$, and sends X to Bob.

Decrypting a Message

- Bob receives message $X = m^e \mod n$ from Alice. Then he calculates:

\[
X^d \mod n \equiv m^{ed} \mod n
\equiv m^{1+k\cdot\varphi(n)} \mod n \equiv m \mod n.
\]

- $de \equiv 1 \mod \varphi(n)$
- **Euler’s Theorem:** $m^{\varphi(n)} \equiv 1 \mod n$

Slightly cheating since the theorem requires $GCD(m, n) = 1$.
RSA in One Slide

- **Bob** wants to generate keys:
 - Arbitrarily chooses primes p and q.
 - Sets $n = pq$ and finds $\varphi(n)$.
 - Chooses e such that $\gcd(\varphi(n), e) = 1$.
 - Find d such that $de \equiv 1 \pmod{\varphi(n)}$.

- **Alice** wants to pass bob m.
 - Receives n, e from Bob.
 - Returns $X \equiv m^e \mod n$.

- **Bob** receives X.
 - Calculates $X^d \mod n$.

Example: RSA (with small numbers)

- **Bob** wants to generate keys:
 - Arbitrarily chooses primes $p = 61$ and $q = 53$.
 - $n = 61 \cdot 52 = 3233$. $\varphi(3233) = 3120$.
 - Chooses $e = 17$ ($\gcd(3120, 17) = 1$).
 - For $de \equiv 1 \mod 3120$, we have $d = 2753$.

- **Alice** wants to pass bob $m = 65$.
 - Receives n, e from Bob. Returns $m^e = 65^{17} \equiv 2790 \mod 3233$.

- **Bob** receives $X \equiv 2790 \mod 3233$.
 - Calculates $X^d = 2790^{3233} \equiv 65 \mod 3233$.
Some Details

- Bob needs to:
 - Find two large primes p, q.
 - Calculate n, d, e.
- Alice needs to
 - Use n, e to calculate $X = m^e \mod n$.
- **Eve must not be able to**
 - Use n, e, X to find m.
- Bob needs to:
 - Use n, d, X to find m.

That is: Easy to compute a large power mod n. Hard to compute a large “root” mod n.

Taking Large Roots

- Eve has n, e, and Alice’s message $X \equiv m^e \mod n$.
- If Eve can compute $X^{1/e} \mod n$, she can read the message! (i.e., if she can factor n).
- So far nobody knows how to compute this in a reasonable time.
- Or do they?
Computing a Large Power

- **Problem.** How can we compute \(65^{24000} \mod 9721\)?

- **A naïve approach:**

 \[
 65^2 \equiv 4225 \mod 9721 \\
 65^3 \equiv 65 \cdot 65^2 \equiv 2437 \mod 9721 \\
 65^4 \equiv 65 \cdot 65^3 \equiv 2869 \mod 9721 \\
 \ldots
 \]

 - This approach requires \(2^{4000}\) (about \(1.3 \cdot 10^{1204}\)) steps. **Impossible!**

Computing a Large Power – Fast!

- **Problem.** How can we compute \(65^{24000} \mod 9721\)?

 \[
 65^2 \equiv 4225 \mod 9721 \\
 65^4 \equiv 65^2 \cdot 65^2 \equiv 2869 \mod 9721 \\
 65^8 \equiv 65^4 \cdot 65^4 \equiv 7195 \mod 9721 \\
 65^{16} \equiv 65^8 \cdot 65^8 \equiv 3700 \mod 9721 \\
 \ldots
 \]

 Only 4000 steps. **Easy!**
A Small Technical Issue

- What if we calculate a^b where b is not a power of two?
- We calculate $a, a^2, a^4, a^8, a^{16}, a^{32}, ...$
- Every number can be expressed as a sum of distinct powers of 2.

$$57 = 32 + 16 + 8 + 1$$

$$a^{57} = a^{32}a^{16}a^8a$$

What is Left to Do?

- **Bob** wants to generate keys:
 - Arbitrarily chooses primes p and q. \(?\)
 - $n = pq \checkmark$ find $\varphi(n)$. \(?\)
 - Chooses e such that $\text{GCD}(\varphi(n), e) = 1$.
 - Find d such that $de \equiv 1 \mod \varphi(n)$. \(\checkmark\)

- **Alice** wants to pass bob m.
 - Receives n, e from Bob.
 - Returns $X \equiv m^e \mod n$. \(\checkmark\)

- **Bob** receives X.
 - Calculates $X^d \mod n$. \(\checkmark\)
The End

A CRYPTO NERD'S IMAGINATION:

HIS LAPTOP'S ENCRYPTED. LET'S BUILD A MILLION-DOLLAR CLUSTER TO CRACK IT.

NO GOOD! IT'S 4096-BIT RSA!

BLAST! OUR EVIL PLAN IS FOILED!

WHAT WOULD ACTUALLY HAPPEN:

HIS LAPTOP'S ENCRYPTED. DRUG HIM AND HIT HIM WITH THIS $5 WRENCH UNTIL HE TELS US THE PASSWORD.

GOT IT.