Ma/CS 6a
Class 1

Course Details

- Adam Sheffer.
- adamsh@caltech.edu
- 1:00 Monday, Wednesday, and Friday.
- http://www.math.caltech.edu/~2014-15/1term/ma006a/
Course Structure

- No exam!
- Grade based on weekly homework assignments.
 - Due by noon on Thursdays.
- TAs: Victor Kasatkin and Henry Macdonald.

What is in this Course?

- Combinatorics.
- Algorithms.
- Graph theory.
- Number theory.
- Group theory.
- Generating functions.
- ...
Our Problem: Encryption

- Alice needs to send Bob a message.
- Eve can read the communications.
- Alice encrypts the message.

Alice encrypts the message to Bob.

Classic Cryptography

- Alice and Bob exchange some information in advance, in a secure way.

Alice encrypts the message to Bob. Bob decrypts the message.
Example: Atbash Cipher

- Replace each letter with a symbol, according to the sequence (key):

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>Y</td>
<td>X</td>
<td>W</td>
<td>V</td>
<td>U</td>
<td>T</td>
<td>S</td>
<td>R</td>
<td>Q</td>
<td>P</td>
<td>O</td>
<td>N</td>
</tr>
</tbody>
</table>

“My hovercraft is full of eels”

“Nb slevixizug rh ufoo lu vvoh”

Other Historical Ciphers

- Scytale transposition cipher, used by the Spartan military.

- The Enigma machine in World War II.

- Cipher runes.
The Internet

- **Problem.** When performing a secret transaction over the internet, we cannot securely exchange information in advance.

Public-key Cryptography

- **Idea.** Use a **public key** which is used for **encryption** and a **private key** used for **decryption**.

- Bob generates both keys. Keeps the private key and publishes the public one.
Public-key Cryptography

- **Idea.** Use a *public key* which is used for *encryption* and a *private key* used for *decryption*.

- Alice encrypts her message with Bob’s public key and sends it.

![Diagram of Alice and Bob exchanging keys]

Public-key Cryptography

- Eve has the public key and the encrypted message.

- We need an action that is easy to do (encrypt using a public key) but very difficult to reverse (decrypt using a public key).
Public-key Cryptography

- Eve has the public key and the encrypted message.

- We need an action that is easy to do (encrypt using a public key) but very difficult to reverse (decrypt using a public key).

- **Bad example.** The public key is the number k. We encrypt a number a as $a \cdot k$. The adversary can divide by k...
Integers

- We consider the set of integers
 \[\mathbb{Z} = \{ ..., -2, -1, 0, 1, 2, ... \} \].

- The expression “\(a \in \mathbb{Z} \)” means that \(a \) is in the set \(\mathbb{Z} \).

- For example, we have
 \[1 \in \mathbb{Z}, \quad 10^2 \in \mathbb{Z}. \]

- On the other hand
 \[0.3 \notin \mathbb{Z}, \quad \sqrt{2} \notin \mathbb{Z}. \]

Division

- Given two integers \(a, b \in \mathbb{Z} \), we say that \(a \) divides \(b \) (or \(a \mid b \)) if there exists \(s \in \mathbb{Z} \) such that \(b = sa \).

- True or false:
 \[
 \begin{array}{ccc}
 3 \mid 12 & & \checkmark & 12 \mid 3 & & \times \\
 3 \mid -15 & & \checkmark & -3 \mid 3 & & \checkmark \\
 -7 \mid 0 & & \checkmark & 0 \mid -7 & & \times \\
 0 \mid 0 & & \checkmark \\
 \end{array}
 \]
Our First Proof

- **Claim.** If $a|b$ and $b|c$ then $a|c$.
- **Proof.**
 - There exists $s \in \mathbb{Z}$ such that $b = as$.
 - There exists $t \in \mathbb{Z}$ such that $c = bt$.
 - Therefore, $c = ast$.
 - Setting $r = st$, we have $c = ar$.

Our Second Proof

- **Claim.** If $a|b$ and $b|a$ then $a = \pm b$.
- **Proof.**
 - There exists $s \in \mathbb{Z}$ such that $a = sb$.
 - There exists $t \in \mathbb{Z}$ such that $b = ta$.
 - That is, $a = sta$.
 - $st = 1$ so either $s = t = 1$ or $s = t = -1$.
Prime Numbers

- A **natural number** is an integer that is non-negative. The set of natural numbers: \(\mathbb{N} = \{0,1,2,3, \ldots \} \).

- A number of \(\mathbb{N} \setminus \{0,1\} \) is said to be **prime** if its only positive divisors are one at itself.

Proof by Induction

- **Claim (Prime decomposition).** Every natural number \(n \geq 2 \) is either a prime or a product of primes.

- **Proof.**
 - **Induction basis:** The claim holds for 2.
 - **Induction step:** Assume that the claim holds for every natural number smaller than \(n \).
 - If \(n \) is a prime, the claim holds for \(n \).
 - Otherwise, we can write \(n = ab \).
 - By the induction hypothesis, both \(a \) and \(b \) are either primes or a product of primes.
 - Thus, \(n \) is a product of primes.
Proof by Contradiction

- **Claim.** There exist infinitely many prime numbers.
 - **Proof.** Assume, for contradiction, that there exists a finite set of primes \(P = \{p_1, p_2, p_3, \ldots, p_n\} \).
 - The number \(p_1p_2 \cdots p_n + 1 \) is not prime, since it is not in \(P \).
 - The number \(p_1p_2 \cdots p_n + 1 \) is prime, since it cannot be divided by any of the primes of \(P \).
 - \textit{Contradiction! So there must be infinitely many primes!}

More Division Properties

- **Claim.** Given two numbers \(a, b \in \mathbb{N} \), there are unique \(q, r \in \mathbb{N} \) such that \(r < b \) and \(a = qb + r \).
 - We say that \(q \) and \(r \) are the \textit{quotient} and the \textit{remainder} of dividing \(a \) with \(b \).
 - We write \(r = a \mod b \).

- **Proof by algorithm!**
Our First Algorithm

- **Input.** Two numbers \(a, b \in \mathbb{N}\).
- **Output.** Two number \(q, r \in \mathbb{N}\) such that \(a = qb + r\) and \(r < b\).

- \(q \leftarrow 0\) and \(n \leftarrow a\).
- **While** \(n \geq b\):
 - \(n \leftarrow n - b\).
 - \(q \leftarrow q + 1\).
- \(r \leftarrow n\)

\[
\begin{array}{c|c|c|c}
 a & b & q & r \\
 12 & 5 & 0 & ? \\
 12 & 7 & 1 & ? \\
 2 & 2 & 2 & 2 \\
\end{array}
\]

Greatest Common Divisor

- We say that \(d\) is a **common divisor** of \(a\) and \(b\) (where \(a, b, d \in \mathbb{N}\)) if \(d|a\) and \(d|b\).
- The **greatest common divisor** \(\text{GCD}(a, b)\), of \(a\) and \(b\), is a common divisor \(c\) of \(a\) and \(b\), such that
 - If \(d|a\) and \(d|b\) then \(d \leq c\).
 - Equivalently, if \(d|a\) and \(d|b\) then \(d|c\).
Examples: GCD

- What is GCD(18,42)? 6
- What is GCD(50,100)? 50
- What is GCD(6364800, 1491534000)?
 - GCD($2^7 \cdot 3^2 \cdot 5^2 \cdot 13 \cdot 17, 2^4 \cdot 3^7 \cdot 5^3 \cdot 11 \cdot 31$)?
 $= 2^4 \cdot 3^2 \cdot 5^2 = 3600$.
- What can we do when dealing with numbers that are too large to factor?

GCD Property

- **Claim.** If $a = bq + r$ then
 \[
 \text{GCD}(a, b) = \text{GCD}(b, r)
 \]
- **Example.**

 \[
 66 = 21 \cdot 3 + 3
 \]
 $\text{GCD}(66, 21) = \text{GCD}(21, 3) = 3$.

Computing GCD: General approach

- **Problem.** Compute GCD\((a, b)\).
 - Find \(q_1, r_1 \in \mathbb{Z}\) such that \(a = q_1 b + r_1\).
 - Since GCD\((a, b) = \text{GCD}(b, r_1)\), it suffices to compute the latter.
 - Find \(q_2, r_2 \in \mathbb{Z}\) such that \(b = q_2 r_1 + r_2\).
 - Since GCD\((b, r_1) = \text{GCD}(r_1, r_2)\), it suffices to compute the latter.
 - ...
 - Continue until obtaining a zero remainder (then the divider is the required GCD).

The Euclidean Algorithm

- **Input.** Two numbers \(a, b \in \mathbb{N}\).
- **Output.** GCD\((a, b)\).

\[
\begin{align*}
r &\leftarrow a \mod b. \\
\text{While } r \neq 0: & \\
& \quad a \leftarrow b. \\
& \quad b \leftarrow r. \\
& \quad r \leftarrow a \mod b. \\
\text{Output } b. \\
\end{align*}
\]

\[
\begin{array}{ccc}
a = 78 & b = 45 & a = 78 \quad b = 45 \quad r = 33 \\
a = 45 & b = 33 & a = 45 \quad b = 33 \quad r = 12 \\
a = 33 & b = 12 & a = 33 \quad b = 12 \quad r = 9 \\
a = 12 & b = 9 & a = 12 \quad b = 9 \quad r = 3 \\
a = 9 & b = 3 & a = 9 \quad b = 3 \quad r = 0
\end{array}
\]
Proof of GCD Property

- **Claim.** If $a = bq + r$ then

$$\text{GCD}(a, b) = \text{GCD}(b, r)$$

- **Proof.**
 - Since $r = a - bq$, every common divisor of a and b is also a divisor of r. Thus,
 $$\text{GCD}(a, b) | \text{GCD}(b, r)$$
 - Since $a = bq + r$, every common divisor of b and r is also a common divisor of a. Thus,
 $$\text{GCD}(b, r) | \text{GCD}(a, b).$$

The End

- The Voynich manuscript: