Ma 2: Homework N.4

due Monday, October 27, 12 noon

1. Consider the Euler equation

\[t^2 x'' + \alpha t x' + \beta x = 0 \]

for the function \(x = x(t) \) with \(t > 0 \), and with \(\alpha \) and \(\beta \) two real parameters.

- Show that the change of variables \(t = e^u \) transforms the Euler equation into a second order linear equation with constant coefficients for the function \(x = x(u) \).
- Describe the behavior of the solutions of the equation obtained in this way, depending on the real parameters \(\alpha \) and \(\beta \).

2. Solve the following differential equations:

- \(y'' - 2y' + y = e^t/(1 + t^2) \)
- \(y'' - y' - 2y = 2e^{-t} \)

3. Let \(y_1(t) \) and \(y_2(t) \) be two solutions of the homogeneous second order equation

\[y'' + p(t)y' + q(t)y = 0 \]

where \(p(t) \) and \(q(t) \) are continuous on an interval \(t \in I = (\alpha, \beta) \).

- If the Wronskian of the two solutions is constant, what can one say about \(p(t) \) and \(q(t) \)?
- Show that if \(y_1(t) \) and \(y_2(t) \) vanish at the same point in the interval \(I \), or if they have a maximum or a minimum at the same point, then they are not a fundamental set of solutions.
4. For the following differential equations describe the equilibrium solutions and the asymptotic behavior of the other solutions, for different choices of the initial condition $y(0) = y_0$:

- $\frac{dy}{dt} = e^y - 1$, with initial conditions $-\infty < y_0 < \infty$;

- $\frac{dy}{dt} = y(a - y^2)$, for values of the parameter $a > 0$, $a = 0$, or $a < 0$, and with initial conditions $-\infty < y_0 < \infty$.