Lecture 5: Binomial identities.

Aims:
- To give some analogous q-binomial identities.
- To present a combinatorial application of the q-calculus.

5.1. Binomial Identities. Last lecture we proved two versions of q-Pascal’s rule:

Proposition 5.1. The following q-binomial identities hold

\[
\binom{n}{j} = \binom{n-1}{j-1} + q^j \binom{n-1}{j},
\]

(5.1)

\[
\binom{n}{j} = q^{n-j} \binom{n-1}{j-1} + \binom{n-1}{j}
\]

(5.2)

These are very useful identities. The first consequence we show is that we may regard each q-binomial as an element of $\mathbb{Z}[q]$.

Corollary 5.2. Each q-binomial coefficient,

\[
\binom{n}{j} = \frac{[n]!}{[j]![n-j]!},
\]

is a monic polynomial in q of degree $j(n-j)$.

Proof. Let us proceed by induction on n. The first step is easy because

\[
\binom{1}{0} = \binom{1}{1} = 1.
\]

Now let us fix an integer, n, and assume that for each k the q-binomial $\binom{n}{k}$ is an element of $\mathbb{Z}[q]$, then by the closure of $\mathbb{Z}[q]$ under addition and multiplication, so is

\[
\binom{n+1}{j} = \binom{n}{j} + q^j \binom{n}{j-1}.
\]

This shows each q-binomial is an element of $\mathbb{Z}[q]$, as required.

To prove the degree is $j(n-j)$, notice that, by definition

\[
\frac{[n]!}{[j]![n-j]!} = \frac{(q^n - 1)(q^{n-1} - 1)\ldots(q^{n-j+1} - 1)}{(q^j - 1)(q^{j-1} - 1)\ldots(q - 1)}.
\]
then the first term in the expansion around \(q = \infty \) is
\[
= q^{n+(n-1)+\ldots+(n-j+1)} + O(other)
\]
\[
= q^{j(2n-j+1) - (j-1)/2} + O(other),
\]
\[
= q^{j(2n-2j)/2} + O(other)
\]
\[
= q^{j(n-j)} + O(other)
\]
which proves the degree. \(\square \)

While the theorem is ridiculously easy to prove, actually finding these polynomials can be a little more cumbersome. So in general,

\[
\binom{n}{j} = a_0 + a_1 q + \ldots a_j(n-j)q^{j(n-j)}
\]

for some collection of integers, \(a_i \).

Example 5.3. Let us consider a simple example

\[
\begin{pmatrix} 5 \\ 3 \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} + q^3 \begin{pmatrix} 4 \\ 3 \end{pmatrix}
\]

\[
= \begin{pmatrix} 3 \\ 2 \end{pmatrix} + q^2 \begin{pmatrix} 3 \\ 2 \end{pmatrix} + q^3 \begin{pmatrix} 3 \\ 2 \end{pmatrix} + q^6
\]

\[
= 1 + q + (q^2 + q^3) \left(\begin{pmatrix} 2 \\ 1 \end{pmatrix} + q \right) + q^6
\]

\[
= 1 + q + 2q^2 + 2q^3 + 2q^4 + q^5 + q^6.
\]

One thing this example suggests is that the coefficients (as a function of \(q \)) are symmetric.

Proposition 5.4. Given the \(a_i \) from (5.3), they satisfy

\[
a_i = a_j(n-j)-i
\]

Proof. By definition, the left hand side of (5.3) is

\[
\frac{(1-q)(1-q^2)\ldots(1-q^{n-1})(1-q^n)}{(1-q)(1-q^2)\ldots(1-q^j)(1-q^2)\ldots(1-q^{n-j})}.
\]

If we replace, in this statement, \(q \) with \(1/q \), and multiply by \(q^{j(n-j)} \), it is easy to see this statement remains unchanged. The right hand side is

\[
a_{j(n-j)} + a_{j(n-j)+1}q + \ldots + a_0q^{j(n-j)}
\]
giving the required identity. \(\square \)

5.2. \(q \)-Vandermonde identity. Recall the Vandermonde identity, which can be derived from the two forms of the expansion of \((1+x)^{m+n}\), as we see

\[
(1+x)^{m+n} = (1+x)^m(1+x)^n \sum_k \binom{m+n}{k} x^k
\]

\[
= \sum_i \sum_j \binom{m}{i} \binom{n}{j} x^{i+j},
\]
so by comparing coefficients of x^k we have

$$\binom{m+n}{k} = \sum_j \binom{m}{k-j} \binom{n}{j},$$

which we wish to find the q-analogue of this result.

\begin{align*}
\begin{array}{ccccccc}
1 & 1 & 1 & 1 & 3 & 3 & 1 \\
1 & 5 & 4 & 6 & 4 & 20 & 15 & 7 & 1 \\
1 & 6 & 15 & 20 & 15 & 6 & 1 \\
1 & 7 & 21 & 35 & 35 & 21 & 7 & 1 \\
\end{array}
\end{align*}

\begin{align*}
\binom{4}{0} + \binom{4}{1} + \binom{4}{2} + \binom{4}{3} = \binom{7}{4} \\
1 + 4 \times 3 + 6 \times 3 + 4 \times 1 = 35
\end{align*}

In lecture 3, we presented the following identity

$$(x - a)^{m+n} = (x - a)^m (x - q^m a)^n,$$

which we may use, in conjunction with the special version of Gauss’s binomial identity from last lecture,

$$(1 + x)^n = \sum_{k=0}^n \binom{n}{k} x^k q^{k(k-1)/2},$$

to obtain a q-version of the above identity.

Proposition 5.5. The q-Chu-Vandermonde identity is stated as

$$\binom{m+n}{k} = \sum_j \binom{m}{k-j} \binom{n}{j} q^{j(m+j-k)}$$

Proof. The decomposition of $(1 + x)^{m+n}$, by using the above, is

$$(1 + x)^{m+n} = (1 + x)^m (1 + q^m x)^n.$$

The left hand side, by Gauss’s binomial formula, is

$$(1 + x)^{m+n} = \sum_k \binom{m+n}{k} x^k q^{k(k-1)/2}.$$

Similarly, the left hand side may be expressed as

$$= \sum_i \binom{m}{i} x^i q^{i(i-1)/2} (1 + x q^m)^n_q$$

$$= \sum_i \sum_j \binom{m}{i} \binom{n}{j} x^{i+j} q^{m i j} q^{i(i-1)/2} q^{j(j-1)/2},$$

comparing the coefficient of x^k on the left, and by letting $i = k - j$, we can compare the coefficient of x^k on the right hand side to give

$$\binom{m+n}{k} q^{k(k-1)/2} = \sum_j \binom{m}{k-j} \binom{n}{j} q^{m j} q^{(k-j)(k-j-1)/2} q^{j(j-1)/2},$$
shifting powers of q to the right hand side, we find that the exponent of q is
\[mj + \frac{(k-j)(k-j-1)}{2} + \frac{j(j-1)}{2} - \frac{k(k-1)}{2} \]
\[= mj + \frac{k^2 - kj + j^2}{2} - \frac{k + j + j^2 - j}{2} + \frac{k^2}{2} + \frac{j^2}{2} \]
\[= mj + j^2 - jk \]
\[= j(m + j - k). \]
This means that
\[\left[\begin{array}{c} m + n \\ k \\ \end{array} \right] = \sum_j \left[\begin{array}{c} m \\ k - j \\ \end{array} \right] \left[\begin{array}{c} n \\ j \\ \end{array} \right] q^{j(m+j-k)}, \]
as required.

5.3. Combinatorics with the q-calculus. One last theorem (for today) is related to the way in which these binomials may be seen to count certain things over finite fields. This relates our work to combinatorics.

Theorem 5.6. Let q be the order of a finite field, F_q (q is a prime power), then
\[\left[\begin{array}{c} n \\ j \\ \end{array} \right] = \text{The number of } j\text{-dimensional subspaces of } F_q^n. \]

Proof. The case in which $j = 0$ or $j = n$ is too trivial to mention. Firstly, $|F_q| = q$, hence, if we think of a standard canonical basis, e_1, e_2, \ldots, e_n, any element of F_q^n is given by
\[v = a_1 e_1 + \ldots + a_n e_n, \]
which is often denoted by the n-tuple (a_1, \ldots, a_n). The number of choices for each a_i is q making q^n total elements.

Every one dimensional vector sub-space is spanned by a non-zero element, making $q^n - 1$ choices. However, any linearly dependent vector also spans the subspace. I.e., \{v\} is a basis the same sub-space as \{av\} for any $a \neq 0$. There are $q - 1$ such linearly dependent, vectors making the number of 1 dimensional subspaces equal to
\[\frac{q^n - 1}{q - 1} = \left[\begin{array}{c} n \\ 1 \\ \end{array} \right]. \]

There are q elements of this subspace.

To define a new subspace, V_2 from a one-dimensional subspace, V_1, we need to specify a non-zero element not in V_1. There are $q^n - q$ such elements, but we also have to divide by the total possible number of basis that spans V_2. We have $q^2 - 1$ elements to choose from to form our first basis vector and $q^2 - q$ elements to choose from to make our second basis vector, making $(q^2 - 1)(q^2 - q)$ in total. This means the number of two dimensional subspaces is
\[\frac{(q^n - 1)(q^n - q)}{(q^2 - 1)(q^2 - q)} = \frac{(q^n - 1)(q^{n-1} - 1)}{(q^2 - 1)(q - 1)}. \]
We could go on, to V_3, but in general, we have that the number of j-dimensional subspaces is

$$\frac{(q^n - 1)(q^n - q)\ldots(q^n - q^{j-1})}{(q^j - 1)(q^{j-1} - 1)\ldots(q - 1)},$$

$$= \frac{(q^n - 1)(q^{n-1} - 1)\ldots(q^{n-j} - 1)}{(q^j - 1)(q^{j-1} - 1)\ldots(q - 1)},$$

$$= \frac{q^n - 1}{q-1} \frac{q^n - 1}{q-1} \ldots \frac{q^{n-j} - 1}{q-1},$$

$$= \frac{[n][n-1]\ldots[n-j+1]}{[j]!},$$

$$= \frac{[n]!}{[j]![n-j]!} = \binom{n}{j}.$$

This concludes the proof. □