This section of the notes may be extended later. For the moment, statements and explanations are very brief. See Biggs

Permutation groups; cycle decomposition

A *permutation* of a set S is a bijection $\sigma : S \to S$. The *product* $\sigma \tau$ of two permutations σ and τ of S is defined by $(\sigma \tau)(x) = \sigma(\tau(x))$. Remember that $\sigma \tau$ means “use τ first, then σ”.

Given a permutation π of set X, consider the digraph D whose vertex set is X and whose edges are $(x, \pi(x))$, $x \in X$. Because π is a mapping, every vertex has outdegree 1. Because π is also a permutation, every vertex has indegree 1. As an unirected graph, D is regular of degree 2 and all the components are polygons. In D, the components are (digraphs of) directed cycles, and they are, in my mind, what the cycles of π really are. But the following language and notation is very common (and useful when we need to write in lines of type rather than diagrams).

A *cycle* on S is a permutation of S that permutes some of the elements cyclically and fixes all others. That is, a permutation of the form $\pi = (a_1 \ a_2 \ a_3 \ \ldots \ a_k)$ where this notation means that

\[
\pi(a_1) = a_2, \quad \pi(a_2) = a_3, \quad \ldots, \quad \pi(a_{k-1}) = a_k, \quad \pi(a_k) = a_1,
\]

and where $\pi(x) = x$ for any $x \not\in \{a_1, a_2, \ldots, a_k\}$. (We are assuming that the a_i’s are distinct.)

Proposition 1. Every permutation can be written uniquely as the product of disjoint cycles.

Example. Let σ be the permutation described in “two-row notation” by

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
5 & 6 & 1 & 7 & 9 & 2 & 8 & 3 & 4
\end{pmatrix}.
\]

Then $\sigma = (1 \ 5 \ 9 \ 4 \ 7 \ 8 \ 3)(2 \ 6)$.

The *order* of a permutation π is the least positive integer n so that $\pi^n = id$. One can see that the order of a permutation of a finite set is the LCM of the lengths of its cycles. Our example above has order 14.

Permutation groups and the Orbit-Stabilizer Lemma

A set G of permutations is a *group* or a group of permutations of a set X when it is nonempty and closed under multiplication of permutations. That is, when $\sigma \tau \in G$ whenever $\sigma \in G$ and $\tau \in G$.
Examples include
(i) the set $\langle \sigma \rangle$ of all powers $\{id = \sigma^0, \sigma, \sigma^2, \ldots \}$ of a single permutation,
(ii) the set $\text{SYM}(X)$ of all permutations of a set X, and
(iii) the set of automorphisms of a graph (to be defined later).

Let G be a group of permutations of a set X. For $x \in X$, the orbit of x is the subset O_x of X defined by
$$O_x = \{\sigma(x) : \sigma \in G\}.$$

The stabilizer of x is the subset $\{\sigma \in G : \sigma(x) = x\}$ of G, and is denoted by G_x or by $G(x \mapsto x)$.

Fact: If $y \in O_x$, then $O_y = O_x$; equivalently, two orbits are either identical or disjoint. See Biggs. The orbits of G partition X.

Orbit-Stabilizer Lemma. Let G be a finite group of permutations of a set X. For $x \in X$, let $O_x = \{\sigma(x) : \sigma \in G\}$ be the orbit of x under G and let $G_x = \{\sigma \in G : \sigma(x) = x\}$ be the stabilizer of x in G. Then
$$|G| = |O_x||G_x|.$$

The proof is postponed.

Action of permutations on various objects

A permutation σ of a set X can be thought of as permuting subsets of X, and sets of subsets of X, or mappings from X to a set C, etc.

For example, let σ be a permutation of $X = \{1, 2, 3, 4, 5\}$. Then σ permutes the 10 2-subsets of X by the rule
$$\sigma(\{x, y\}) = \{\sigma(x), \sigma(y)\}.$$

Perhaps we should use a different symbol for this mapping, like $\overline{\sigma}$ or σ'; it is not the same as σ. But we often don’t bother, and this can sometimes be confusing.

For example, if σ has cycle decomposition $(1 \ 2 \ 3)(4 \ 5)$ as a permutation of X, then the “action” of σ on the 2-subsets of X has cycle decomposition
$$\left(\begin{array}{ccc} 1,2 \end{array} \right) \left(\begin{array}{ccc} 1,4 \end{array} \right) \left(\begin{array}{ccc} 2,3 \end{array} \right) \left(\begin{array}{ccc} 3,4 \end{array} \right) \left(\begin{array}{ccc} 4,5 \end{array} \right) \left(\begin{array}{ccc} 5,1 \end{array} \right);$$

that is, it has one cycle of length 3, one of length 6, and one fixed point. The permutation σ also “induces” a permutation of the graphs with vertex set X. If the graph G is the pentagon with edges
$$\{1,2\}, \{2,3\}, \{3,4\}, \{4,5\}, \{5,1\}$$
then by $\sigma(G)$ we will mean the graph with edges
$$\{2,3\}, \{3,1\}, \{1,5\}, \{5,4\}, \{4,2\}.$$
This is another pentagon. The cycle decomposition of σ as a permutation of all 1024 graphs with vertex set X is very complex.

If $f : X \rightarrow \{R, B\}$ is the mapping

$$
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
R & B & B & R & R
\end{pmatrix}
$$

and τ is any permutation of X, then we can apply τ to f to get

$$
\begin{pmatrix}
\tau(1) & \tau(2) & \tau(3) & \tau(4) & \tau(5) \\
R & B & B & R & R
\end{pmatrix}.
$$

Here we choose to modify the notation and denote the permutation of mappings by $\hat{\tau}$. So if σ is as above, then

$$
\hat{\sigma}(f) = \begin{pmatrix}
2 & 3 & 1 & 5 & 4 \\
R & B & B & R & R
\end{pmatrix} = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
B & R & B & R & R
\end{pmatrix}.
$$

Perhaps surprisingly, when we write what we mean out precisely, it is

$$(\hat{\sigma}(f))(i) = f(\sigma^{-1}(i)).$$