Remarks on Maxflow-Mincut

Proposition 1. An unaugmentable feasible flow f (i.e. one for which there are no f-augmenting paths from s to t) is a maxflow (a maximum strength feasible flow).

Proof: Review the proof of Maxflow-Mincut to understand; details omitted here. \square

There is a gap in our proof of the Mincut-Maxflow Theorem. We started with a maxflow, but we must be sure that such maxflows exists.

One way to see there are maximum strength feasible flows is to note that the flows form a compact set in some Euclidean space, and that “strength” is a continuous function on this set. The set of flows is bounded because of the constraints $0 \leq f(e) \leq c(e)$, and closed because we have \leq in these constraints (and equality in some linear equations) rather than $<$.

In the case that all capacities are integers, we can see there exist unaugmentable flows in another way. If we start with the 0-flow and use augmenting paths as described, the sequence of flows we get are all integer-valued, and the strength increases by at least 1 each step. Finally we reach an unaugmentable integer flow. As a consequence, we have the following result.

Theorem 2. Given a network with digraph D, distinguished vertices s, t and a capacity-function that takes nonnegative integer values, there exists an integer-valued maxflow.

It can be shown (we do not do so in this course) that if D has n vertices, and shortest f-augmenting paths are used, then after $O(n^3)$ augmentations, we reach an anaugmentable flow.

We partially explained in class how the Mincut-Maxflow theorem implies König’s Theorem on bipartite graphs. Further discussion is omitted from these notes.

Application to matrices

Given positive integers m and n, we construct a digraph D_{mn} as follows. The vertices are a source s, a sink t, vertices x_1, x_2, \ldots, x_m and vertices y_1, y_2, \ldots, y_n. (These are assumed to be distinct.) The edges are

I $\quad (s, x_i), \ i = 1, 2, \ldots, m,$

II $\quad (y_j, t), \ j = 1, 2, \ldots, n,$ and

III $\quad (x_i, y_j), \ i = 1, 2, \ldots, m, \ j = 1, 2, \ldots, n.$

Given an $m \times n$ matrix $A = (a_{ij})$ of real numbers, we get a flow f_A on $D_{m,n}$ by defining

I $\quad f_A(s, x_i) = \sum_{j=1}^{n} a_{ij},$ for $i = 1, 2, \ldots, m,$

II $\quad f_A(y_j, t) = \sum_{i=1}^{m} a_{ij},$ for $j = 1, 2, \ldots, n,$
III \(f_A(x_i, y_j) = a_{ij} \), for \(i = 1, 2, \ldots, m \), \(j = 1, 2, \ldots, n \).

Check that \(f_A \) is a flow from \(s \) to \(t \) of strength \(\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} \), the sum of all entries of \(A \). Every flow from \(s \) to \(T \) in \(D_{mn} \) is of the form \(f_A \) for some matrix \(A \). As an example, here is a \(2 \times 3 \) matrix \(A \) and the corresponding flow \(F_A \) on \(D_{23} \).

\[
A = \begin{pmatrix}
1 & 2 & 3 \\
4 & 5 & 6
\end{pmatrix}
\]

Theorem 3. Let \(A = (a_{ij}) \) be an \(n \times n \) doubly stochastic matrix, i.e. a nonnegative real matrix, all of whose rows and columns sum to 1 (in other words, the row-vectors and column-vectors are probability vectors). Then there exists an \(n \times n \) matrix \(B = b_{ij} \) of 0’s and 1’s all of whose rows and columns sum to 1 (i.e. with a single 1 in each row and each column) so that the positions of the 1’s are chosen from the positions where \(A \) is positive (i.e. if \(b_{ij} = 1 \), then \(a_{ij} > 0 \)).

Proof: Make \(D_{nn} \) into a network by giving ALL edges capacity 1. Then \(f_A \) is a feasible flow on this network of strength \(n \). By Theorem 2, there is an integer maxflow (of strength \(n \), and this maxflow is of course of the form \(f_B \) for some integer matrix \(B \). This matrix \(B \) has the required properties. (Details omitted.) \(\square \)

Theorem 3 is an important step in one proof of Birkhoff-von Neumann Theorem on doubly stochastic matrices. See the web.