1. **[NO COLLABORATION.]** We have seen in class that the number of binary words or strings (sequences of 0’s and 1’s) of length \(n \) such that no two ones are consecutive is the Fibonacci number \(f_{n+2} \). (For example, the binary words of length 3 with the property are 000, 100, 010, 001, and 101.)

What is the number of binary words of length \(n \) with exactly \(r \) ones such that no two ones are consecutive? Explain. (This is a combinatorial interpretation of the identity (*) on Notes #14.)

[Don’t use power series; just go back to the ideas of Notes #5.]

2. (i) Show that if \(a_n \) is a polynomial in \(n \) of degree \(d \) (for example, \(a_n = n^2 - 2n + 5 \), where \(d = 2 \)), then the generating function \(f = a_0 + a_1 x + a_2 x^2 + \ldots \) has the form
\[
\frac{p(x)}{(1 - x)^{d+1}}
\]
where \(p(x) \) has degree \(\leq d \).

(ii) Prove the converse: If the generating function \(g = b_0 + b_1 + \ldots \) has the form \(\frac{p(x)}{(1 - x)^{d+1}} \) with \(p(x) \) of degree \(\leq d \), then \(b_n \) is a polynomial of degree \(\leq d \) in \(n \). [Use partial fractions.]

3. If \(f \) is the generating function of a sequence \(a_0, a_1, a_2 \ldots \), what are the generating functions of the following sequences?
 (i) \(a_0 + 5, a_1 + 5, a_2 + 5, \ldots \),
 (ii) \(a_0 + 0, a_1 + 1, a_2 + 2, \ldots \),
 (iii) \(a_0, a_0 + a_1, a_0 + a_1 + a_2, \ldots \).

4. Recall that if \(a \) and \(b \) are coprime positive integers, then every positive integer \(n \) that is large enough is a nonnegative linear combination of \(a \) and \(b \). Let \(s_n \) be the number of ways to write \(n = ia + jb \) with \(i \) and \(j \) nonnegative integers. [The old version of this Set said “positive”, a typo.]

 (i) Let \(S(x) = s_0 + s_1 x + s_2 x^2 + \ldots \) be the generating function of the sequence \(s_0, s_1, s_2, \ldots \). What is \(S(x) \)? (I want you to give and briefly justify and answer of the form \(p(x)/q(x) \) where \(p \) and \(q \) are polynomials in \(x \).)

 (ii) Describe a linear recurrence relation that the sequence satisfies.

 (iii) Factor \(q(x) \) into polynomials of the form \(1 + \alpha x \). (You will need complex roots of unity.)

 (iv) I don’t expect you to find the partial fraction expansion of \(p(x)/q(x) \) completely, but find the coefficients of
\[
\frac{1}{(1 - x)^2} \quad \text{and} \quad \frac{1}{1 - x}.
\]

 (v) Using the partial fraction expansion (which you don’t know completely), estimate \(s_n \). All I want to know is \(\lim_{n \to \infty} s_n/n \).