1. (i) Find a maximum matching (by hand) in the graph G_0 that will be provided as a Handout on the web site soon. You can start with any matching and use the labeling procedure to be sure there is no matching of larger size.

(ii) Find a minimum vertex-cover in G_0. Do this with the labeling procedure.

2. Complete the proof of Theorem 5 of Notes #11. Suggestion: Start by explaining why, if the weighting w (with δw integer-valued) is not itself integer-valued, then there exists a polygon P so that $w(e)$ is not an integer for all $e \in E(P)$.

3. Describe an algorithm for finding a polygon in an (undirected) graph G (with thousands of vertices), if there are any. You may be brief, but try to be precise and complete. (I expect all kinds of answers to this.)

4. [NO COLLABORATION.] (i) Prove that if a balanced digraph D is connected, then it is strongly connected.

(ii) Given a digraph D and two distinct vertices s and t, prove that either (a) there exists a directed path from s to t, or (b) there exists a cut (X, Y) separating s and t such that there are no edges of D from X to Y.

5. Let D be a digraph with two distinct vertices s and t, and where each (directed) edge e has a capacity $c(e)$. Suppose (X_1, Y_1) and (X_2, Y_2) are both cuts separating s and t in D of minimum capacity in D (“mincuts”). Prove that $(X_1 \cap X_2, Y_1 \cup Y_2)$ is also a mincut. Give a simple example where $X_1 \cap X_2$ is not equal to X_1 or X_2.