
Top Fifteen Results

I thought that the reader of these Selecta might find it useful for me to point
out what I regard as my most significant research contributions. I’ve picked an
order although on another day, the order would be slightly different. I suspect
most people’s top three would be among my top 5. Some of the items are actually
collections of several separate results – for example, singular eigenvalue perturbation
theory.

Of course, my impact is not only through the papers highlighted in the list below.
Most significant of the other contributions, of course, are my books – especially
Reed–Simon (I often get into an email exchange from someone outside mathematical
physics who mentions that they first learned Functional Analysis from volume one)
and, I expect, as time passes, the Comprehensive Course five volume set will have a
large impact. Also the OPUC books, Trace Ideal and Functional Integration Books
which are standard references within their areas. One measure of the combined
impact is that I have over 60,000 Google Scholar citations and my Google Scholar
h-index is 103 (that is 103 publications with at least 103 citations each).

Besides the research in my books and papers, my publications have introduced
a lot of now standard terms including: hypercontractive, ultracontractive, infrared
bounds, CLR inequality, Kato’s inequality, diamagnetic inequalities, weak trace
ideal, Thouless formula, Aubry duality, Kotani theory, almost Matthieu equation,
Maryland model, ten martini problem, Berry’s phase, Wonderland theorem, OPUC,
OPRL, Verblunsky coefficient, CMV matrix, clock spacing of zeros. I have made
numerous conjectures that have stimulated further research including publicizing a
conjecture of Mark Kac which I dubbed the ten martini problem. I have also pub-
licized some breakthroughs by others such as Enss, Mourre, Berry’s Phase, Kotani
theory and Remling’s reflectionless theorem. And I have direct impact on my PhD.
students, postdocs and some number of long term visitors.

Here is the list of contributions:

1. Continuous Symmetry Breaking [64, 65, 67, 68, xiv] Phase transitions
accompanying breaking of a continuous non-abelian symmetry are an important
element of nature – not only in ferromagnetism but also in models of particle physics.
The only method known for a rigorous mathematical proof of this is the method
of infrared bounds that appeared first in my paper with Frölich and Spencer [65].
Phase transitions are viewed as a Bose condensation of spin waves. We applied the
method to the classicial Heisenberg ferromagnet (and by symmetry also the anti–
ferromagnet). This was extended to the quantum anti–ferromagnet by Dyson, Lieb
and me [68]. It is remarkable that 40 years later the quantum ferromagnet (which
we mistakenly announced and later withdrew) is still open.

2. Statistical Mechanical Methods in QFT [32, 33, 34, 37, 40, 47, 48
49, 50, IV] In early 1972, there was a revolution in constructive quantum field
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theory due to Guerra’s realization of the power of the Euclidean quantum field
theory of Symanzik and Nelson. Symanzik had realized that this set up some formal
analogies between QFT and statistical mechanics. It was Guerra, Rosen and me
[33] who discovered that one could discretize Euclidean space–time and so directly
approximate QFT by lattice spin models and thereby carry over powerful tools
(mainly correlation inequalities) to EQFT. With Griffiths [47], I introduced a second

level of approximation whereby Φ4 theories could be approximated by spin 1
2 models

and thus get GHS and Lee–Yang theorems in EQFT.

3. Thomas Fermi and other Quasiclassical Limits [39, 53, 73, 175] The
Thomas–Fermi approximation for atomic and molecular physics goes back to the
earliest days of quantum mechanics. In 1972–3, Lieb and I realized that for the
total binding energy and total electron density, TF theory is exact in the large Z
limit [53]. Before our work it wasn’t even known that the equations had solutions
in the case of molecules. TF theory is a quasi–classical limit. My paper [73] on
quasiclassical bounds stimulated the work of Cwikel and of Lieb on the CLR bounds.

4. Sum Rules and Operator Methods in Orthogonal Polynomials [280,
281, 282, 288, 290, 294, 296, 301, 302, 303, 306, 312, 315, 317, 318, 319, 323,
324, 327, 329, 332, 336, XIII, XIIV, XV] Starting about 2000, I shifted a part of my
research focus to the spectral theory of orthogonal polynomials. My most significant
work was joint with Killip [281]. We found an analog of Szegő’s OPUC result for
OPRL that gave spectral theory necessary and sufficient conditions for the Jacobi
matrix to be a Hilbert Schmidt perturbation of the free Jacobi matrix and using
results from [280] settled a conjecture of Nevai. We also studied Szegő asympototics.
Extending some of this to periodic and finte gap situations was a major theme of
my work over the following ten years including joint work with Zlatoš, Damanik,
Killip, Chritiansen, Zinchenko and Frank.

5. Singular Eigenvalue Perturbation Theory [6, 7, 10, 11, 17, 19, 20, 28,
70, 72, 80, 100, 101, 102, 104, 105, 111, 115, 122, 156, 161, 162, 163, 174, 177]
This is a collection of disparate results that have in common that they all look
at eigenvalue perturbations that go beyond the classical Kato-Rellich perturbation
theory that describes isolated eigenvalues under (relatively) bounded perturbations
and also goes beyond Kato’s results on asymptotic series and on spectral concentra-
tion. [7] has an exhaustive study of the analytic structure under coupling constant
variation for the anharmonic oscillator that was the basis for a proof (with Lof-
fel, Martin and Wightman) of Padé [6] and (with Graffi and Greechi) of Borel [10]
summability of eigenvalue perturbation series. In [20], I proved the convergence of
time dependent perturbation series for autoionizing states of atoms by using com-
plex scaling to reduce it to the Kato-Rellich theory. In [105] Harrell and I used
complex scaling and ODE asymptotics to prove the Oppenheimer formula for Stark
widths and the Bender–Wu formula for the asymptotics of the coefficients of the
divergent anharmonic oscillator perturbation series. In [162], I used large deviations
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in path integrals to obtain leading asymptotics in multi–dimensional double wells.
I have a number of papers on point eigenvalues emerging from continuous spectrum
under coupling constant variation, most notably my work on weak coupling in one
and two dimensions [70]

6. Geometric Methods in Quantum Mechanics (including Berry’s
Phase) [171, 172, 204, 205, 228, 229] I was an early advocate of the use of meth-
ods from algebraic topology and differential geometry in condensed matter physics.
Avron, Seiler and I [171] realized that the integer invariants found by Thouless,
Kohmoto, Nightingale and den Nijs were Chern classes and proved that these were
the only invariants associated to energy bands. In what is my most cited paper
in the physics literature I realized that the quantity I dubbed Berry’s phase was
a holonomy [172]. With Avron, Sadun and Seegert, I found the proper analog of
Berry’s phase in Fermi systems [205]. As an outgrowth of some of this work, Avron,
Seiler and I found a supersymmetic approach to the study of pairs of projections
[229].

7. Generic Singular Continuous Spectrum [233, 234, 235, 236, 242, 243,
246, 247, 248, 250, 251] I like to joke that I spent the first part of my career showing
singular continuous spectrum never occurs (see point 9 below!) and the second
part showing it always occurs. Motivated by some results of delRio and of Gordon,
I found that singular continuous spectrum is generic in a Baire category sense.
A general strategy was presented in [234] that for example showed that a Baire

Gδ of decaying random potentials with decay rate n−α; 0 < α < 1
2 have purely

singular continuous spectrum. With delRio and Markarov [235], I showed for rank
one perturbations with Lebesgue generic dense point spectrum have Baire generic
purely singular continuous spectrum. With Jitomirskaya [236], I proved for certain
almost periodic models with positive Lyaponov exponent, Baire genric points in the
hull have purely singular continuous spectrum.

8. Almost Periodic and Random Schrödinger Operators [146, 147, 148,
149, 152, 155, 166, 168, 169, 170, 180, 181, 187, 188, 189, 190, 192, 194, 198, 211,
216, 232, 245, 257, 263, 265, X, xxvi] This is also a huge catchall – two areas in
which I was an early (although, not always the earliest) worker. I’ll focus on some
of the high points of my research. At the same time as Johnson–Moser, Avron
and I worked out some of the most basic properties of almost periodic discrete
Schrödiner operators [147, 149] including the first proof of the Thouless formula and
the first examples where Liouville frequencies implies singular continuous spectrum.
I extended Kotani’s theory which he developed for continuum Schrödinger operators
to the discrete case [168]. For random Schrödinger operators, I proved with Wolff
[189] a fundamental criterion for localization. With Taylor [188], I proved that
the passage from potential randomness to density of states is smoothing, and, in
particular for the original Anderson model (which has a discontinuous potential
density), the density of states is C∞.
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9. Absence of Singular Spectrum in N-Body Quantum Systems [131,
132] In “normal” quantum systems, discrete eigenfunctions are bound states and
a.c. spectrum can be associated to scattering states. That there was no singu-
lar continuous spectrum was called “the no-goo hypothesis” by my advisor, Arthur
Wightman, since there was no physical interpretation. For N–body quantum sys-
tems (N ≥ 3) this was notoriously hard. When the potentials were analytic under
scaling, Balslev–Combes proved the absence in 1971. Mourre developed techniques
to prove this when N = 3 for a class of not necessarily smooth V ′s but his work
wasn’t understood or appreciated. Perry, Sigal and I [132] figured out Mourre’s
paper and the non–trivial extension to general N . This was the first proof, for ex-
ample, for N–body systems with C∞0 two-body potentials. This work was subsumed
in the work of Sigal–Sofer and Graf on strong asymptotic completeness.

10. Schrödinger Operators with Magnetic Fields, especially diamag-
netic inequalities [66, 76, 86, 87, 88, 89, 90, 91, 92, 98, 117, 130, 151, 183, X,
xxi] Fix a continuum Schrödinger operator with potential V and let H(a) be the
operator with a magnetic vector potential a. If exp(−tH)(x, y) is the integral kernel
of the semigroup, then the diamagnetic inequality says that | exp(−tH(a)(x, y)| ≤
exp(−tH)(x, y). It appeared first in [76] with some regularity conditions on a and
for the general case in [98]. Avron, Herbst and I [89, 90, 91, 92] have a systematic
study of the mathematical physics of quantum systems in magnetic field.

11. Inverse Problems [230, 239, 240, 241, 260, 261, 264, 267, 268, 271, 272,
273, 275, 289] For Jacobi matrices, there are two “standard” methods for going from
the spectral measure to the Jacobi parameters: one can form the OPRL and look at
their recursion coefficients or, alternatively, one can form the m–function and look at
its continued fraction expansion. The celebrated Gel’fand–Levitan inverse spectral
method is the analog of the OP approach for the continuum case. In [271], I found
the analog of the continued fraction approach (developed further in [272], jointly
with Gesztesy). With Gesztesy (and sometimes others), I have a series of papers on
various aspects of one dimensional inverse problems including the development of
the xi function [241] and that the Dirichlet spectrum for [0, 1], [0, a] and [a, 1] plus
a non-degeneracy condition determines the potential.

12. Eigenfunction Behavior for Schrödinger Operators [xxi, 36, 43, 46,
51, 59, 95, 119, 120, 133, 134, 135, 253, 263, X] Again, this is a catchall category. My
Schrödinger Semigroups article [xxi], which is partly a review article, has become
a standard reference on eigenfunctions of Schrödinger operators. I have a series
(some jointly with others) [43, 46, 51, 95, 133, 134] on pointwise bounds on decay of
eigenfunctions. Last and I [263] use eigenfucntions to study a.c. spectrum in great
generality.

13. Hypercontractivity and Ultracontractivity [16, 24, 69, 173] In funda-
mental 1966 work, Ed Nelson proved results about the boundedness from below of
some QFT cutoff Hamiltonians using Lp properties of the semigroup of the free field
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Hamiltonian and then Segal showed that these bounds also implied self–adjointness.
In 1970, Hoegh Krohn and I abstracted these ideas and invented the name “hyper-
contractive semigroup” for the Lp semigroup. In 1983, Davies and I [173] discovered
that for many finite dimensional (but not quantum field theory) situations a stronger
set of Lp properties held and was useful and we dubbed semigroups with this stronger
property “ultracontractive”. Both notions have become industries.

14. Quadratic Form Methods [13, 25, 30, 81, 82, 96, 98, 116, I] While the
theory of semibounded self–adjoint operators as quadratic forms had been devel-
oped, especially by Kato and Nelson, when I entered graduate school, Schrödinger
operators were almost always studied in terms of operator domains and operator
perturbations. My thesis, published as a book, [I] took a class of two body poten-
tials which were form bounded perturbations but not necessarily operator bounded
perturbations and developed all the currently available theory to this class. Since
then, many works on the subject, including many of mine, have used form methods.
In particular, [98] discussed a form analog of essential self–adjointness on C∞0 .

15. Self-Adjointness Methods [13, 14, 16, 24, 35, 38, 98] If one considers
potentials, V , with no restriction on sign, then essential self-adjointness of −∆ + V
on C∞0 (Rν) holds if V ∈ Lp with p ≥ 2 and p > ν/2. For any p ∈ [2, ν/2)
there exist V ’s in Lp where essential self-adjointness fails. In [24], I discovered
that for positive V ’s one gets self–adjointness for more singular possibilities than
for negative V ’s. Using hypercontrative methods and a trick of Konrady, I proved
essential self–adjointness if V ≥ 0 and V ∈ L2(Rν , e−|x|2dνx). I conjectured that for
V ≥ 0, L2

loc sufficed. Motivated by my paper, Kato wrote a famous paper (where
Kato’s inequality first appeared) proving my conjecture and making [24] obsolete.
In [98], I found a semigroup proof of my conjecture and proved a form analog of
that conjecture.
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