Olga Taussky-John Todd Instructor of Mathematics

Diplom in Physics (M.Sc.), Friedrich Alexander Universität Erlangen-Nürnberg
(Germany), 1992

Doktor rer.nat. (Ph.D.), Ruhr Universität Bochum (Germany), 1996

**Research Interests**

Mathematical physics, especially Schrödinger operators. Eigenvalue moments, spectral
theory.

**Publications**

- (with David Damanik) Reflection symmetries and absence of eigenvalues for one-dimensional Schrödinger operators, to appear in Proc. Amer. Math. Soc. [.ps file or .pdf file]
- (with Barry Simon) Lieb-Thirring inequalities for Jacobi matrices, to appear in Journal of Approximation Theory [.ps file or .pdf file]
*On the number of bound states for Schrödinger operators with operator-valued potentials*, Arkiv för matematik**40**(2002), 73–87 [.ps file or .pdf file]- (with Barry Simon)
*An optimal L*, to appear in J. d'Analyse Math. [.ps file or .pdf file]^{p}bound on the Krein spectral shift function - (with Michael Aizenman, Roland Friedrich, and Jeffrey Schenker)
*Finite-volume fractional-moment criteria for Anderson localization*, to appear in Communications in Mathematical Physics**224**(1) (2001), 219–253 [.ps file or .pdf file] - (with Werner Kirsch)
*Spectral theory of sparse potentials*in Stochastic Processes, Physics and Geometry: New Interplays. A Volume in Honor of Sergio Albeverio. Canadian Mathematical Society Conference Proceedings*,***28**(2000), 213–238. *On the time-dependent approach to Anderson localization*, Mathematische Nachrichten**214**(2000), 25–38- (with Michael Aizenman, Roland Friedrich, and Jeffrey Schenker)
*Constructive fractional-moment criteria for localization in random operators*Physica Acta*,***279**(2000), 369–377 - (with Ari Laptev and Timo Weidl)
*New bounds on the Lieb-Thirring constant*, Inventiones Mathematica**140**(2000), 693–704 - (with Norbert Röhrl and Heinz Siedentop)
*A sharp bound on the instability of the relativistic electron-positron field,*Communications in Mathematical Physics**210**(3), (2000) 629–642 - (with Kurt Broderix and Hajo Leschke)
*Continuity properties of Schrödinger semigroups with magnetic fields*, Reviews in Mathematical Physics**12**(2000), 181–225 - (with Elliott H. Lieb and Lawrence E. Thomas)
*A sharp bound for an eigenvalue moment of the one-dimensional Schrödinger operator*, Advances in Theoretical and Mathematical Physics**2**(4) (1998), 719–731 - (with Kurt Broderix, Werner Kirsch, and Hajo Leschke)
*The fate of Lifshitz tails in magnetic fields*, Journal of Statistical Physics**80**(1995), 1–22 - (with Kurt Broderix and Hajo Leschke)
*Self-averaging, decomposition, and asymptotic properties of the density of states for random Schrödinger operators with constant magnetic field,*in "Path integrals from meV to MeV", Tutzing (1993), eds. H. Grabert, A. Inomata, and U. Weiss. World Scientific, Singapore (1993)

**Preprint: **

- Bound states and the Szegö condition for Jacobi matrices and Schrödinger operators (with David Damanik and Barry Simon) [.ps file or .pdf file]

**In preparation:**

- A second look at the Feynman-Kac-Itô formula
- A diamagnetic inequality for semigroup differences (with Barry Simon)

**Transparencies from talks**

*An optimal L*Click here for the .dvi file or .ps file or .pdf file^{p}bound on the Krein spectral shift function

*A diamagentic inequality for semigroup differences*Click here for the .dvi file or .ps file or .pdf file

**Courses Taught**

**Fall 2000–01:**Ma 108a - Classical Analysis**Winter 2000–01:**Ma 108b - Classical Analysis**Spring 2000–01:**Ma 191i - Introduction to Schrödinger Operators**Fall 2001–02:**Ma 144a - Probability**Winter 2001–02:**Ma 144b - Probability

**Contact Information**

E-mail: dirkh@its.caltech.edu

Phone: (626) 395-4322

Fax: (626) 585-1728

Mailing address: Mathematics 253-37, Caltech, Pasadena, CA 91125

Click
here to get a listing of D. Hundertmark's papers from the AMS MathSciNet with links to
Mathematical Reviews.

(*Note*: You or your institution must have a valid MathSciNet subscription.)