Chapter 3

Differentiation in higher dimensions

3.1 The Total Derivative

Recall that if $f : \mathbb{R} \to \mathbb{R}$ is a 1-variable function, and $a \in \mathbb{R}$, we say that f is differentiable at $x = a$ if and only if the ratio $\frac{f(a+h)-f(a)}{h}$ tends to a finite limit, denoted $f'(a)$, as h tends to 0.

There are two possible ways to generalize this for vector fields

$$f : \mathcal{D} \to \mathbb{R}^m, \mathcal{D} \subseteq \mathbb{R}^n,$$

for points a in the interior \mathcal{D}^0 of \mathcal{D}. (The interior of a set X is defined to be the subset X^0 obtained by removing all the boundary points. Since every point of X^0 is an interior point, it is open.) The reader seeing this material for the first time will be well advised to stick to vector fields f with domain all of \mathbb{R}^n in the beginning. Even in the one dimensional case, if a function is defined on a closed interval $[a, b]$, say, then one can properly speak of differentiability only at points in the open interval (a, b).

The first thing one might do is to fix a vector v in \mathbb{R}^n and say that f is differentiable along v iff the following limit makes sense:

$$\lim_{h \to 0} \frac{1}{h} (f(a + hv) - f(a)).$$

When it does, we write $f'(a; v)$ for the limit. Note that this definition makes sense because a is an interior point. Indeed, under this hypothesis, \mathcal{D} contains a basic open set U containing a, and so $a + hv$ will, for small enough h, fall into U, allowing us to speak of $f(a + hv)$. This
derivative behaves exactly like the one variable derivative and has analogous properties. For example, we have the following

Mean Value Theorem Assume \(f'(a + tv; v) \) exists for all \(0 \leq t \leq 1 \). Then \(\exists t_0 \in [0, 1] \) such that \(f'(a + t_0v; v) = f(a + v) - f(a) \).

Proof. Put \(\phi(t) = f(a + tv) \). By hypothesis, \(\phi \) is differentiable at every \(t \) in \([0, 1]\), and \(\phi'(t) = f'(a + tv; v) \). By the one variable mean value theorem, there exists a \(t_0 \) such that \(\phi'(t_0) = \phi(1) - \phi(0) \), which equals \(f(a + v) - f(a) \). Done.

When \(v \) is a unit vector, \(f'(a; v) \) is called the **directional derivative** of \(f \) at \(a \) in the direction of \(v \).

The disadvantage of this construction is that it forces us to study the change of \(f \) in one direction at a time. So we revisit the one-dimensional definition and note that the condition for differentiability there is equivalent to requiring that there exists a constant \(c = f'(a) \), such that \(\lim_{h \to 0} \frac{f(a + h) - f(a) - ch}{h} = 0 \). If we put \(L(h) = f'(a)h \), then \(L : \mathbb{R} \to \mathbb{R} \) is clearly a linear map. We generalize this idea in higher dimensions as follows:

Definition. Let \(f : D \to \mathbb{R}^m \) \((D \subseteq \mathbb{R}^n)\) be a vector field and \(a \) an interior point of \(D \). Then \(f \) is differentiable at \(x = a \) if and only if there exists a linear map \(L : \mathbb{R}^n \to \mathbb{R}^m \) such that

\[
\lim_{u \to 0} \frac{||f(a + u) - f(a) - L(u)||}{||u||} = 0.
\]

Note that the norm \(|| \cdot || \) denotes the length of vectors in \(\mathbb{R}^m \) in the numerator and in \(\mathbb{R}^n \) in the denominator; this should not lead to any confusion, however.

Lemma 1 Such an \(L \), if it exists, is unique.

Proof. Suppose we have \(L, M : \mathbb{R}^n \to \mathbb{R}^m \) satisfying (*) at \(x = a \). Then

\[
\lim_{u \to 0} \frac{||L(u) - M(u)||}{||u||} = \lim_{u \to 0} \frac{||L(u) + f(a) - f(a + u) + (f(a + u) - f(a) - M(u))||}{||u||} \\
\leq \lim_{u \to 0} \frac{||L(u) + f(a) - f(a + u)||}{||u||} \\
+ \lim_{u \to 0} \frac{||f(a + u) - f(a) - M(u)||}{||u||} = 0.
\]
Pick any non-zero $v \in \mathbb{R}^n$, and set $u = tv$, with $t \in \mathbb{R}$. Then, the linearity of L, M implies that $L(tv) = tL(v)$ and $M(tv) = tM(v)$. Consequently, we have

$$
\lim_{t \to 0} \frac{||L(tv) - M(tv)||}{||tv||} = 0
$$

$$
= \lim_{t \to 0} \frac{|t||L(v) - M(v)||}{|t||v||}
$$

$$
= \frac{1}{||v||}||L(v) - M(v)||.
$$

Then $L(v) - M(v)$ must be zero.

Definition. If the limit condition $(*)$ holds for a linear map L, we call L the **total derivative** of f at a, and denote it by $T_a f$.

It is mind boggling at first to think of the derivative as a linear map. A natural question which arises immediately is to know what the value of $T_a f$ is at any vector v in \mathbb{R}^n. We will show in section 4.3 that this value is precisely $f'(a; v)$, thus linking the two generalizations of the one-dimensional derivative.

Sometimes one can guess what the answer should be, and if $(*)$ holds for this choice, then it must be the derivative by uniqueness. Here are two examples which illustrate this.

1. Let f be a **constant vector field**, i.e., there exists a vector $w \in \mathbb{R}^m$ such that $f(x) = w$, for all x in the domain D. Then we claim that f is differentiable at any $a \in D^0$ with derivative zero. Indeed, if we put $L(u) = 0$, for any $u \in \mathbb{R}^n$, then $(*)$ is satisfied, because $f(a + u) - f(a) = w - w = 0$.

2. Let f be a **linear map**. Then we claim that f is differentiable everywhere with $T_a f = f$. Indeed, if we put $L(u) = f(u)$, then by the linearity of f, $f(a + u) - f(a) - L(u)$ will be zero for any $u \in \mathbb{R}^n$, so that $(*)$ holds trivially.

Before we leave this section, it will be useful to take note of the following:

Lemma 2 Let f_1, \ldots, f_m be the component (scalar) fields of f. Then f is differentiable at a iff each f_i is differentiable at a.

An easy consequence of this lemma is that, when $n = 1$, f is differentiable at a iff the following familiar looking limit exists in \mathbb{R}^m:

$$
\lim_{h \to 0} \frac{f(a + h) - f(a)}{h},
$$
allowing us to suggestively write $f'(a)$ instead of $T_a f$. Clearly, $f'(a)$ is given by the vector $(f'_1(a), \ldots, f'_m(a))$, so that $(T_a f)(h) = f'(a)h$, for any $h \in \mathbb{R}$.

Proof. Let f be differentiable at a. For each $v \in \mathbb{R}^n$, write $L_i(v)$ for the i-th component of $(T_a f)(v)$. Then L_i is clearly linear. Since $f_i(a + u) - f_i(u) - L_i(u)$ is the i-th component of $f(a + u) - f(a) - L(u)$, the norm of the former is less than or equal to that of the latter. This shows that (*) holds with f replaced by f_i and L replaced by L_i. So f_i is differentiable for any i. Conversely, suppose each f_i differentiable. Put $L(v) = ((T_a f_1)(v), \ldots, (T_a f_m)(v))$. Then L is a linear map, and by the triangle inequality,

$$||f(a + u) - f(a) - L(u)|| \leq \sum_{i=1}^{m} |f_i(a + u) - f_i(a) - (T_a f_i)(u)|.$$

It follows easily that (*) exists and so f is differentiable at a.

3.2 Partial Derivatives

Let $\{e_1, \ldots, e_n\}$ denote the standard basis of \mathbb{R}^n. The directional derivatives along the unit vectors e_j are of special importance.

Definition. Let $j \leq n$. The jth partial derivative of f at $x = a$ is $f'(a; e_j)$, denoted by $\frac{\partial f}{\partial x_j}(a)$ or $D_j f(a)$.

Just as in the case of the total derivative, it can be shown that $\frac{\partial f}{\partial x_j}(a)$ exists iff $\frac{\partial f_i}{\partial x_j}(a)$ exists for each coordinate field f_i.

Example: Define $f : \mathbb{R}^3 \rightarrow \mathbb{R}^2$ by

$$f(x, y, z) = (e^{x \sin(y)}, z \cos(y)).$$

All the partial derivatives exist at any $a = (x_0, y_0, z_0)$. We will show this for $\frac{\partial f}{\partial y}$ and leave it to the reader to check the remaining cases. Note that

$$\frac{1}{h} f(a + he_2) - f(a) = \left(\frac{e^{x_0 \sin(y_0 + h)} - e^{x_0 \sin(y_0)}}{h}, z_0 \frac{\cos(y_0 + h) - \cos(y_0)}{h}\right).$$

We have to understand the limit as h goes to 0. Then the methods of one variable calculus show that the right hand side tends to the finite limit $(x_0 \cos(y_0)e^{x_0 \sin(y_0)}, -z_0 \sin(y_0))$, which
is \(\frac{\partial f}{\partial y}(a) \). In effect, the partial derivative with respect to \(y \) is calculated like a one variable derivative, keeping \(x \) and \(z \) fixed. Let us note without proof that \(\frac{\partial f}{\partial x}(a) = (\cos(y_0) e^{x_0 \sin(y_0)}, 0) \) and \(\frac{\partial f}{\partial z}(a) = (0, \cos y_0) \).

It is easy to see from the definition that \(f'(a ; tv) \) equals \(tf(a; v) \), for any \(t \in \mathbb{R} \). We also have the following

Lemma 3 Suppose the derivatives of \(f \) along any \(v \in \mathbb{R}^n \) exist near \(a \) and are continuous at \(a \). Then

\[
 f'(a; v + v') = f'(a; v) + f'(a; v'),
\]

for all \(v, v' \) in \(\mathbb{R}^n \). In particular, the directional derivatives of \(f \) are all determined by the \(n \) partial derivatives.

Proof. If \(\phi, \psi \) are functions of \(h \in \mathbb{R} \), let us write

\[
\phi(h) \equiv \psi(h) \iff \lim_{h \to 0} \frac{\phi(h) - \psi(h)}{h} = 0.
\]

Check that \(\equiv \) is an equivalence relation. Then by definition, we have, for all \(a \in D^0 \) and \(u \) in \(\mathbb{R}^n \),

\[
 f(a + hu) \equiv f(a) + hf'(a; u).
\]

Then \(f(a + h(v + v')) \) is equivalent to \(f(a) + hf'(a; v + v') \) on the one hand, and to

\[
 f(a + hv) + hf'(a + hv; v') \equiv f(a) + h(f'(a; v) + f'(a + hv; v')),
\]

on the other. Moreover, the continuity hypothesis shows that \(f'(a + hv; v') \) tends to \(f'(a; v') \) as \(h \) goes to 0. Consequently, we get the equivalence of \(f'(a; v + v') \) with \(f'(a; v) + f'(a; v') \).

Since they are independent of \(h \), they must in fact be equal.

Finally, since \(\{e_j | j \leq n\} \) is a basis of \(\mathbb{R}^n \), we can write any \(v \) as \(\sum_j \alpha_j e_j \), and by what we have just shown, \(f'(a : v) \) is determined as \(\sum_j \alpha_j \frac{\partial f}{\partial x_j}(a) \).

In the next section we will show that the conclusion of this lemma remains valid without the continuity hypothesis if we assume instead that \(f \) has a total derivative at \(a \).
The gradient of a scalar field \(g \) at an interior point \(a \) of its domain in \(\mathbb{R}^n \) is defined to be the following vector in \(\mathbb{R}^n \):

\[
\nabla g(a) = \text{grad} g(a) = \left(\frac{\partial g}{\partial x_1}(a), \ldots, \frac{\partial g}{\partial x_n}(a) \right).
\]

Given a vector field \(f \) as above, we can then put together the gradients of its component fields \(f_i, \ 1 \leq i \leq m \), and form the following important matrix, called the Jacobian matrix at \(a \):

\[
Df(a) = \left(\frac{\partial f_i}{\partial x_j}(a) \right)_{1 \leq i \leq m, 1 \leq j \leq n} \in M_{mn}.
\]

The \(i \)-th row is given by \(\nabla f_i(a) \), while the \(j \)-th column is given by \(\frac{\partial f}{\partial x_j}(a) \).

3.3 The main theorem

In this section we collect the main properties of the total and partial derivatives.

Theorem 1 Let \(f : D \to \mathbb{R}^m \) be a vector field, and \(a \) an interior point of its domain \(D \subseteq \mathbb{R}^n \).

(a) If \(f \) is differentiable at \(a \), then for any vector \(v \) in \(\mathbb{R}^n \),

\[
(Ta f)(v) = f'(a, v).
\]

In particular, since \(Ta f \) is linear, we have

\[
f'(a; \alpha v + \beta v') = \alpha f'(a; v) + \beta f'(a; v'),
\]

for all \(v, v' \) in \(\mathbb{R}^n \) and \(\alpha, \beta \) in \(\mathbb{R} \).

(b) Again assume that \(f \) is differentiable. Then the matrix of the linear map \(Ta f \) relative to the standard bases of \(\mathbb{R}^n, \mathbb{R}^m \) is simply the Jacobian matrix of \(f \) at \(a \).

(c) \(f \) differentiable at \(a \) \(\Rightarrow \) \(f \) continuous at \(a \).

(d) Suppose all the partial derivatives of \(f \) exist near \(a \) and are continuous at \(a \). Then \(Ta f \) exists.
(e) **(chain rule)** Consider

\[\mathbb{R}^n \xrightarrow{f} \mathbb{R}^m \xrightarrow{g} \mathbb{R}^h. \]

Suppose \(f \) is differentiable at \(a \) and \(g \) is differentiable at \(b = f(a) \). Then the composite function \(h = g \circ f \) is differentiable at \(a \) and moreover,

\[T_ah = T_bg \circ T_af. \]

In terms of the Jacobian matrices, this reads as

\[Dh(a) = Dg(b)Df(a) \in M_{kn}. \]

(f) \((m = 1)\) Let \(f, g \) be scalar fields, differentiable at \(a \). Then

(i) \(T_a(f + g) = T_af + T_ag \) \quad (additivity)

(ii) \(T_a(fg) = f(a)T_ag + g(a)T_af \) \quad (product rule)

(iii) \(T_a\left(\frac{f}{g}\right) = \frac{g(a)T_af - f(a)T_ag}{g(a)^2} \) if \(g(a) \neq 0 \) \quad (quotient rule)

The following corollary is an immediate consequence of the theorem, which we will make use of in the next chapter on normal vectors and extrema.

Corollary 1 Let \(g \) be a scalar field, differentiable at an interior point \(b \) of its domain \(D \) in \(\mathbb{R}^n \), and let \(v \) be any vector in \(\mathbb{R}^n \). Then we have

\[\nabla g(b) \cdot v = f'(b;v). \]

Furthermore, let \(\phi \) be a function from a subset of \(\mathbb{R} \) into \(D \subseteq \mathbb{R}^n \), differentiable at an interior point \(a \) mapping to \(b \). Put \(h = g \circ \phi \). Then \(h \) is differentiable at \(a \) with

\[h'(a) = \nabla g(b) \cdot \phi'(a). \]

Here is a simple observation before we begin the proof. Let \(f : \mathbb{R}^2 \to \mathbb{R}^2 \) be a vector field such that \(f_1(x,y) = \phi(x), f_2(x,y) = \psi(y) \), with \(\phi, \psi \) differentiable everywhere. Then, clearly, the Jacobian matrix \(Df(x,y) \) is the **diagonal matrix** \(\begin{pmatrix} \phi'(x) & 0 \\ 0 & \psi'(y) \end{pmatrix} \). Conversely,
By definition, \(f \) is the limit \(\lim_{n \to 0} \frac{f_1(x, y) - f_1(a, y) - (f_1(a, y) - f_1(a, y))}{n} = 0 \). Then \(\frac{\partial f_1}{\partial x} = \mu(x) \), \(\frac{\partial f_1}{\partial y} = 0 = \frac{\partial f_2}{\partial x} \), \(\frac{\partial f_2}{\partial y} = \nu(y) \) \(\Rightarrow f_1(x, y) = \int \mu(x) \, dx \); \(f_2(x, y) = \int \nu(y) \, dy \). So \(f_1 \) is independent of \(y \) and \(f_2 \) is independent of \(x \).

Proof of main theorem. (a) It suffices to show that \((T_a f_i)(v) = f_i(a; v) \) for each \(i \leq n \). By definition,

\[
\lim_{u \to 0} \frac{||f_i(a + u) - f_i(a) - (T_a f_i)(u)||}{||u||} = 0
\]

This means that we can write for \(u = hv, h \in \mathbb{R} \),

\[
\lim_{h \to 0} \frac{f_i(a + hv) - f_i(a) - h(T_a f_i)(v)}{||h|| ||v||} = 0.
\]

In other words, the limit \(\lim_{h \to 0} \frac{f_i(a + hv) - f_i(a)}{h} \) exists and equals \((T_a f_i)(v) \). Done.

(b) By part (a), each partial derivative exists at \(a \) (since \(f \) is assumed to be differentiable at \(a \)). The matrix of the linear map \(T_a f \) is determined by the effect on the standard basis vectors. Let \(\{e'_i|1 \leq i \leq m\} \) denote the standard basis in \(\mathbb{R}^m \). Then we have, by definition,

\[
(T_a f)(e_j) = \sum_{i=1}^{m} (T_a f_i)(e_j)e'_i = \sum_{i=1}^{m} \frac{\partial f_i}{\partial x_j}(a)e'_i.
\]

The matrix obtained is easily seen to be \(Df(a) \).

(c) Suppose \(f \) is differentiable at \(a \). This certainly implies that the limit of the function \(f(a + u) - f(a) - (T_a f)(u) \), as \(u \) tends to \(0 \in \mathbb{R}^n \), is \(0 \in \mathbb{R}^m \) (from the very definition of \(T_a f \), \(||f(a + u) - f(a) - (T_a f)(u)|| \) tends to zero „faster” than \(||u|| \), in particular it tends to zero). Since \(T_a f \) is linear, \(T_a f \) is continuous (everywhere), so that \(\lim_{u \to 0}(T_a f)(u) = 0 \). Hence \(\lim_{u \to 0} f(a + u) = f(a) \) which means that \(f \) is continuous at \(a \).

(d) By hypothesis, all the partial derivatives exist near \(a = (a_1, \ldots, a_n) \) and are continuous there. It suffices to show that each \(f_i \) is differentiable at \(a \). So we have only to show that (*) holds with \(f \) replaced by \(f_i \) and \(L(u) = f_i^*(a; u) \). Write \(u = (h_1, \ldots, h_n) \). By Lemma 3, we know that \(f_i^*(a; -) \) is linear. So

\[
L(u) = \sum_{j=1}^{n} h_j \frac{\partial f_i}{\partial x_j}(a),
\]

8
and we can write
\[f_i(a + u) - f_i(a) = \sum_{j=1}^{n} (\phi_j(a_j + h_j) - \phi_j(a_j)), \]
where each \(\phi_j \) is a one variable function defined by
\[\phi_j(t) = f_i(a_1 + h_1, \ldots, a_{j-1} + h_{j-1}, t, a_{j+1}, \ldots, a_n). \]

By the mean value theorem,
\[\phi_j(a_j + h_j) - \phi_j(a_j) = \phi_j'(t_j) = \frac{\partial f_i}{\partial x_j}(y(j)), \]
for some \(t_j \in [a_j, a_j + h_j] \), with
\[y(j) = (a_1 + h_1, \ldots, a_{j-1} + h_{j-1}, t_j, a_{j+1}, \ldots, a_n). \]

Putting these together, we see that it suffices to show that the following limit is zero:
\[\lim_{u \to 0} \frac{1}{||u||} \sum_{j=1}^{n} h_j \left(\frac{\partial f_i}{\partial x_j}(a) - \frac{\partial f_i}{\partial x_j}(y(j)) \right). \]

Clearly, \(|h_j| \leq ||u|| \), for each \(j \). So it follows, by the triangle inequality, that this limit is bounded above by the sum over \(j \) of \(\lim_{h_j \to 0} |(\frac{\partial f_i}{\partial x_j}(a) - \frac{\partial f_i}{\partial x_j}(y(j))| \), which is zero by the continuity of the partial derivatives at \(a \). Here we are using the fact that each \(y(j) \) approaches \(a \) as \(h_j \) goes to 0. Done.

(e) First we need the following simple

Lemma 4 Let \(T : \mathbb{R}^n \to \mathbb{R}^m \) be a linear map. Then, \(\exists c > 0 \) such that \(||Tv|| \leq c||v|| \) for any \(v \in \mathbb{R}^n \).

Proof of Lemma. Let \(A \) be the matrix of \(T \) relative to the standard bases. Put \(C = \max_j{||T(e_j)||} \). If \(v = \sum_{j=1}^{n} \alpha_j e_j \), then
\[||T(v)|| = || \sum_{j} \alpha_j T(e_j)|| \leq C \sum_{j=1}^{n} |\alpha_j| \cdot 1 \]
\[\leq C\left(\sum_{j=1}^{n} |\alpha_j|^2 \right)^{1/2} \left(\sum_{j=1}^{n} 1 \right)^{1/2} \leq C\sqrt{n}||v||, \]
by the Cauchy–Schwarz inequality. We are done by setting $c = C\sqrt{n}$.

Proof of (e) (contd.). Write $L = T_\alpha f$, $M = T_\beta g$, $N = M \circ L$. To show: $T_\alpha h = N$.

Define $F(x) = f(x) - f(a) - L(x - a)$, $G(y) = g(y) - g(b) - M(y - b)$ and $H(x) = h(x) - h(a) - N(x - a)$. Then we have

$$\lim_{x \to a} \frac{||F(x)||}{||x - a||} = 0 = \lim_{y \to b} \frac{||G(y)||}{||y - b||}.$$

So we need to show:

$$\lim_{x \to a} \frac{||H(x)||}{||x - a||} = 0.$$

But

$$H(x) = g(f(x)) - g(b) - M(L(x - a))$$

Since $L(x - a) = f(x) - f(a) - F(x)$, we get

$$H(x) = [g(f(x)) - g(b) - M(f(x) - f(a))] + M(F(x)) = G(f(x)) + M(F(x)).$$

Therefore it suffices to prove:

(i) $\lim_{x \to a} \frac{||G(f(x))||}{||x - a||} = 0$ and

(ii) $\lim_{x \to a} \frac{||M(F(x))||}{||x - a||} = 0$.

By Lemma 4, we have $||M(F(x))|| \leq c||F(x)||$, for some $c > 0$. Then $\frac{||M(F(x))||}{||x - a||} \leq c \lim_{x \to a} \frac{||F(x)||}{||x - a||} = 0$, yielding (ii).

On the other hand, we know $\lim_{y \to b} \frac{||G(y)||}{||y - b||} = 0$. So we can find, for every $\epsilon > 0$, a $\delta > 0$ such that $||G(f(x))|| < \epsilon ||f(x) - b||$ if $||f(x) - b|| < \delta$. But since f is continuous, $||f(x) - b|| < \delta$ whenever $||x - a|| < \delta_1$, for a small enough $\delta_1 > 0$. Hence

$$||G(f(x))|| < \epsilon ||f(x) - b|| = \epsilon ||F(x) + L(x - a)|| \leq \epsilon ||F(x)|| + \epsilon ||L(x - a)||,$$

by the triangle inequality. Since $\lim_{x \to a} \frac{||F(x)||}{||x - a||}$ is zero, we get

$$\lim_{x \to a} \frac{||G(f(x))||}{||x - a||} \leq \epsilon \lim_{x \to a} \frac{||L(x - a)||}{||x - a||}.$$
Applying Lemma 4 again, we get $||L(x - a)|| \leq c'||x - a||$, for some $c' > 0$. Now (i) follows easily.

(f) (i) We can think of $f + g$ as the composite $h = s(f, g)$ where $(f, g)(x) = (f(x), g(x))$ and $s(u, v) = u + v$ (“sum”). Set $b = (f(a), g(a))$. Applying (e), we get

$$T_a(f + g) = T_b(s) \circ T_a(f, g) = T_a(f) + T_b(g).$$

Done. The proofs of (ii) and (iii) are similar and will be left to the reader.

QED.

Remark. It is important to take note of the fact that a vector field f may be differentiable at a without the partial derivatives being continuous. We have a counterexample already when $n = m = 1$ as seen by taking

$$f(x) = x^2 \sin \left(\frac{1}{x} \right) \text{ if } x \neq 0,$$

and $f(0) = 0$. This is differentiable everywhere. The only question is at $x = 0$, where the relevant limit $\lim_{h \to 0} \frac{f(h)}{h}$ is clearly zero, so that $f'(0) = 0$. But for $x \neq 0$, we have by the product rule,

$$f'(x) = 2x \sin \left(\frac{1}{x} \right) - \cos \left(\frac{1}{x} \right),$$

which does not tend to $f'(0) = 0$ as x goes to 0. So f' is not continuous at 0.

3.4 Mixed partial derivatives

Let f be a scalar field, and a an interior point in its domain $\mathcal{D} \subseteq \mathbb{R}^n$. For $j, k \leq n$, we may consider the second partial derivative

$$\frac{\partial^2 f}{\partial x_j \partial x_k}(a) = \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_k} \right)(a),$$

when it exists. It is called the mixed partial derivative when $j \neq k$, in which case it is of interest to know whether we have the equality

$$\frac{\partial^2 f}{\partial x_j \partial x_k}(a) = \frac{\partial^2 f}{\partial x_k \partial x_j}(a).$$

11
Proposition 1 Suppose $\frac{\partial^2 f}{\partial x_j \partial x_k}$ and $\frac{\partial^2 f}{\partial x_k \partial x_j}$ both exist near a and are continuous there. Then the equality (3.4.1) holds.

The proof is similar to the proof of part (d) of Theorem 1.