An optimal L^p -bound on the Krein spectral shift function

(Birmingham, November 10-12, 2000)

Barry Simon and D. H.

Let $\xi_{A,B}$ be the Krein spectral shift function for a pair of operators A,B, with C=A-B trace class. Then

$$\int F(|\xi_{A,B}(\lambda)|) d\lambda \le \int F(|\xi_{|C|,0}(\lambda)|) d\lambda$$
$$= \sum_{j=1}^{\infty} \left[F(j) - F(j-1) \right] \mu_j(C),$$

where F is any non-negative convex function on $[0,\infty)$ with F(0)=0 and $\mu_j(C)$ are the singular values of C.

The Krein spectral shift function

Let A,B be bounded self-adjoint operators such that their difference A-B is trace class. The Krein spectral shift function $\xi_{A,B}$ for the pair A,B is determined by

$$\operatorname{tr}(f(A) - f(B)) = \int f'(\lambda)\xi_{A,B}(\lambda) d\lambda$$

for all functions $f \in C_0^{\infty}(\mathbb{R})$ and $\xi(\lambda) = 0$ if $|\lambda|$ is large enough.

The two bounds

$$\int |\xi_{A,B}(\lambda)| \, d\lambda \le \operatorname{tr}(|A - B|) \tag{1}$$

and

$$|\xi_{A,B}(\lambda)| \le n$$
 if $A - B$ is rank n (2)

are well known

Theorem 1 (Combes, Hislop, and Nakamura) One has the L^p -bound

$$\|\xi_{A,B}\|_p := \left(\int |\xi_{A,B}(\lambda)|^p d\lambda\right)^{1/p} \le \sum_{j=1}^{\infty} \mu_j(C)^{1/p}$$

for $1 \le p < \infty$. Note that this bound includes the endpoint cases (1) and (2) for p = 1 and and in the limit $p \to \infty$, respectively.

Proof: Write
$$C := A - B = \sum_{j=1}^{\infty} \mu_j(C) \langle \phi_j, . \rangle \psi_j$$
 and $B_n := B + \sum_{j=1}^n \mu_j(C) \langle \phi_j, . \rangle \psi_j$.

Then ζ_{B_{n+1},B_n} is the spectral shift function of a rank one pair. Hence

$$\int |\zeta_{B_{n+1},B_n}|^p = \int |\zeta_{B_{n+1},B_n}|^{p-1} |\zeta_{B_{n+1},B_n}|$$

$$\leq \int |\zeta_{B_{n+1},B_n}| \leq \mu_n.$$

Use the triangle inequality

$$\|\zeta_{A,B}\|_p = \|\sum \zeta_{B_{n+1},B_n}\|_p \le \sum \|\zeta_{B_{n+1},B_n}\|_p$$
 to sum this up.

A special spectral shift function

Let C be a positive trace class operator with eigenvalues μ_j . The spectral shift function for the pair C, 0 is simply given by

$$\xi_{C,0}(\lambda) = n \text{ if } \mu_{n+1} \le \lambda < \mu_n$$

 $\xi_{C,0}(\lambda) = 0 \text{ if } \lambda < 0 \text{ or } \lambda \ge \mu_1.$

In particular, $\xi_{C,0}$ enjoys the following important properties:

- $\xi_{C,0}$ takes only values in \mathbb{N}_0 (or \mathbb{Z} if C is not non-negative).
- For any non-negative function F on $[0, \infty)$ with F(0) = 0, we have

$$\int F(|\xi_{C,0}(\lambda)|) d\lambda = \sum_{j=1}^{\infty} F(j) \Big(\mu_j - \mu_{j+1}\Big).$$

ullet In addition, if F is monotone increasing, then

$$\int F(|\xi_{C,0}(\lambda)|) d\lambda = \sum_{j=1}^{\infty} \left[F(j) - F(j-1) \right] \mu_j.$$

Main Result

The above example $\zeta_{C,0}$ is an extreme case:

Theorem 2 (Barry Simon, 100DM)

Let F be a non-negative convex function on $[0,\infty)$ vanishing at zero. Given a non-negative compact operator C with singular values $\mu_j(C)$,

$$\int F(|\xi_{A,B}(\lambda)|) d\lambda \le \int F(|\xi_{C,0}(\lambda)|) d\lambda$$
$$= \sum_{j=1}^{\infty} \left[F(j) - F(j-1) \right] \mu_j(C)$$

for all pairs of bounded operators A,B with $\sum_{j=n}^{\infty} \mu_j(|A-B|) \leq \sum_{j=n}^{\infty} \mu_j(C)$ for all $n \in \mathbb{N}$. In particular, this is the case if $|A-B| \leq C$.

Corollary 3 In terms of the singular values μ_j of the difference A-B, we have the L^p -bound

$$\|\xi_{A,B}\|_p \leq \|\xi_{|A-B|,0}\|_p = \Big(\sum_{n=1}^{\infty} \Big[n^p - (n-1)^p\Big]\mu_n\Big)^{1/p}.$$

Remark:

$$\left(\sum_{n=1}^{\infty} \left[n^p - (n-1)^p \right] \mu_n \right)^{1/p} \le \sum_{n=1}^{\infty} \mu_n^{1/p}.$$

Proof: With $\mu(n) := \mu_n - \mu_{n+1} \ge 0$ rewrite

$$\left(\sum_{n=1}^{\infty} \left[n^p - (n-1)^p\right] \mu_n\right)^{1/p} = \left(\sum_{n=1}^{\infty} n^p \mu(n)\right)^{1/p}$$

The right-hand side is the l^p -norm of the function $n \to n^p$ in the weighted l^p -space $l^p(\mu)$. Write n = 1 + (n-1) and use Minkowski's inequality to get

$$\left(\sum_{n=1}^{\infty} n^{p} \mu(n)\right)^{1/p} \leq \left(\sum_{n=1}^{\infty} \mu(n)\right)^{1/p} + \left(\sum_{n=2}^{\infty} (n-1)^{p} \mu(j)\right)^{1/p} \\ = \mu_{1}^{1/p} + \left(\sum_{n=2}^{\infty} (n-1)^{p} \mu(n)\right)^{1/p} \leq \dots \\ \leq \sum_{n=1}^{N} \mu_{n}^{1/p} + \left(\sum_{n=N}^{\infty} (n-N)^{p} \mu(n)\right)^{1/p}.$$

The Proof

Let $m_f(t) := |\{\lambda : |f(\lambda)| > t\}|$. We will write $m_{A,B}$ for the distribution function of $\xi_{A,B}$.

Lemma 4 (Basic Lemma) With C = A - B, we have for all $n \in \mathbb{N}_0$

$$\int_{n}^{\infty} m_{A,B}(t) dt \le \sum_{j=n+1}^{\infty} \mu_{j}(C) = \int_{n}^{\infty} m_{|C|,0}(t) dt.$$

Proof: Set $(x - s)_{+} := \sup\{0, x - s\}$. Then

$$\int_{s}^{\infty} m_f(t) dt = \int (|f(\lambda)| - s)_{+} d\lambda \tag{3}$$

for all $s \ge 0$. Write

 $|\xi_{A,B}| = |\xi_{A,B+C_n} + \xi_{B+C_n,B}| \le |\xi_{A,B+C_n}| + n,$ with $C_n := \sum_{j=1}^n \mu_j(C) \langle \phi_j, . \rangle \psi_j$. Thus

$$(|\xi_{A,B}(\lambda)| - n)_{+} \leq |\xi_{A,B+C_n}(\lambda)|.$$

Using (3), we get

$$\int_{n}^{\infty} m_{A,B}(t) dt = \int (|\xi_{A,B}(\lambda)| - n)_{+} d\lambda$$

$$\leq \int |\xi_{A,B+C_{n}}(\lambda)| d\lambda = \operatorname{tr}(C - C_{n}).$$

Lemma 5 For any non-negative, convex function F on $[0,\infty)$ which vanishes at zero, there exists a non-negative, locally finite measure ν_F on $[0,\infty)$ such that

$$F(t) = \int_0^\infty (t - u)_+ \nu_F(du) \quad \text{for all } t \ge 0.$$

F is strictly convex if and only if ν_F is strictly positive, that is, $\nu_F([a,b]) > 0$ for all $0 \le a < b$.

Proof: Let F' be the left derivative of F, F'(0) := 0. Define ν_F by

$$\nu_F([a,b)) := F'(b) - F'(a).$$

Then $F'(s) = \nu_F([0,s))$. Calculate

$$\int_0^\infty (t - u)_+ \nu_F(du) = \int_0^t \int_u^t ds \, \nu_F(du)$$
$$= \int_0^t \nu_F([0, s)) \, ds = \int_0^t F'(s) \, ds = F(t).$$

Lemma 5 gives

$$\int F(|f(\lambda)|) d\lambda = \int_0^\infty \int (|f(\lambda)| - u)_+ d\lambda \nu_F(du)$$

$$= \int_0^\infty \underbrace{\int_u^\infty m_f(u) du}_{=:Q_f(u)} \nu_F(du)$$

Hence we have

Lemma 6 Let F be any non-negative, convex function F on $[0,\infty)$ which vanishes at zero. Given two functions f and g, $Q_f \leq Q_g$ implies

$$\int F(|f(\lambda)|) d\lambda \le \int F(|g(\lambda)|) d\lambda.$$

Moreover, if F is strictly convex and $Q_f < Q_g$ on a set of positive Lebesgue measure, then the inequality above is strict.

Lemma 7 Suppose that g takes only values in \mathbb{N}_0 . Then the inequality $Q_f(n) \leq Q_g(n)$ for $n \in \mathbb{N}_0$ implies

$$Q_f(t) \leq Q_g(t)$$
 for all $t \geq 0$.

Proof: Q_f and Q_g are convex AND Q_g is linear on [n, n+1]. The claim follows from convexity.

Proof of the Theorem: Given A and B, let D = |A - B| and C be any non-negative trace class operator with

$$\sum_{j=n}^{\infty} \mu_j(D) \le \sum_{j=n}^{\infty} \mu_j(C) \quad \text{for all } n \in \mathbb{N}.$$

The Basic Lemma shows

$$Q_{\xi_{A,B}}(n) \le Q_{\xi_{|D|,0}}(n) \le Q_{\xi_{C,0}}(n)$$
 for all $n \in \mathbb{N}_0$. (4)

Lemma 7 then implies that (4) extends from \mathbb{N}_0 to all positive real n. Once one has that, Lemma 6 proves

$$\int F(|\xi_{A,B}(\lambda)|) d\lambda \leq \int F(|\xi_{C,0}(\lambda)|) d\lambda.$$

Fubini-Tonelli implies summation by parts*

$$\sum_{j=1}^{\infty} F(j) \left(\mu_{j} - \mu_{j+1}\right)$$

$$= \sum_{j=1}^{\infty} \sum_{n=1}^{j} \left(F(n) - F(n-1)\right) \left(\mu_{j} - \mu_{j+1}\right)$$

$$= \sum_{1 \leq n \leq j} \left(\underbrace{F(n) - F(n-1)}_{\geq 0}\right) \left(\underbrace{\mu_{j} - \mu_{j+1}}_{\geq 0}\right)$$

$$= \sum_{n=1}^{\infty} \left(F(n) - F(n-1)\right) \sum_{j=n}^{\infty} \left(\mu_{j} - \mu_{j+1}\right)$$

$$= \sum_{n=1}^{\infty} \left(F(n) - F(n-1)\right) \mu_{n},$$
since $\sum_{j=n}^{\infty} \left(\mu_{j} - \mu_{j+1}\right)$ telescopes to μ_{n} .

*Or Riemann integral = Lebesgue integral!

Remark:

If

$$\mu_n = \frac{1}{n^p \ln(n+1)^\alpha}$$

then

$$\sum_{n=1}^{\infty} \mu_n^{1/p} < \infty$$

if and only if $\alpha > p$.

Whereas

$$\sum_{n=1}^{\infty} \left(n^p - (n-1)^p \right) \mu_n < \infty$$

if and only if $\alpha > 1$.