A diamagnetic inequality for semigroup differences

(Irvine, November 10–11, 2001)

Barry Simon and 100DM
The integrated density of states (IDS)

Schrödinger operator:

\[H := H(V) := -\frac{1}{2} \Delta + V_\omega =: H(0, V), \]

or, with a magnetic vector potential \(A \),

\[H := H(A, V) := \frac{1}{2} (-i \nabla - A)^2 + V_\omega \]
on \(L^2(\mathbb{R}^d) \).

- To model disordered systems, the potential \(V \) is often taken to be a random potential, e.g.,

\[V(x) = V_\omega(x) = \sum_{n \in \mathbb{N}} f(x - x_n(\omega)) \]

where \(x_n \) are randomly distributed points in \(\mathbb{R}^d \),
or

\[V(x) = V_\omega(x) = \sum_{n \in \mathbb{Z}^d} \lambda_n(\omega) f(x - x_n) \]

where the \((\lambda_n) \) are i.i.d. random variables. We will assume that \(V \in L^1_{\text{loc}}(\mathbb{R}^d) \) and \(v \geq 0 \), for simplicity.
The magnetic vector potential A gives rise to a magnetic field $B := dA$. Again, B can be thought of as given by a random process or is fixed.

Let $\Lambda \subset \mathbb{R}^d$ be an open set. $H^{#}_{\Lambda}(A, V_\omega)$ is the restriction of $H(A, V_\omega)$ to Λ with Dirichlet ($# = D$), respectively Neumann ($# = N$), boundary conditions.

Definition (IDS) The finite volume integrated density of states for Dirichlet, respectively Neumann, boundary conditions is given by

$$\rho^{#}_{\Lambda, \omega}(s) := \frac{1}{|\Lambda|} \#\{\text{eigenvalues } \lambda_j(H^{#}_{\Lambda}(A, V_\omega)) \leq s\}$$

$$\rho^{#}_{\omega} := \lim_{\Lambda \to \mathbb{R}^d} \rho^{#}_{\Lambda, \omega}$$
Natural questions

Question 1: Do the limits $\rho^\#_\omega$ exist?

Question 2: If so, how are they related? In particular, are they the same (\equiv independence of the boundary conditions)?

Fact:

- $\Lambda \rightarrow |\Lambda|\rho^D_{\Lambda,\omega}$ (resp. $|\Lambda|\rho^N_{\Lambda,\omega}$) is a sub (resp. super) additive ergodic process.

This implies that the macroscopic limits

$$\rho^\#_\omega = \lim_{\Lambda \rightarrow \mathbb{R}^d} \rho^\#_{\Lambda,\omega}$$

exist almost surely and are non-random, i.e.,

$$\rho^\#_\omega = \mathbb{E}[\rho^\#_\omega]$$

almost all ω (\equiv self-averaging property of the IDS).
Independence of the Boundary conditions

We will fix some potential \(V \) and magnetic vector potential \(A \) and have the the finite volume IDS \(\rho^\#_\Lambda \) for these fixed potentials. It will turn out that the independence of the boundary conditions of the macroscopic limits of \(\rho^\#_\Lambda \) is independent of their existence!

Let \(f : \mathbb{R} \rightarrow \mathbb{R} \) be a nice function, then

\[
\int f(E) \, d\rho^\#_\Lambda(E) = \frac{1}{|\Lambda|} \text{tr}_{L^2(\Lambda)}[f(H^\#_\Lambda(A, V))].
\]

for \(\# = N \) (Neumann), resp. \(= D \) (Dirichlet) boundary conditions.

- We will often write \(\text{tr}[f(H^\#_\Lambda(A, V))] \) instead of \(\text{tr}_{L^2(\Lambda)}[f(H^\#_\Lambda(A, V))] \) as long as there can be no confusion.

- Choosing \(f(E) = e^{-tE} \) we get the Laplace transforms of the measures \(d\rho^\#_\Lambda \), i.e., the Laplace transform is the trace of the corresponding semigroup.
Theorem 1 (S. Nakamura, S.-i. Doi et al).
Take \(\Lambda = [-L, L]^d \), \(V \), \(B = dA \) uniformly bounded, and \(f \in C^1_0(\mathbb{R}) \). Then

\[
|\text{tr} [f(H_N^\Lambda(A, V)) - f(H_D^\Lambda(A, V))]| \leq C \frac{\partial |\Lambda|}{|\Lambda|} = \frac{C}{L}.
\]

Sketch (of Nakamura’s proof):
Recall the Krein spectral shift:

\[
\text{tr}[f(A_1) - f(A_2)] = \int f'(E) \xi_{A_1, A_2}(E') dE
\]

with

\[
\|\xi_{A_1, A_2}\|_{L^1} \leq \|A_1 - A_2\|_1.
\]

Take \(A_1 := (H_N^\Lambda + M)^{-p}, A_2 := (H_D^\Lambda + M)^{-p} \), then

\[
f(H_N^\Lambda) = g(A_1) \text{ with } f(E) = g((E + m)^{-p}).
\]

So using Krein, it is enough to show that

\[
\|(H_N^\Lambda + M)^{-p} - (H_D^\Lambda + M)^{-p}\|_1 \leq C |\partial \Lambda|.
\]

However, this is rather tricky and requires a good knowledge of the domains of the restricted operators, which is complicated.
A completely different approach:

Theorem 2 (Barry Simon, 100DM). Let $\Lambda \subset \mathbb{R}^d$ be any open set, $A \in L^2_{\text{loc}}$, $V \geq 0$, $V \in L^1_{\text{loc}}$. Then

a) $|(e^{-tH^N_\Lambda(A,V)} f)(x)| \leq (e^{-tH^N_\Lambda(0,V)} |f|)(x)$ for $x \in \Lambda$

b) $|((e^{-tH^N_\Lambda(A,V)} - e^{-tH^D_\Lambda(A,V)}) f)(x)|$

\[
\leq \left((e^{-tH^N_\Lambda(0,V)} - e^{-tH^D_\Lambda(0,V)}) |f| \right)(x)
\]

\[
\leq V \geq 0 \left((e^{-tH^N_\Lambda(0,0)} - e^{-tH^D_\Lambda(0,0)}) |f| \right)(x).
\]

In particular,

\[
\text{tr}(e^{-tH^N_\Lambda(A,V)} - e^{-tH^D_\Lambda(A,V)})
\]

\[
\leq \text{tr}(e^{-tH^N_\Lambda(0,0)} - e^{-tH^D_\Lambda(0,0)}) = O(|\partial \Lambda|).
\]

(Weyl asymptotic for the free case!)
Motivation: The Feynman-Kac-Itô formula

\[(e^{-tH^D_\Lambda(A,V)} f)(x) = \mathbb{E}^x \left[e^{-iS_t(A)(b) - \int_0^t V(b_s)ds} \chi_{\Lambda_t}(b) f(b_t) \right],\]

where \(t \to b_t \) is a Brownian motion process,

\[S_t(A) := \int_0^t A(b_s) \, db_s + \frac{1}{2} \int_0^t \text{div} A(b_s) \, ds\]

is the “line integral” of \(A \) along a Brownian path, and we integrate only over the region

\[\Lambda_t := \{ b | b_s \in \Lambda \text{ for all } 0 \leq s \leq t \} .\]

With Neumann boundary conditions:

\[(e^{-tH^N_\Lambda(A,V)} f)(x) = \tilde{\mathbb{E}}^x \left[e^{-iS_t(A)(\tilde{b}) - \int_0^t V(\tilde{b}_s)ds} f(\tilde{b}_t) \right],\]

where \(t \to \tilde{b}_t \) is the so-called reflected Brownian motion (in \(\Lambda \)).

Note that, at least morally, \(\tilde{b} = b \) for paths \(b \in \Lambda_t \) (if Brownian motion did not hit the boundary up to time \(t \) it could not have been reflected, yet.)
Assuming this, we immediately get

\[|(e^{-tH^N(A,V)} - e^{-tH^D(A,V)})f| = \]

\[= \left| \mathbb{E}^x \left[e^{-iS^t(A)(\tilde{b})} - \int_0^t V(\tilde{b}_s)ds \underline{(1 - \chi \Lambda_t(\tilde{b}))} f(\tilde{b}_t) \right] \right| \]

\[\leq \mathbb{E}^x \left[e^{-\int_0^t V(\tilde{b}_s)ds} (1 - \chi \Lambda_t(\tilde{b}))|f(\tilde{b}_t)| \right] \]

\[= (e^{-tH^N(0,V)} - e^{-tH^D(0,V)})|f| \]

\[= \mathbb{E}^x \left[e^{-\int_0^t V(\tilde{b}_s)ds} (1 - \chi \Lambda_t(\tilde{b}))|f(\tilde{b}_t)| \right] \]

\[\leq \mathbb{E}^x \left[(1 - \chi \Lambda_t(\tilde{b}))|f(\tilde{b}_t)| \right] \]

\[= (e^{-tH^N(0,0)} - e^{-tH^D(0,0)})|f| \]
Sketch of the proof of Theorem 2:

a) ⇒ b): Take a potential $W \geq 0$. We have duHamel's formula, for $A, A + B \geq 0$

$$e^{-tA} - e^{-t(A+B)} =$$

$$= \int_0^t \frac{d}{ds} \left(e^{-sA} e^{-(t-s)(A+B)} \right) ds$$

$$= e^{-sA}(-A+A+B)e^{-(t-s)(A+B)}$$

$$= \int_0^t e^{-sA} B e^{-(t-s)(A+B)} ds.$$

Choose $A = H_N^\Lambda(A,0)$, $B = W$, i.e., $A + B = H_N^\Lambda(A,W)$. Then

$$\left| (e^{-tH_N^\Lambda(A,0)} - e^{-tH_N^\Lambda(A,W)})f \right|$$

$$\leq \int_0^t \left| e^{-sH_N^\Lambda(A,0)} W e^{-(t-s)(H_N^\Lambda(A,W))}f \right| ds$$

$$\leq e^{-sH_N^\Lambda(0,0)}|W|e^{-(t-s)(H_N^\Lambda(0,W))}|f|$$

$$= (e^{-tH_N^\Lambda(0,0)} - e^{-tH_N^\Lambda(0,W)})|f|$$

$W \geq 0$

Now reconstruct Dirichlet b.c.: Set $W(x) := W_n(x) := n1_\Lambda^c(x)$ and note that (morally)

$$s - \lim_{n \to \infty} e^{-tH_N^\Lambda(A,W_n)} = e^{-tH_D^\Lambda(A,0)}$$
Proof of a): Let $D = \nabla - iA$, $u_\varepsilon := \sqrt{|u|^2 + \varepsilon^2}$, and $s_\varepsilon := \frac{u}{u_\varepsilon}$. Then the quadratic form domain of the operator with magnetic field and Neumann b. c. is the domain of D.

Lemma 3 (Quadratic form version of Kato's inequality). $u \in \mathcal{D}(D) \Rightarrow |u| \in \mathcal{D}(\nabla)$ and for $\varphi \geq 0$, $\varphi \in \mathcal{D}(\nabla)$, $u \in \mathcal{D}(D)$ we have

$$\Re(D(s_\varepsilon \varphi) \cdot Du) \geq \nabla \varphi \nabla u_\varepsilon = |s_\varepsilon| \nabla |u|$$

Remark: $\nabla u_\varepsilon = \frac{1}{u_\varepsilon} u_\varepsilon \nabla u_\varepsilon = \frac{1}{u_\varepsilon} \nabla u_\varepsilon^2 = \frac{1}{u_\varepsilon} \nabla |u|^2 = \frac{|u|}{u_\varepsilon} \nabla u_\varepsilon = |s_\varepsilon| \nabla |u|$.

How to use this Lemma: Note that $\overline{s_\varepsilon} u = |s_\varepsilon||u|$, hence we have

$$\langle s_\varepsilon \varphi, u \rangle = \int |s_\varepsilon| \varphi |u| \, dx \geq 0,$$

and, using the above bound, we see

$$\int |s_\varepsilon| \left(\nabla \varphi \nabla |u| + \lambda \varphi |u| \right) \, dx$$

$$\leq \Re \left(\langle D(s_\varepsilon \varphi), Du \rangle + \lambda \langle s_\varepsilon \varphi, u \rangle \right)$$

$$= \Re \langle s_\varepsilon \varphi, v \rangle \leq \langle |s_\varepsilon| \varphi, |v| \rangle \leq \langle \varphi, |v| \rangle$$

for all $\lambda > 0$ and $u = (H^N_A(A, 0) + \lambda)^{-1} v$.

11
Taking \(\varepsilon \to 0 \), we get
\[
\langle (H^N_{\Lambda}(0,0) + \lambda)\varphi, |u| \rangle
= \langle \nabla \varphi, \nabla |u| \rangle + \lambda \langle \varphi, |u| \rangle
\leq \langle \varphi, |v| \rangle.
\]

Now choose \(\varphi = (H^N_{\Lambda}(0,0) + \lambda)^{-1}\psi, \psi \geq 0 \). Then
\[
\langle \psi, |(H^N_{\Lambda}(A,0) + \lambda)^{-1}v| \rangle
\leq \langle ((H^N_{\Lambda}(0,0) + \lambda)^{-1}\varphi, |v| \rangle
= \langle \psi, (H^N_{\Lambda}(0,0) + \lambda)^{-1}|v| \rangle
\]
for all \(\psi \geq 0 \) and \(v \in L^2(\Lambda) \). I.e.,
\[
|(H^N_{\Lambda}(A,0) + \lambda)^{-1}v| \leq H^N_{\Lambda}(0,0) + \lambda)^{-1}|v|
\]
and
\[
|(H^N_{\Lambda}(A,0) + \lambda)^{-n}v| \leq H^N_{\Lambda}(0,0) + \lambda)^{-n}|v| \text{ for all } n \in \mathbb{N}.
\]

The result for the Neumann semigroup follows, since
\[
e^{-tH^N_{\Lambda}} = s - \lim_{n \to \infty} \left(\frac{n}{t} \right)^n (H^N_{\Lambda} + \frac{n}{t})^{-n}.
\]