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Abstract: We prove several results related to a question of Steinhaus: is there a set
E ⊂ R2 such that the image of E under each rigid motion of R2 contains exactly one lattice
point? Assuming measurability we answer the analogous question in higher dimensions
in the negative, and we improve on the known partial results in the two dimensional case.
We also consider a related problem involving finite sets of rotations.

The following question was raised by Steinhaus in 1957 and has been the subject of
several recent papers.

Does there exist a set E ⊂ R2 such that every rotation and translation of E contains
exactly one integer lattice point?

By a rotation and translation of a set E ⊂ Rd we mean of course a set of the form ρE+x
for some ρ ∈ SO(d) and x ∈ Rd. It is natural to consider Steinhaus’ question separately
for measurable and nonmeasurable sets. Both the measurable and nonmeasurable cases
are presently open, but this paper will be concerned only with the measurable case,
which leads to some attractive questions in harmonic analysis. Accordingly we define a
Steinhaus set to be a measurable set E ⊂ Rd with the property that every rigid motion
ρE + x contains exactly one lattice point. Croft [3] showed that a Steinhaus set cannot
be bounded and Beck [1] gave a Fourier analysis proof of this result. One of the present
authors showed in [9] that if E is a Steinhaus set (in R2), then

∫
E
|x|α = ∞ for all α > 10

3
.

The case of closed sets has also been considered in the literature; see [4]. Some further
references may be found for example in [10].

For a given lattice Λ, the condition that every translate of E contain exactly one point
of Λ is equivalent to requiring that the translates of E under the elements of Λ form a
tiling. Note in particular that a Steinhaus set must have measure 1. More generally, one
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can consider tilings by functions instead of sets; we will say that an L1 function f tiles
with a lattice Λ if ∑

ν∈Λ

f(x− ν) is constant a.e.(dx)

One purpose of this paper is to solve the higher dimensional analogue of the (measur-
able) Steinhaus problem:

Theorem 1 Suppose that d ≥ 3 and that f : Rd → R is an L1 function which tiles with
every rotation of Zd, i.e. ∑

ν∈Zd

f(x − ρν)

is constant a.e. for each ρ ∈ SO(d). Then f agrees a.e. with a continuous function.

In particular this means that f cannot be the indicator function of a set with positive
measure, so we obtain

Corollary There are no Steinhaus sets in three or more dimensions.

We have been unable to prove a similar result in R2 but we will improve on the bound
in [9] in the following way:

Theorem 2 Assume a bound of the form

n(r) = πr2 + O(rβ) (1)

where n(r) = card((Z2\{0}) ∩D(0, r)). Then any Steinhaus set E ⊂ R2 must satisfy∫
E

|x|αdx = ∞ (2)

for all α > β
1−β .

Thus the result of [7] (β = 46
73

+ ε) implies that if E is Steinhaus then (2) holds for all
α > 46

27
; this is the best that we know unconditionally. The conjectured result (β = 1

2
+ ε,

see e.g. [8] or [11]) on (1) would imply (2) for all α > 1. This same range α > 1 also
arises in another way - see the remark after the proof of Corollary 2.3.

Property (2) with α = 2 can be proved by an argument similar to [9] but based
on L2 → L2 instead of L1 → L∞ estimates. We give this argument in Corollary 2.3
below. The relevant L2 estimate, Corollary 2.2(b), is quite simple and may be of some
independent interest. Theorem 1 is proved in section 1 and Theorem 2 (in the case α < 2)
is proved in section 3. Both proofs use bounds for exponential sums, although not very
sophisticated ones.

We also consider a related problem for finite sets of rotations. It is natural to ask
whether there are sets E which have the Steinhaus property relative to a large finite set
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of rotations {ρi}, i.e., whether it is possible to have
∑

ν∈Zd χE(x − ρiν) = 1 for each i.

This question was answered in the affirmative in [10] - see section 4 for a more precise
statement. We will prove an analogue of the Croft-Beck unboundedness result in this
context and more generally for images of Zd under linear maps with determinant 1 rather
than just rotations:

Theorem 3 There is a constant B = B(d) making the following true. Suppose that
the lattices Λi, i = 1, . . . , n, have volume 1 and that

Λi ∩ Λj = {0}, for all i 6= j (3)

Let f ∈ L1(Rd) be a function which tiles with all the Λi, and assume that f̂ (0) 6= 0. Then

the diameter of the support of f is at least Bn
1
d .

The proof will be given in section 4. It is based on uniform distribution modulo 1
and a theorem of Ronkin [12] and Berndtsson [2] on the real zeros of entire functions of
exponential type in Cd.

We remark that Theorem 2 and the corollary to Theorem 1 remain valid, with the
same proofs, if one adopts a somewhat more general definition of Steinhaus set as is
sometimes done in the literature. For example, one could define a Steinhaus set to be a
measurable set E such that, for some fixed k ∈ Z+, and almost every (ρ, x) ∈ SO(d)×Rd,
the image ρE + x contains exactly k lattice points.

A word about notation: we will use x . y to mean “x ≤ Cy for a suitable fixed
constant C”.

Added November 30, 1998: we understand that S. Jackson and D. Mauldin have recently
solved the nonmeasurable Steinhaus problem, i.e. have shown that there are (nonmeasur-
able) sets in R2 intersecting every isometric image of the integer lattice exactly once.

1. The higher dimensional Steinhaus problem
In this section we prove Theorem 1. The argument is Fourier analytic and is based

on the following observation: let f be a function satisfying the hypotheses of Theorem 1.
Then f̂ vanishes identically on any sphere centered at the origin which contains a point
of Zd. When d = 2, this observation was made in [1] (and used also in [9]) and the proof
extends immediately to higher dimensions. Since every integer is the sum of four squares
and every integer congruent to 1 mod 8 is the sum of three squares, we see that it suffices
to prove the following:

Theorem 1′ Assume that d ≥ 3 and let a and b be positive real numbers. Let f : Rd →
C be an L1 function such that f̂ vanishes identically on the sphere centered at the origin
with radius

√
am+ b for every positive integer m. Then f is continuous.
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We let σt be the surface measure on the sphere in Rd of radius t, and will normalize the
Fourier transform via f̂(ξ) =

∫
f(x)e−2πix·ξdx. We note also that a “Schwarz function”

will mean a function belonging to the Schwarz space as defined (say) in [6], p. 160,
Definition 7.1.2.

Lemma 1.1 Assume d ≥ 2. Let q : R → R be a C∞
0 function supported in [ 1

2
, 2], and

let b ∈ (0, 1]. Define KN : Rd → C

KN (x) =
∑
n

1√
n+ b

q(

√
n+ b

N
)σ̂√n+b(x)

Then for large N there is an estimate

|KN (x)| .
{

(N |x|)−100 if 1 ≤ |x| ≤ N
2

(N|x|)
d−2
2 if |x| ≥ N

2

Proof This will follow from the asymptotics for the Fourier transform of surface mea-
sure and a simple form of the vander Corput method for estimating exponential sums. We
remark that if |x| ≥ Nα with α > 1 then the bound can be improved by using exponent
pairs, but Lemma 1.1 as stated is enough for the proof of Theorem 1′.

It is well known (e.g. [13] p. 50) that σ̂1(x) = re(B(|x|)) where B(r) = a(r)e2πir, with
a(r) being a complex valued function satisfying estimates

|d
ka

drk
| . r−

d−1
2

−k (4)

Hence also σ̂t(x) = re(td−1B(t|x|)). Define t+ = max(t, 0), and let r = |x|. In the
calculation below, we use that q(t) = 0 when t < 1

2
; this implies that various integrals

may be taken interchangeably over R and over (0,∞). We have∑
n≥0

1√
n + b

q(

√
n+ b

N
)(
√
n+ b)d−1B(r

√
n+ b)

=
∑
n∈Z

((n+ b)+)
d−2
2 q(

√
(n+ b)+

N
)a(r

√
(n+ b)+)e2πir

√
(n+b)+

=
∑
ν∈Z

∫
R

((y + b)+)
d−2
2 q(

√
(y + b)+

N
)a(r

√
(y + b)+)e2πir

√
(y+b)+e−2πiνydy

=
∑
ν∈Z

∫
R

(Nz)d−2q(z)a(rNz)e2πirNze−2πiν(N2z2−b)d(N2z2 − b)

= r−
d−1
2 N

d+1
2

∑
ν∈Z

∫
R
φ(z)e2πirNze−2πiν(N2z2−b)dz (5)
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where φ(z) = 2zd−1(rN)
d−1

2 a(rNz)q(z). We used the Poisson summation formula and

then the change of variables z =
√
y+b
N

. We note that the estimate (4) implies that the
functions φ = φN,r belong to a compact subset of C∞

0 ; this means that the estimates
below are uniform in r and N .

We rewrite the sum (5) isolating the ν = 0 term and making some algebraic manipu-
lations:

(5) = r−
d−1

2 N
d+1
2

∫
R
φ(z)e2πirNzdz

+r−
d−1

2 N
d+1
2

∑
ν∈Z\{0}

e2πi(νb+ r2

4ν
)

∫
R
φ(z)e−2πiνN2(z− r

2Nν
)2dz (6)

The first term in (6) is equal to r−
d−1

2 N
d+1
2 φ̂(−Nr), hence . r−

d−1
2 N

d+1
2 (Nr)−k for any

k. In particular, it is . (Nr)−100 if r ≥ 1. The terms in the sum in (6) may be evaluated
via the asymptotics for Gaussian Fourier transforms ([6], Lemma 7.7.3); the νth term is
equal to

e2πi(νb+ r2

4ν
)

m−1∑
k=0

ck(νN
2)−k−

1
2φk(

r

2Nν
) + O((νN2)−m−1

2 ) (7)

for any m; here ck are fixed constants and the φk are certain derivatives of φ. All the
terms in the sum over k vanish if ν /∈ [ r

4N
, r
N

] so that

(7) .
{

(νN2)−
1
2 if ν ∈ [ r

4N
, r
N

]

(νN2)−m−1
2 if ν /∈ [ r

4N
, r
N

]

Accordingly the sum in (6) is

. card(Z ∩ [
r

4N
,
r

N
])(rN)−

1
2 + (rN)−m−1

2

Taking m sufficiently large we obtain

(6) . r−d−1
2 N

d+1
2 card(Z ∩ [

r

4N
,
r

N
])(rN)−

1
2 + (rN)−100 .

{
(N
r
)

d−2
2 if r ≥ N

2

(rN)−100 if 1 ≤ r ≤ N
2

The lemma follows since KN is the real part of the quantity (6). �

We need one more lemma, an easy consequence of the Poisson summation formula.

Lemma 1.2 Let k ≥ 2 be an integer, let q be a fixed C∞
0 function supported in [ 1

2
, 2],

let b ∈ [0, 1) and let h = h(t) be a function on the line satisfying the following estimate:

|d
jh

dtj
| ≤ R
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when 0 ≤ j ≤ k and N
100

≤ t ≤ 100N . Then for large N

|
∑
n

1√
n+ b

q(

√
n+ b

N
)h(

√
n + b) − 2

∫
q(
t

N
)h(t)dt| . RN−(k−1) (8)

where the implicit constant depends on q only.

Proof Set g(x) = h(
√
x+b)√
x+b

and a(x) = q(
√
x+b
N

). Then a is supported in x ≈ N2 and
derivatives of a satisfy

|d
ja

dxj
| . N−2j (9)

since the functions q(
√
x+ bN−2) belong to a compact subset of C∞

0 and a(x) is obtained
from q(

√
x+ bN−2) by dilating by N2. When x ≈ N2, derivatives of g satisfy

|d
jg

dxj
| . RN−(1+j) (10)

when j ≤ k. Namely, it is easy to show by induction on j that the jth derivative of g

is a sum of finitely many terms each of which has the form h(i)(
√
x+b)

(
√
x+b)` where h(i) = ith

derivative of h, with i ≤ j and ` ≥ j + 1. Estimate (10) is then obvious.
The left side of (8) is (make the change of variables t =

√
x+ b) equal to

|
∑
n

a(n)g(n) −
∫
a(x)g(x)dx|

By Poisson summation this is

|
∑
ν 6=0

âg(ν)| (11)

and if we integrate by parts k times and use (9) and (10), we bound the νth term in the
sum (11) by

|ν|−k
∫

|d
k(ag)

dxk
|dx . |ν|−k

∫ 2N2

0

RN−(1+k)dx

. |ν|−kRN−(k−1)

Hence (11). RN−(k−1) and the proof is complete. �

Proof of Theorem 1′ We may clearly assume that a = 1 and b ≤ 1.
We let q ∈ C∞

0 (R) be supported in [ 1
2
, 2] and such that the functions {q2j}∞−∞ form

a partition of unity on (0,∞); here we have defined q2j(x) = q( x
2j ). We define KN as in

Lemma 1.1 using this q.
Fix a ball D with radius 1; we will show that f is continuous on D. Let D̃ be the

concentric ball with radius 2, and let fi = χD̃f and fo = χ
R

d\D̃f where χE is the indicator
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function of the set E. By assumption, σ̂√
n+b∗f vanishes identically for any positive integer

n and therefore KN ∗ f vanishes identically for any N .

Claim Suppose η > 0 is given. Then, provided k is large enough, we have∑
j≥k

|K2j ∗ fi(y)| ≤ η (12)

for all y ∈ D.

Namely, by the preceding remarks it suffices to prove this with fi replaced by fo. If
|y − z| ≥ 1, then Lemma 1.1 implies that∑

j≥0

|K2j(y − z)| .
∑

j:2j≥2|y−z|
(2j |y − z|)−100 +

∑
j:2j≤2|y−z|

(
2j

|y − z|)
d−2
2

Since d ≥ 3, it follows easily that for a suitable constant C0∑
j≥0

|K2j (y − z)| ≤ C0 (13)

for all y ∈ D and z ∈ Rd\D̃. Now fix a number R ≥ 2 which is large enough that∫
R

d\DR

|f | < η

2C0

where DR is the ball concentric with D and with radius R. Then, using Lemma 1.1 as in
the proof of (13), if k is sufficiently large then∑

j≥k
|K2j (y − z)| < η

2‖f‖1

for all y ∈ D and z ∈ DR\D̃. It follows that∑
j≥k

|K2j ∗ fo(y)| ≤
∫
DR\D̃

∑
j≥k

|K2j(y − z)| |f(z)|dz +

∫
R

d\DR

∑
j≥k

|K2j (y − z)| |f(z)|dz

<
η

2‖f‖1
· ‖f‖1 + C0 · η

2C0

= η

as claimed.

We now fix y ∈ D and define

h(r)
def
=

∫
e2πiy·ξf̂i(ξ)dσr(ξ) = rd−1

∫
|ξ|=1

∫
D̃

f(z)e2πir(y−z)·ξdzdσ1(ξ)
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The estimates below will be uniform in y ∈ D. Using Fourier inversion, we have

KN ∗ fi(y) =
∑
n

1√
n+ b

q(

√
n+ b

N
)

∫
e2πiy·ξf̂i(ξ)dσ√

n+b(ξ)

=
∑
n

1√
n+ b

q(

√
n+ b

N
)h(

√
n + b)

If y ∈ D, then the second form of the definition of h shows that h and all its derivatives are
O(Nd−1) when r ∈ [ N

100
, 100N ]. Accordingly, Lemma 1.2 with a large value of k implies∫

h(t)q(
t

N
)dt =

1

2
KN ∗ fi(y) + O(N−100) (14)

Now define ψN : Rd → R via

ψ̂N (ξ) = q(
|ξ|
N

)

Then, using Fourier inversion and the definition of h, we have

ψN ∗ fi(y) =

∫
e2πiy·ξq(

|ξ|
N

)f̂i(ξ)dξ

=

∫
h(t)q(

t

N
)dt

On the other hand ψN belongs to the Schwarz space, and
∑

j≥k ψ̂2j(ξ) = 1 when |ξ| is
large. Accordingly, the function φ2k defined via

φ̂2k(ξ) = 1 −
∑
j≥k

ψ̂2j(ξ)

belongs to the Schwarz space. We have

fi(y) − φ2k ∗ fi(y) =
∑
j≥k

ψ2j ∗ fi(y)

=
∑
j≥k

∫
h(t)q(

t

2j
)dt

=
1

2

∑
j≥k

K2j ∗ fi(y) + O(2−100k)

by (14). We conclude using (12) that

|fi(y)− φ2k ∗ fi(y)| .
∑
j≥k

|K2j ∗ fi(y)|+ 2−100k

. 2η
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for any given η provided k is sufficiently large. Hence, on D, f is the uniform limit of the
continuous functions φ2k ∗ fi and therefore continuous. �

Remark When d = 2, we do not know whether Theorem 1′ remains true as stated,
since one can no longer conclude (12). The above argument shows though that it is true
if one assumes in addition that

∫
R

2 |x|ε|f(x)| <∞ for some ε > 0. Of course, when d = 2
Theorem 1′ is no longer closely related to the Steinhaus problem, since the set of integers
which are sums of two squares does not contain any arithmetic progression.

2. Sobolev properties of indicator functions

If E is a nice enough set in Rd then it is well known that the indicator function χE
cannot belong to the Sobolev space W

1
2 , i.e. the integral

∫
R

d |ξ| |χ̂E(ξ)|2dξ must be
infinite. In fact, there is an asymptotic expression which implies in particular that∫

|ξ|≥R
|χ̂E(ξ)|2dξ ≈ R−1 (15)

as R → ∞. This is often used in connection with irregularities of distribution; see e.g.
[11].

We will not use (15) in this paper, but we will need to know that the lower bound in
(15) is valid without any regularity assumptions on the set E. This is not difficult but
does not seem to be in the literature, so we prove it in Corollary 2.2 below.

Let φ be a Schwarz class function in Rd with φ̂(0) = 1; φ will be kept fixed for
the rest of this section. Let φε be the corresponding approximate identity defined by
φε(x) = ε−dφ(ε−1x).

Lemma 2.1 Suppose that E is a set in Rd with |E| = 1 and |E ∩D| > 0 for a certain
ball D with radius 1. Let D̃ be the concentric ball with radius Cd. Then

|{x ∈ D̃ :
1

4
≤ φε ∗ χE(x) ≤ 3

4
}| & ε

provided that ε is sufficiently small; the implicit constants may depend on E.

Proof We will use the following well-known fact:

‖∇(φε ∗ χE)‖∞ . ε−1 (16)

To prove (16), let ψ = ∇φ, let C = ‖ψ‖1 and define ψε(x) = ε−dψ(ε−1x). Differentiation
under the integral sign leads to∇(φε∗χE) = ε−1ψε∗χE . On the other hand, for any x ∈ Rd,
we have |ψε ∗ χE(x)| ≤ ‖ψε‖1‖χE‖∞ = ‖ψ‖1, which proves that ‖∇(φε ∗ χE)‖∞ ≤ Cε−1,
as claimed.

It follows by the mean value theorem that if φε ∗χE(x0) = 1
2
, then φε ∗ χE(x) ∈ [ 1

4
, 3

4
]

for all x ∈ D(x0, C
−1ε). We let σ be surface measure on Sd−1; here we take it to be

normalized so that σ(Sd−1) = 1. We also let Ec be the complement of the set E.
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Choose once and for all a point of density of E ∩D, which we may assume to be the
origin. Let A be the set of all ω ∈ Sd−1 such that the ray {rω : 1 < r < Cd} contains
a point of density of Ec. Since E has measure 1 it is clear that A must have measure
≥ 3

4
provided Cd is large enough. If ω ∈ A then we let pω = rωω be the corresponding

point of density of Ec. In a similar way we can choose a small sphere centered at 0,
x = {ρω : ω ∈ Sd−1}, where ρ < 1 in such a way that qω = ρω is a point of density of E
for all ω ∈ B where B ⊂ Sd−1 is a set of measure > 3

4
.

By Egoroff’s theorem, we can find subsets A∗ ⊂ A with measure ≥ 2
3

and B∗ ⊂ B
with measure ≥ 2

3
and a number ε0 such that if ε < ε0 then

|E ∩D(pω, ε)|
|D(pω, ε)| < 10−6 for all ω ∈ A∗ (17)

and |Ec ∩D(qω, ε)|
|D(qω, ε)| < 10−6 for all ω ∈ B∗. (18)

Note |A∗ ∩B∗| ≥ 1
3
.

Now fix ε < ε0, let ω ∈ A∗∩B∗ and consider φε ∗χE as a function on the line segment
{tω : ρ ≤ t ≤ rω}. Its value at ρ is ≥ 1− 10−6 and its value at rω is ≤ 10−6. Accordingly,
there must be a value of tω ∈ (ρ, rω) where φε ∗ χE(tωω) = 1

2
. Then by the remarks

at the beginning of the proof, φε ∗ χE(tω) ∈ (1
4
, 3

4
) for all ω ∈ A∗ ∩ B∗ and all t in the

interval centered at tω with length C−1ε. Using polar coordinates it now follows that the
set {x : φε ∗ χE(x) ∈ (1

4
, 3

4
)} has measure & ε where the constant is independent of ε

provided ε is small. �

Corollary 2.2 If E ⊂ Rd is a set with finite nonzero measure and if φε is as in Lemma
2.1 then

(a) ‖φε ∗ χE − χE‖2 ≥ C−1
E ε

1
2 for small ε.

(b)
∫
|ξ|≥R |χ̂E|2 ≥ (CER)−1 for a certain constant CE depending on E and all suffi-

ciently large R. In particular, χE /∈W
1
2 .

Proof Part (a) is immediate from Lemma 2.1, since 1
4
≤ φε ∗ χE(x) ≤ 3

4
implies

|φε ∗ χE(x) − χE(x)| ≥ 1
4
. Part (b) follows easily from (a). By (a) we have∫
R

n
|χ̂E(ξ)|2|φ̂(R−1ξ) − 1|2dξ ≥ (CER)−1 (19)

uniformly in R, and if φ has been chosen to be nonnegative, then |φ̂(R−1ξ)−1| is bounded
away from zero when |ξ| ≥ R. �

¿From Corollary 2.2 we can obtain a form of Theorem 2 where α = 2:

Corollary 2.3 If E ⊂ R2 is Steinhaus then
∫
E
|x|2dx = ∞.
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Proof As was done in [9], we use the elementary estimate (which is also the only known
estimate) for the maximum gap between sums of two squares:

(G): If r ∈ [1,∞) then for a suitable fixed constant C1 there is ν ∈ Z2 such that

|r − |ν|| ≤ C1r
− 1

2 .

We also use the following form of the Poincare inequality, which is well-known.

(PI): Let Q be a square in the plane with side r and let γ be a Jordan arc contained
in Q, such that the distance between the endpoints of γ is ≥ C−1

1 r. Let f be a function
which vanishes on γ. Then ∫

Q

|f |2 ≤ C2r
2

∫
Q

|∇f |2

where C2 depends on C1 only.

Fix a large number N and define AN
def
= {ξ ∈ R2 : N ≤ |ξ| ≤ 2N}. Let C be a large

enough constant and cover AN with nonoverlapping squares Q of side CN− 1
2 . If E is

Steinhaus, f = χ̂E, then (G) implies that each square will satisfy the hypothesis of (PI).
We conclude that ∫

Q

|χ̂E|2 . N−1

∫
Q

|∇χ̂E|2

for each Q and therefore ∫
AN

|χ̂E|2 . N−1

∫
A∗

N

|∇χ̂E|2

where A∗
N is the union of the squares and is contained in {ξ ∈ R2 : N−1 ≤ |ξ| ≤ 2N+1}.

Consequently ∫
AN

|ξ||χ̂E(ξ)|2dξ .
∫
A∗

N

|∇χ̂E|2

If we now sum over dyadic values of N and use that no point belongs to more than two
A∗
N ’s, we obtain ∫

R
2
|ξ||χ̂E(ξ)|2dξ .

∫
R

2
|∇χ̂E|2dξ + 1

Hence by Corollary 2.2(b),
∫
R

2 |∇χ̂E|2 = ∞, i.e.
∫
E
|x|2dx = ∞. �

Remarks 1. In [9] the estimate (G) was used to prove that
∫
E
|x|4dx = ∞ and then

the exponent 4 was lowered to 10
3

+ ε via a deep result of Hooley [5] regarding the `p

averages of the gap lengths. However, it does not appear that [5] can be used in a similar
way in connection with the argument in the proof of Corollary 2.3, since it is difficult to
estimate the contribution from the large gaps, even though by Hooley’s theorem there are
comparatively few of them. Instead, in section 3 we will improve on the exponent 2 using
a different argument and the known results on the circle problem (1), as discussed in the
introduction.
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On the other hand, assume for a moment that (G) holds with the exponent 1
2

replaced
by 1 − ε (i.e. assume that the maximum gap between numbers which are sums of two
squares is O(Nε)). Then it would follow easily by an argument like the proof of Corollary
2.3 (using fractional integration instead of the Poincare inequality) that any Steinhaus
set E satisfies

∫
E
|x|α = ∞ for all α > 1 - the same range of exponents that would follow

from the conjectured result on the circle problem via Theorem 2.
2. The last statement in Corollary 2.2 is also valid in Lp norms. If 1 < p < ∞ and

α > 0, then we let W p,α be the Lp Sobolev space with α derivatives. If E is any set with

positive measure, then χE cannot belong to W p, 1
p . This is because Lemma 2.1 implies

that ‖χE − φε ∗ χE‖p & ε
1
p , which implies that χE cannot belong to any Besov space

Λpq
1
p

with q < ∞. Since Λpq
1
p

contains W p, 1
p when q ≥ max(p, 2) it follows that χE cannot

belong to W p, 1
p .

3. We note that Croft’s proof [3] that Steinhaus sets are unbounded was based on
considering points which are density points neither of E nor of its complement. Corollary
2.2 is basically a quantitative version of existence of such points.

We now prove a further technical result, which we will need in the next section for the
proof of Theorem 2. It says roughly that the lower bounds on ‖φε∗χE−χE‖2 obtained (as
above) by considering large values are always sharp. If E ⊂ Rd is a set of finite measure,
then we define

Aε(E) = ‖φε ∗ χE − χE‖1

Bε(E) = ‖φε ∗ χE − χE‖2
2

Cε(E) = |{x ∈ Rd : |φε ∗ χE(x) − χE(x)| ≥ 1

4
}|

It is easy to see that
Cε(E) . Bε(E) . Aε(E) (20)

for any E and ε.

Lemma 2.4 For any given set E ⊂ Rd with |E| <∞ there is a sequence εj = 2−kj → 0
such that Aεj(E) . Cεj (E); the constants here (and in (20)) depend only on d and φ.

Remark The proof of Lemma 2.4 is somewhat shorter when φ has compact support,
but we did not want to assume this since in section 3 it will be convenient to assume
instead that φ̂ has compact support.

Proof We may assume that |E| = 1. If D = D(x, ρ) is the ball with center x and
radius ρ then we define

α(D) = min(|E ∩D|, |Ec ∩D|)

12



β(D) =

∞∑
j=0

2−10djα(2jD)

Here we have used the notation Ec = Rd\E and rD(x, ρ) = D(x, rρ).
Let C0 be a large constant. If D is any ball of radius C−1

0 ε then we claim that the
following are valid:

I. ‖φε ∗ χE − χE‖L1(D) . β(D)

II. |{x ∈ D : |φε ∗ χE(x)− χE(x)| ≥ 1
4
}| ≥ α(D).

In fact, II follows easily from (16). Namely, if C0 is large then (16) implies via the
mean value theorem that the difference between the maximum and minimum values of
φε ∗ χE on the ball D is less than 1

2
. It follows that one of the following must hold

(i) φε ∗ χ(x) ≤ 3
4

for all x ∈ D, or
(ii) φε ∗ χ(x) ≥ 1

4
for all x ∈ D.

In case (i) we have |{x ∈ D : |φε ∗ χE(x) − χE(x)| ≥ 1
4
}| ≥ |E ∩D| ≥ α(D) and in

case (ii) we have |{x ∈ D : |φε ∗ χE(x) − χE(x)| ≥ 1
4
}| ≥ |Ec ∩D| ≥ α(D), i.e. II holds

in either case.
To prove I, we express φ as a synthesis of C∞

0 functions, say

φ =
∞∑
j=0

ajφ
j

where suppφj ⊂ D(0, (2C0)
−12j), φ̂j(0) = 1, ‖φj‖1 ≤ C and aj ≤ C2−10dj. Let φjε(x) =

ε−dφj(ε−1x). It follows by Minkowski’s inequality and the support properties that

‖φjε ∗ χE − χE‖L1(D) . |E ∩ (2jD)|

and therefore also
‖φjε ∗ χE − χE‖L1(D) . α(2jD)

since the left side is unchanged when E is replaced by Ec. I now follows by summing over
j.

Let I(ε) =
∫
R

d α(D(x, C−1
0 ε))dx, J(ε) =

∫
R

d β(D(x, C−1
0 ε))dx. Integrating I and II

over Rd we get
ε−dI(ε) . Cε(E) . Aε(E) . ε−dJ(ε) (21)

Let k be a large positive integer and consider the sums

Ik =

∞∑
`=0

2−5d`I(2`−k)

13



Jk =

∞∑
`=0

2−5d`J(2`−k)

For any k, we have

Jk =
∞∑
`=0

∞∑
j=0

2−d(5`+10j)I(2`+j−k)

.
∞∑
m=0

2−5dmI(2m−k)

= Ik
On the next to last line, we set m = j + ` and used that

∑
j+`=m 2−d(5`+10j) . 2−5dm.

Now observe that J(ε) & εd+1 for small ε, e.g. by (21) and Corollary 2.2(a), and that
I(ε) . εd for any ε (even when ε > 1), e.g. by (21). It follows that Jk & 2−(d+1)k and that∑

`>k
2
2−5d`Ik−` is small compared with 2−(d+1)k. Accordingly∑

`≤k
2

2−5d`J(2`−k) .
∑
`≤k

2

2−5d`I(2`−k)

which implies there is a value 2`−k ≤
√

2−k with J(2`−k) . I(2`−k). This and (21) prove
the lemma. �

In the rest of this section we assume that the Schwarz function φ satisfies the following
conditions:

suppφ̂ ⊂ D(0, 1), φ̂(ξ) = 1 if ξ ∈ D(0,
1

2
) (22)

We set ψ(x) = φ(x)−2dφ(2x); thus ψ is a Schwarz function with suppψ̂ ⊂ D(0, 2)\D(0, 1
2
).

We define ψε(x) = ε−dψ(ε−1x), so that
∑∞

j=0 ψ2−jε ∗ f = φε ∗ f − f for any f and ε, as
may be seen by taking Fourier transforms. Property (22) implies that no point belongs to

the support of ψ̂j for more that three values of j, so it follows by the Plancherel theorem
that ∞∑

j=0

‖ψ2−jε ∗ f‖2
2 & ‖f − φε ∗ f‖2

2 (23)

Furthermore,
‖ψ2−jε ∗ f‖1 . ‖f − φε ∗ f‖1 (24)

Namely, the support property (22) makes it possible to represent ψ2−j = gj ∗ (δ−φ) with

‖gj‖1 ≤ C (here δ is the Dirac delta function). Indeed if j ≥ 1 then ψ̂2−j and φ̂ have

disjoint support so we can take gj = ψ2−j , and when j = 0, ψ̂2−j = ψ̂ is obtained from 1−φ̂
by multiplication by the C∞

0 functionm defined viam(ξ) = −1 when |ξ| ≤ 1 and ψ̂

1−φ̂ when

|ξ| ≥ 1. It follows using dilations that ψ2−jε = gj,ε ∗ (δ − φε) where ‖gj,ε‖1 = ‖gj‖1 ≤ C .
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Accordingly ‖ψ2−jε ∗ f‖1 = ‖gj,ε ∗ (δ− φε) ∗ f‖1 = ‖gj,ε ∗ (f − φε ∗ f)‖1 ≤ C‖f − φε ∗ f‖1

which is (24).

Corollary 2.5 Assume that φ satisfies (22) and define ψ as above. If E is a set of
finite measure then there is a sequence εj → 0 such that, for each j, (i) ‖ψεj ∗ χE‖1 .
(log 1

εj
)2‖ψεj ∗ χE‖2

2 and (ii) ‖ψεj ∗ χE‖2
2 & εj.

Proof Let ε be such that Aε(E) . Bε(E). If ηk = 2−kε then ‖ψηk
∗ χE‖1 . Aε(E) by

(24) and
∑

k≥0 ‖ψηk
∗ χE‖2

2 & Bε(E) by (23). Hence, for some k we must have

max((k + 1)−2‖ψηk
∗ χE‖1, (k + 1)−2Bε(E)) . ‖ψηk

∗ χE‖2
2

Also Bε(E) & ε by Corollary 2.2(a), so (k + 1)−2Bε(E) & ηk, and (k + 1)−2 & (log 1
ηk

)−2.
We conclude that

max((log
1

ηk
)−2‖ψηk

∗ χE‖1, ηk) . ‖ψηk
∗ χE‖2

2

i.e. that there are arbitrarily small numbers εj such that (i) and (ii) hold. �

3. Proof of Theorem 2
The following fact will be used repeatedly below, so we formulate it as a lemma.

Lemma 3.1 If N ≥ 1 then for any ε > 0 and r > 0∑
ν∈Z2

(1 +N |r − |ν||)−100 ≤ CεN
εmax(

r

N
, 1)

Proof Because of the rapid decay of (1 +Nt)−100 when t ≥ 1
N

, it is easy to show that
it suffices to prove the following estimate for all r:

n(r +
1

N
) − n(r) . Nεmax(

r

N
, 1) (25)

where n(r) is as in (1). To prove (25), consider two cases.
(i) r ≤ N3. The number of lattice points on a circle is bounded by any given power of

the radius, hence a circle of radius ρ ∈ (r, r+ 1
N

) contains . r
ε
3 . Nε lattice points. There

are . max( r
N
, 1) values of ρ for which it contains some lattice point and (25) follows.

(ii) r ≥ N3. In this case we use (1) with the classical exponent β = 2
3
. Thus

n(r + 1
N

) − n(r) . r
N

+ r
2
3 ≈ r

N
. �

The proof of Theorem 2 will be like the proof of Theorem 1 insofar as it is also based
on using an appropriate “fundamental solution”. However, we must replace the kernel in
Lemma 1.1 by an analogous one involving a sum only over circles which contain lattice
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points. We will use the obvious choice where one counts each circle according to the
number of lattice points it contains.

Let p be a nonnegative C∞ function of one variable supported in t ≤ 1 and with
p(t) = 1 when t ≤ 1

2
. Define

KN (x) =
∑

ν∈Z2,ν 6=0

1

|ν| σ̂|ν|(r)p(
|ν|
N

)

where r = |x|.

Lemma 3.2 Assume the bound (1). Then

|KN (x)| . N |x|−(1−β) (26)

if |x| ≥ N ≥ 1.

The proof of this lemma is routine but a bit long, so to avoid loss of continuity we
postpone it to the appendix, and will now continue with the proof of Theorem 2.

We will use complex notation when convenient and define operators Tρ on L2(R2) via
Tρf(x) =

∫
f(x+ ρeiθ) dθ

2π
, i.e. Tρf is the circular mean over the circle of radius ρ.

Lemma 3.3 Let E ⊂ R2 be a Steinhaus set and let ψ be a Schwarz function in R2 with
ψ̂(0) = 0. Let f = χE . Then

ψ ∗ f(x) = −
∑

ν∈Z2
,ν 6=0

T|ν|(ψ ∗ f)

Proof The Steinhaus property gives after convolving with ψ that

ψ ∗ f(x) = −
∑

ν∈Z2
,ν 6=0

ψ ∗ f(x+ eiθν)

for all θ and x. The lemma follows by integrating with respect to θ. �

Proof of Theorem 2 We let β be such that (1) is true and assume toward a contradic-
tion that E is Steinhaus and

∫
E
|x|α <∞ for some α > β

1−β .

Fix a Schwarz function φ satisfying (22) and set ψ(x) = φ(x)−4φ(2x). Thus suppψ̂ ⊂
D(0, 2)\D(0, 1

2
). Let ψR(x) = R2ψ(Rx). Also fix a function p as in Lemma 3.2. Applying

Lemma 3.3 with ψR, we get for any M

ψR ∗ χE = −AM(ψR ∗ χE) − BM (ψR ∗ χE) (27)
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where the operators AM and BM are defined by

AM =
∑
ν 6=0

p(
|ν|
M

)T|ν|

BM =
∑
ν

(1 − p(
|ν|
M

))T|ν|

Note that AM and BM are convolution operators and the convolution kernel of AM is
supported in |x| ≤ M .

The strategy of the proof is to show that the right side of (27) is too small to be equal
to the left side, and we start by making appropriate L2 → L2 and L1 → L∞ estimates for
the operators AM and BM respectively. We state the estimates in a “localized” form for
the sake of the application below.

Claim 1 Assume that M < R and that supp(ĝ) ⊂ D(0, 2R)\D(0, R
2
). Then, given (1),

there is an estimate

‖AMg‖L2(D(a,M )) .MR−(1−β)‖g‖L2(D(a,10M )) +R−100‖g‖2

for any a ∈ R2.

Namely, let JR0 and JR be the annuli {ξ : R
3
≤ |ξ| ≤ 3R} and {ξ : R

4
≤ |ξ| ≤ 4R}

respectively. The estimate

suppĝ ⊂ JR ⇒ ‖AMg‖2 .MR−(1−β)‖g‖2 (28)

is immediate from Lemma 3.2: AM is a convolution operator, and the corresponding
multiplier is the function KM , whose L∞ norm on D(0, 4R)\D(0, R

4
) is . MR−(1−β) by

Lemma 3.2.
The localized form follows in a standard way using that the convolution kernel of AM

is supported in |x| ≤ M : we may suppose a = 0, and we let ρ ∈ C∞
0 be such that ρ = 1 on

D(0, 10). Define ρM(x) = ρ(M−1x). Let χ be a Schwarz function whose Fourier transform
is supported in J1 and equal to 1 on J1

0 and define χR(x) = R2χ(Rx).
The support property of the convolution kernel implies that AMg(x) = AM(gρM)(x)

when x ∈ D(0,M). Accordingly

‖AMg‖L2(D(0,M )) ≤ ‖(AM(χR ∗ (gρM))‖2 + ‖AM(gρM − χR ∗ (gρM ))‖2

. MR−(1−β)‖gρM‖2 +M2‖gρM − χR ∗ (gρM )‖2 (29)

where we used (28), that ‖χR‖1 = ‖χ‖1 ≤ C , and the trivial estimate ‖AMf‖2 . M2‖f‖2

(since AM is convolution with a sum of O(M2) probability measures) in the second term.
On taking Fourier transforms we see that ‖gρM − χR ∗ (gρM)‖2 = ‖(1 − χ̂R)ρ̂M ∗ ĝ‖2 .
‖ρ̂M ∗ ĝ‖

L2(R
2\JR

0 )
. (MR)−102‖g‖2, where the last inequality follows since ĝ is supported
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in R
2
≤ |ξ| ≤ 2R and |ρ̂M (η)| . M2(M |η|)−200. Claim 1 follows by substituting this bound

into (29).

Claim 2 If M < R, suppĝ ⊂ D(0, 2R) then for any ε > 0,

|BMg(x)| . Rε R
M

‖g‖L1(D(x,M
3

)c) +R−100‖g‖1

For this, we fix a Schwarz function ρ such that ρ̂ = 1 on D(0, 2) and define ρR(x) =
R2ρ(Rx). Then g = ρR ∗ g, so

BMg =
∑
ν

(1 − p(
|ν|
M

))T|ν|(ρR ∗ g)

=
∑
ν

(1 − p(
|ν|
M

))|ν|−1(ρR ∗ σ|ν|) ∗ g (30)

where σ|ν| is arclength measure on the circle centered at 0 with radius |ν|. We let H be

the convolution kernel in (30), i.e. H(x) =
∑

ν(1 − p( |ν|
M

))|ν|−1ρR ∗ σ|ν|(x).
Uniformly in ν we have

|ρR ∗ σ|ν|(x)| . R(1 +R||ν| − |x||)−101 (31)

This is well known and is easy to prove using that σ|ν|(D(a, t)) . t uniformly in ν, a
and t. We now sum over ν and use that p(t) = 1 when t ≤ 1

2
. Thus

|H(y)| .
∑

|ν|≥M
2

R

|ν|(1 +R||ν| − |y||)−101

It is clear that ∑
|ν|≥ M

2

||ν|−|y||≥ |ν|
100

R

|ν|(1 +R||ν| − |y||)−101 .
∑

|ν|≥M
2

R

|ν|(R|ν|)
−101 . R−100

Accordingly,

|H(y)| . R−100 +
∑

|ν|≥ M
2

||ν|−|y||≤ |ν|
100

R

|ν|(1 +R||ν| − |y||)−100 (32)

If |y| ≤ M
3

then the sum in (32) is empty, so

|H(y)| . R−100 (33)
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If |y| > M
3
, then we observe that |ν| ≥ |y|

2
for all ν in the sum (32), and then apply Lemma

3.1 with r = |y| and N = R obtaining

|H(y)| . R−100 +
R

|y|
∑
ν

(1 +R||ν| − |y||)−100

. R

|y| · R
εmax(

|y|
R
, 1)

. Rε
R

M
(34)

Claim 2 follows from formula (30) and the estimates (33), (34) for the convolution kernel
H.

We now continue with the main proof. By Corollary 2.5, we can find arbitrarily large
numbers R such that ‖ψR∗χE‖2

2 ≥ (logR)−2‖ψR∗χE‖1 and also ‖ψR∗χE‖2
2 & R−1. In the

subsequent argument R is taken to be a sufficiently large number with these properties.
We fix γ with 1 − β > γ > 1

1+α
, and define

M = Rγ (35)

To ease the notation we also define

g = ψR ∗ χE
Note that supp(ĝ) ⊂ D(0, 2R)\D(0, R

2
); this fact will be used without mention below.

We subdivide R2 in squares Q of side 10−6M taking one of them to be centered at
the origin. We will denote the square centered at the origin by Q0. Let Q̃ be the disc

concentric with Q with radius 1
10
M and ˜̃Q the concentric disc with radius M . Define a

square Q to be good if ‖g‖2
L2(Q) ≥ (logR)−4‖g‖

L1( ˜̃Q)
and bad otherwise. The reason for

making this definition is as follows:

Claim 3 If Q is a good square and h : Q → C is a function on Q such that ‖h‖∞ ≤
1
4
(logR)−4 then

‖g + h‖2
L2(Q) & (logR)−4‖g‖2

L2(
˜̃
Q)

Namely, let Y = {y ∈ Q : |g(y)| ≥ 2‖h‖∞}. Then

‖g‖2
L2(Q\Y ) ≤ ‖g‖L∞(Q\Y )‖g‖L1(Q\Y )

≤ 2‖h‖∞‖g‖L1(Q)

≤ 2(logR)4‖h‖∞‖g‖2
L2(Q)

≤ 1

2
‖g‖2

L2(Q)
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so that ‖g‖2
L2(Y ) ≥ 1

2
‖g‖2

L2(Q). If y ∈ Y , then |g(y) + h(y)| ≥ 1
2
|g(y)|, so we have |g +

h‖2
L2(Y ) ≥ 1

4
‖g‖2

L2(Y ) ≥ 1
8
‖g‖2

L2(Q). Claim 3 now follows since ‖g‖2
L2(Q) ≥ (logR)−4‖g‖

L1( ˜̃Q)
&

(logR)−4‖g‖2

L2(
˜̃
Q)

.

Next we have

Claim 4 There is a good square Q with the following two additional properties:

‖g‖L1(Q̃c) . (logR)100M−α (36)

‖g‖L1(Q) ≥ R−50 (37)

For this, we let G and B be the unions of the good and bad squares respectively and

let ˜̃B be the union of the ˜̃Q’s corresponding to bad Q’s. We note that any given point y

belongs to ˜̃Q for only a bounded number of Q’s. We have

‖g‖L1(G) + ‖g‖
L1(

˜̃
B)
. ‖g‖1

. (logR)2‖g‖2
2

= (logR)2‖g‖2
L2(G) + (logR)2‖g‖2

L2(B)

. (logR)2‖g‖L1(G) + (logR)−2‖g‖
L1(˜̃B)

so that ‖g‖
L1(

˜̃B)
. (logR)2‖g‖L1(G) and therefore

‖g‖1 . (logR)2‖g‖L1(G) (38)

Next define G∗ to be the union of all good squares Q which have property (36). We will
show that

‖g‖L1(G∗) & (logR)−2‖g‖1 (39)

Namely, our decay assumption on the set E implies that

‖g‖L1(Qc
0)
.M−α (40)

Now consider two cases:

(i) ‖g‖L1(Q0) ≤
1

2
(logR)100M−α

(ii) ‖g‖L1(Q0) >
1

2
(logR)100M−α

In case (i), (40) implies that all squares Q satisfy (36) so (39) follows tautologically from
(38). In case (ii), (40) implies that

‖g‖L1(Qc
0)
. (logR)−100‖g‖L1(Q0) (41)
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If Q0 were bad, then (41) would imply that ‖g‖L1(G) . (logR)−100‖g‖1, contradicting
(38) if R is large enough. So Q0 must be good, and therefore contained in G∗ by (40).

Accordingly ‖g‖L1(G∗) ≥ ‖g‖L1(Q0) &
(logR)100

1+(logR)100
‖g‖1, where the last inequality follows from

(41). This is stronger than (39), which has therefore been proved in both cases (i) and
(ii).

Now let X be the union of all squares Q such that ‖g‖L1(Q) < R−50. Then, taking
(say) T = R10,

‖g‖L1(X) ≤ ‖g‖L1(X∩D(0,T )) + ‖g‖L1(X∩D(0,T )c)

. R−50(
T

R
)2 + T−α

≤ R−10

. R−9‖g‖1

This and (39) imply that G∗ cannot be contained in X, which gives Claim 4.

Let Q be the square in Claim 4. If x ∈ Q, then D(x, M
3
)c is disjoint from Q̃. Accord-

ingly, by Claim 2 and then (36) and (35), for any ε > 0

‖BM (g)‖L∞(Q) ≤ Rε
R

M
‖g‖L1(Q̃c) +R−100‖g‖1

. R1−γ+ε · (logR)100M−α

= (logR)100R1−γ−γα+ε

If ε is small, then the exponent of R here is negative. It follows by Claim 3 that

‖g +BM (g)‖2
L2(Q) & (logR)−4‖g‖2

L2( ˜̃Q)
(42)

On the other hand,

‖g +BM (g)‖2
L2(Q) = ‖ − AM(g)‖2

L2(Q)

. (MR−(1−β))2‖g‖2

L2( ˜̃Q)
+R−200

. R−η‖g‖2

L2( ˜̃Q)
+R−200 (43)

where η = 2(1− β− γ) > 0. We used Claim 1 and (35). Combining (42) and (43) we get

(logR)−4‖g‖2

L2( ˜̃Q)
. R−η‖g‖2

L2( ˜̃Q)
+R−200

and therefore ‖g‖2
L2(Q) . R−199. Since Q is good it follows that ‖g‖L1(Q) ≤ R−198, which

contradicts (37) so the proof of Theorem 2 is complete. �
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4. A lower bound for the diameter of the support of multi-lattice tiles
Before proving Theorem 3 we will make some further remarks about the question. If

Λ ⊂ Rd is a lattice then let Λ∗ = {ξ ∈ Rd : ξ ·x ∈ Z ∀x ∈ Λ} be the dual lattice. We note
that a function f tiles with the lattice Λ precisely when f̂ vanishes on Λ∗\{0}.

The Steinhaus problem asks for a subset of Rd that tiles with all rotations of the
lattice Zd. It seems reasonable instead to ask for a set E ⊂ Rd that tiles with a given
finite collection of lattices, say Λ1, . . . ,Λn. For lattices with volume 1 and with no non-
trivial relation of the type

λ1 + · · · + λn = 0, λi ∈ Λ∗
i

it is shown in [10] that measurable such sets exist. The existence question is of course very
easy if instead of trying to tile with a subset of Rd we try to find a function f ∈ L1(Rd)
that tiles simultaneously with a given collection of lattices, that is∑

λ∈Λ

f(x− λ) = ConstΛ, for a.e. x ∈ Rd, (44)

and for all lattices Λ in the collection under consideration. Indeed, say we are dealing
with the finite collection Λ1, . . . ,Λn, assume that Di is a fundamental parallelepiped for
the lattice Λi, and write

f = χD1 ∗ · · · ∗ χDn. (45)

Since tiling with a lattice Λ is equivalent with the vanishing of the Fourier Transform on
Λ∗ \{0}, and since it is clear that χDi tiles with the lattice Λi, it follows that the function
f defined in (45) tiles with all Λi, i = 1, . . . , n.

The problem becomes nontrivial if we try to find such a function f that tiles with
Λ1, . . . ,Λn which has small support. It is easy to see that, whenever the Λi have volume
1, no matter what the choice of the Di, the function f defined in (45) necessarily has
support of diameter at least Cn, where C depends only on the dimension.

Theorem 3 gives a lower bound for the diameter of the support of a function f ∈ L1(Rd)
that tiles with a given finite number of trivially intersecting unimodular lattices.

Proof of Theorem 3
All constants below may depend only on the dimension d. We note that Λ1∩Λ2 = {0}

implies that the lattice Λ∗
1 is uniformly distributed mod Λ∗

2. This can be proved using
Weyl’s lemma–see for example [10].

We shall make use of a theorem of Ronkin [12] and Berndtsson [2] which concerns the
zero set on the real plane of an entire function of several complex variables which is of
exponential type. We formulate it as a lemma:

Lemma 4.1([12],[2]) Assume that E ⊂ Rd is a countable set with any two points having
distance at least h and let

dE = lim sup
r→∞

|E ∩D(0, r)|
|D(0, r)|
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be its “upper density”. Assume that g : Cd → C is an entire function vanishing on E
which is of exponential type

σ < A(d)hd−1dE .

Then g is identically 0. (Here A(d) is an explicit function of the dimension d)

When d = 1 this is classical and follows from Jensen’s formula.
Assume that f : Rd → C is as in Theorem 3. Then f̂ vanishes on (∪iΛ∗

i )\{0}. Write

α = diam supp f

We may assume that suppf is contained in a disc of radius . α centered at the origin,
since the assumptions are unaffected by a translation of coordinates. Then f̂ can be
extended to Cd as an entire function of exponential type Cα, in fact∣∣∣f̂(x+ iy)

∣∣∣ ≤ Cfe
Cα|y|, for x+ iy ∈ Cd.

Furthermore, f̂ vanishes on

Z =

n⋃
i=1

Λ∗
i \ {0}.

Observe that, since every lattice Λ∗
i is uniformly distributed mod every Λ∗

j , j 6= i, the
density of points in each Λ∗

i which are also in some Λ∗
j is 0 and therefore the density of

the set Z is n.
In order to use Lemma 4.1 we have to select a large (in terms of upper density),

well-separated subset of Z. Notice first that we can assume that for each i all points
of Λ∗

i are at least distance n− 1
d apart. For if u, v ∈ Λ∗

i have |u− v| < n− 1
d then for a

suitable constant c, the one-dimensional version of Lemma 4.1 implies that the function
f̂ on the subspace E = C(u− v) cannot be of exponential type ≤ cn

1
d . Note also that the

assumption f̂ (0) 6= 0 precludes f̂ vanishing identically on this subspace. But f̂ restricted
to E is the Fourier transform of fE : E → C defined by fE(x) =

∫
x+E⊥ f(y) dy (here E⊥

is the orthogonal complement of E ∩ Rn in Rn). Hence α ≥ diam supp fE ≥ Cn
1
d , which

is what we want to conclude about α.
Suppose now that we want to extract a subset of Z whose elements are at least h

distance apart, for some h > 0 to be determined later. We shall say that point x of lattice
Λ∗
i is killed by point y of lattice Λ∗

j if |x− y| < h. Then, we define the subset Z ′ of Z as
those points of Z which are not killed by any point of the other lattices. This set clearly
has all its points at distance at least h apart, provided that

h ≤ 1

2
min
u,v∈Λ∗

i

|u− v| ≤ Cn− 1
d , (46)

so that no point of a lattice may kill a point of the same lattice. Let us see how many
points of Λ∗

2 are killed by some point of Λ∗
1. We use the uniform distribution of Λ∗

2 mod
Λ∗

1.
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Fix a fundamental parallelepiped D1 of Λ∗
1. It is clear that only a fraction ρ(h) ≤ Chd

of D1 = Rd/Λ∗
1 has distance from 0 that is less than h (this distance is measured on the

torus D1). As Λ∗
2 is uniformly distributed mod Λ∗

1 the subset of points of Λ∗
2 which are

killed by some point of Λ∗
1 has density ρ(h). Hence the density of those points of Λ∗

2 that
are killed by any other lattice is at most (n−1)ρ(h) ≤ Chdn. We deduce that the density

of Z ′ is at least (1 − Cnhd)n. We now choose h = cn− 1
d , for a sufficiently small constant

c, to ensure that the density of Z ′ is at least Cn. Applying Lemma 4.1 with g = f̂ and
E = Z ′ we get

α ≥ CAhd−1n ≥ Cn
1
d .

2

Remark The assumption f̂(0) 6= 0 was used only in connection with the possibility that

some Λ∗
i contains two points at distance ≤ n− 1

d . Hence it can be dropped if we assume
that this does not occur - e.g. if we assume that the lattices Λi are rotations of Zd.
However, in the general case Theorem 3 is false without this assumption. Namely, note
first that for any ε > 0 there is a function f : R2 → R which tiles for Z2 and is supported
in [−ε, ε] × [−2, 2]. For this, take f(x, y) = a(x)b(y) where b : R → R is a fixed function
with support in [−2, 2] and orthogonal to e2πiky for integer k, and a : R→ R is supported
in [−ε, ε] and is otherwise arbitrary. Next, by change of variable (x, y) → ( x√

ε , y
√
ε) it

follows that for any ε there is a function supported in D(0, 3
√
ε) ⊂ R2 which tiles for

some unimodular lattice. We may then convolve n rotations of this function to obtain a
function supported in D(0, 3n

√
ε) which tiles for n unimodular lattices. Here n and ε run

independently so we’re done.

Appendix: Proof of Lemma 3.2

We first let q be a nonnegative C∞
0 function supported in the interval [ 1

2
, 2] and define

a kernel JN analogously to KN replacing p by q:

JN(x) =
∑
ν∈Z2

1

|ν| σ̂|ν|(r)q(
|ν|
N

) (47)

Lemma A.1 With notation as above there is a Schwarz function ψ, such that ψ̂ vanishes
in a neighborhood of the origin, and making the following true. Let r = |x|. If (say) r ≥ 1

2

and N ≥ 1
2

then

JN (x) = Nr−
1
2

∑
ν∈Z2,ν 6=0

|ν|− 1
2ψ(N(|ν| − r)) + O(N−(1−ε)r−1 +N

1
2 r−

3
2 ) (48)

for any ε > 0.

Remarks In fact ψ̂ could be given quite explicitly as a linear combination of q(x) and
q(−x) - this can be seen from the calculations below, but it is irrelevant for our purposes.
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Note that the right side of (48) is rather large if r is small compared with N and r
is close to |ν| for some ν ∈ Z2. This contrasts with the situation in Lemma 1.1 where
KN (x) was negligibly small if |x| ≤ N

2
.

Proof of Lemma A.1 First let φ : R→ R be any C∞
0 function supported in the interval

[ 1
2
, 2]. Define

I(T, µ) =

∫ 2π

0

∫ ∞

0

φ(r)e−2πiT r(µ−cos θ)drdθ

We will show that there is a Schwarz function χ such that χ̂ vanishes in a neighborhood
of 0 and such that, for µ > 0 and T ≥ 1

2
,

I(T, µ) = T− 1
2χ(T (µ− 1)) + O(T− 3

2 (1 + T |µ− 1|)−100) (49)

To prove (49), note first of all that φ̂ is an entire function and satisfies

|φ̂(x+ iy)| . (1 + |x|)−200eπy

when y < 0. Making a change of variable and using contour integration,

I(T, µ) = 2

∫ π

0

φ̂(T (µ− cos θ))dθ

= 2

∫ 1

−1

φ̂(T (µ− s))
ds√

1 − s2

= I + II

where

I = 2i

∫ ∞

t=0

φ̂(T (µ+ 1 − it))
dt√

1 − (−1 + it)2

II = −2i

∫ ∞

t=0

φ̂(T (µ− 1 − it))
dt√

1 − (1 + it)2

Using that µ > 0, we have

|I | ≤ 2

∫ ∞

t=0

|φ̂(T (µ+ 1 − it))| dt√
t

≤ (1 + T (1 + µ))−200

∫ ∞

t=0

e−πT t
dt√
t

. T− 1
2 (1 + T (1 + µ))−200 . T− 3

2 (1 + T |µ− 1|)−100

On the other hand,

II =
−2i√−i

∫ ∞

t=0

φ̂(T (µ− 1 − it))
dt√

2t+ it2

=
−2i√−i

∫ ∞

t=0

φ̂(T (µ− 1 − it))
dt√
2t

+ O(

∫ ∞

t=0

|φ̂(T (µ− 1 − it))|√tdt) (50)
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since | 1√
2t+it2

− 1√
2t
| . √

t. The second term in (50) satisfies∫ ∞

t=0

|φ̂(T (µ− 1 − it))|√tdt . (1 + T |µ− 1|)−100

∫ ∞

t=0

e−πT tt
1
2 dt

≈ T− 3
2 (1 + T |µ− 1|)−100

The first term in (50) is by change of variable t→ T t equal to T− 1
2χ(T (µ− 1)) where

χ(x) =
−2i√−i

∫ ∞

t=0

φ̂(x− it)
dt√
2t

χ is a Schwarz function, and the support of its inverse Fourier transform is contained in
the support of φ - in fact χ̌(y) is a constant multiple of φ(y)√

y
. This proves (49).

To prove Lemma A.1 we use the first term in the asymptotic expansion of σ̂1: let
r = |x|. Then

σ̂1(x) = 2
√

2πr−
1
2 cos(2πr − π

4
) + O(r−

3
2 )

See e.g. [6], Theorem 7.7.14 or [14], Lemma IV.3.11 and the preceding discussion relating
Bessel functions to σ̂1. It follows that

|ν|−1σ̂|ν|(r) = 2
√

2π(r|ν|)− 1
2 cos(2πr|ν| − π

4
) + O((r|ν|)− 3

2 ) (51)

Substituting (51) into the definition of JN we find that

(2
√

2π)−1JN(x) =
∑
ν∈Z2

(r|ν|)− 1
2 cos(2πr|ν| − π

4
)q(

|ν|
N

) + O(
∑

ν∈Z2\{0}

q(
|ν|
N

)(r|ν|)− 3
2 )

The second term here is . N
1
2 r−

3
2 since there are O(N2) lattice points ν with N

2
≤ |ν| ≤

2N . We rewrite the first term using the Poisson summation formula, obtaining

(2
√

2π)−1JN (x) = r−
1
2

∑
ν∈Z2

re(ei
π
4

∫
R

2
e2πiν·y|y|− 1

2e−2πir|y|q(
|y|
N

)dy) + O(N
1
2 r−

3
2 )

= N
3
2 r−

1
2

∑
ν∈Z2

re(ei
π
4

∫
R

2
e−2πiN(r|y|−ν·y)|y|− 1

2 q(y)dy) + O(N
1
2 r−

3
2 )

= N
3
2 r−

1
2

∑
ν 6=0

re(ei
π
4

∫ π

−π

∫ ∞

0

φ(t)e
−2πiN |ν|t( r

|ν|−cos θ)
dtdθ) + O(N

1
2 r−

3
2 )

where φ(t) = t
1
2 q(t). Here the second line followed by change of variables y → Ny,

and on the last line we introduced polar coordinates with θ = ∠ν0y, and used that the
contribution from ν = 0 is equal to re(ei

π
4N

3
2 r−

1
2 φ̂(Nr)) and therefore O((Nr)−100). Now
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we apply (49) to the terms in the sum, with T = N |ν|, µ = r
|ν| . Letting ψ(t) = re(ei

π
4χ(t))

we conclude that

(2
√

2π)−1JN (x) = N
3
2 r−

1
2

∑
ν 6=0

(N |ν|)− 1
2ψ(N(|ν| − r))

+O(N
3
2 r−

1
2

∑
ν 6=0

(N |ν|)− 3
2 (1 +N ||ν| − r|)−100) + O(N

1
2 r−

3
2 )

The second term is . r−2Nεmax( r
N
, 1), since the contibution to the sum from terms

with |ν| ≤ r
2

is clearly very small and the contribution from |ν| ≥ r
2

can be estimated by

Lemma 3.1. (48) follows from this on replacing ψ by 2
√

2πψ. �

Proof of Lemma 3.2 We first prove the estimate (26) with KN replaced by JN . We

define f(t) = t−
1
2ψ(N(t− r)), with ψ as in Lemma A.1. Since ψ is in the Schwarz space

it is easily seen using the product rule that for any fixed β > 0,∫ ∞

t=1

tβ|f ′(t)|dt . rβ−1
2 (52)

uniformly in N ≥ 1
2

and r ≥ 1
2
. Now consider the quantity (r ≥ 1

2
, N ≥ 1

2
)

∑
ν∈Z2,ν 6=0

|ν|− 1
2ψ(N(|ν| − r)) =

∫ ∞

t=0

f(t)dn(t)

=

∫ ∞

t=0

2πtf(t)dt+

∫ ∞

t=0

f(t)d(n(t) − πt2)

=

∫ ∞

t=0

2πtf(t)dt+

∫ ∞

t=0

(n(t)− πt2)f ′(t)dt (53)

The first term in (53) is easily seen to be very small:

|
∫ ∞

t=0

2πtf(t)dt| = 2π|
∫ ∞

t=−r
(t+ r)

1
2ψ(Nt)dt|

= 2π|
∫ ∞

−∞
(t+ r)

1
2ψ(Nt)dt|+ O((rN)−100)

. r−
1
2

∫ ∞

t=−∞
|t||ψ(Nt)|dt+ (rN)−100

≈ r−
1
2N−2

Here the second line followed since ψ is in the Schwarz space and the third line followed
since (r+t)

1
2 = r

1
2 +O(r−

1
2 |t|) and ψ̂(0) = 0. The second term in (53) is .

∫ ∞
t=1

tβ|f ′(t)|dt+∫ 1

t=0
t2|f ′(t)|dt . rβ−

1
2 by (52) and an obvious estimate for the contribution from t < 1.

Now we use (48). Let r = |x|. We’ve assumed that r ≥ N , so the error term in (48) is
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. r−1. Hence

|JN(x)| . Nr−
1
2 |

∑
ν∈Z2,ν 6=0

|ν|− 1
2ψ(N(|ν| − r))| + r−1

. Nr−
1
2 · rβ−1

2 +Nr−
1
2 · r− 1

2N−2 + r−1

≈ Nr−(1−β)

When t > 0 we can express p in the form p(t) =
∑

j≥0 q(2
jt) where q is supported

in [ 1
2
, 2]. Observe that if N

2j <
1
2

then the sum defining JN

2j
is empty. Hence |KN (x)| ≤∑

j |JN
2j

(x)| .∑
j
N
2j |x|−(1−β) . N |x|−(1−β) and the proof is complete. �
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