HARMONIC MEASURE AND POLYNOMIAL JULIA SETS

I. BINDER, N. MAKAROV, AND S. SMIRNOV

ABSTRACT. There is a natural conjecture that the universal bounds for the dimension spectrum of harmonic measure are the same for simply connected and for non-simply connected domains in the plane. We prove this fact for domains bounded by polynomial Julia sets. The idea is to consider the coefficients of the dynamical zeta-function of a polynomial as subharmonic functions on a slice of its Teichmüller space, and then apply the maximum principle.

1. HARMONIC MEASURE

1.1. **Dimension spectra.** For a finite measure ω in the complex plane, we define

$$f_{\omega}^{+}(\alpha) := \dim\{\alpha_{\omega}(z) \le \alpha\},\$$

where $\alpha_{\omega}(z)$ is the lower pointwise dimension of ω :

$$\alpha_{\omega}(z) := \liminf_{\delta \to 0} \frac{\log \omega B(z, \delta)}{\log \delta}.$$

The universal dimension spectra $\Phi(\alpha)$ and $\Phi_{sc}(\alpha)$ are defined to be the supremum of $f^+_{\omega}(\alpha)$ taken over all harmonic measures ω of arbitrary plane domains, and of arbitrary simply connected plane domains respectively. We refer to [13] for the discussion of the universal spectra and related topics.

In the simply connected case, we can express $\Phi_{sc}(\alpha)$ in terms of the universal *integral means* spectrum B(t), see [13]. Namely, if we denote

$$\Pi(t) := B(t) - t + 1,$$

then

$$\Phi_{sc}(\alpha) = \inf_{t \ge 0} \left[\alpha \Pi(t) + t \right], \qquad (\alpha \ge 1).$$
(1)

This work is motivated by the following

Conjecture.
$$\Phi(\alpha) = \Phi_{sc}(\alpha)$$
 for all $\alpha \ge 1$.

In particular, the conjecture would imply the inequality

$$\Phi(\alpha) \le \alpha - c(\alpha - 1)^2, \qquad (1 \le \alpha \le 2), \tag{2}$$

with some *absolute* constant c > 0, for the corresponding result in the simply connected case follows from (1) and an elementary estimate

$$B(t) \le Ct^2, \qquad (|t| \le 1)$$

The first author is supported by N.S.F. Grant DMS-******.

The second author is supported by N.S.F. Grant DMS-9800714.

The third author is supported by N.S.F. Grant DMS-9706875.

Note that (2) is stronger than the statement

dim $\omega \leq 1$ for all plane domains. (3)

Indeed, by the definition of dimension spectrum, we have

$$f^+_{\omega}(\alpha) = \alpha$$
 for $\alpha = \dim \omega$,

and so the strict inequality

$$f^+_{\omega}(\alpha) < \alpha, \qquad (1 \le \alpha \le 2),$$

always implies dim $\omega \leq 1$. Theorem (3) was established in [15] for polynomial Julia sets, in [12] for simply connected domains, and in [7] for general planar domains. Also compare [12] and [20].

1.2. Fractal approximation. A set $J \subset \mathbb{C}$ is a *conformal Cantor set* if it is generated by some analytic map of the form

$$F: \bigcup D_j \to D, \tag{4}$$

where $\{\overline{D}_j\}$ is a finite collection of pairwise disjoint closed topological discs sitting inside a simply connected domain D, and the restriction of F to each D_j is a bijection $D_j \to D$.

If F in (4) is a polynomial, and if D contains all critical points of F, then we call J a polynomial Cantor set. In this case, the critical points escape to infinity and $J = J_F$ is the usual Julia set of F.

For conformal Cantor sets, we have

$$f_{\omega}^{+}(\alpha) = \sup\{f_{\omega}(\alpha'): \alpha' \leq \alpha\},\$$

where

$$f_{\omega}(\alpha) := \dim \left\{ z \in J : \lim_{\delta \to 0} \frac{\log \omega B(z, \delta)}{\log \delta} \le \alpha \right\}.$$

It is known, see [4] and [13], that to prove the conjecture it is sufficient to show that

$$f_{\omega}(\alpha) \le \Phi_{sc}(\alpha), \qquad (\alpha \ge 1)$$

for arbitrary conformal Cantor sets. We have a partial result in this direction.

Theorem A. If ω is harmonic measure of a polynomial Cantor set, then

$$f_{\omega}(\alpha) \le \Phi_{sc}(\alpha), \qquad (\alpha \ge 1).$$

The proof depends on the two facts (Theorems B and C), which we state below in this section and verify in Sections 2 and 3. We refer to [3] and [17] for general facts concerning polynomial dynamics. 1.3. Pressure function and periodic points. Let F be a polynomial of degree d. Fixing a point z_0 in the basin of infinity, we define the *pressure function* of F by the formula

$$P_F(t) := \limsup_{n \to \infty} \frac{1}{n} \log_d \sum_{z \in F^{-n} z_0} |F'_n(z)|^{-t}.$$

The following assertions are well known.

Lemma 1. If $J = J_F$ is a polynomial Cantor set, then

$$f_{\omega}(\alpha) = \inf_{t>0} [t + \alpha P_F(t)], \qquad (\alpha \ge 1).$$

Lemma 2. If F is a polynomial with connected Julia set, then the function

$$\beta(t) = P_F(t) + t - 1$$

is the integral means spectrum of the basin of infinity. In particular, by (1) we have

$$P_F(t) \le \Pi(t). \tag{5}$$

Our goal is to extend the latter inequality (with $t \ge 0$) to polynomial Cantor sets. By (1) and Lemma 1, this will imply Theorem A.

To compare the bounds for the pressure function in the simply connected and non-simply connected cases (and this is our main idea), it is more convenient to work with a version of the pressure function that involves the multipliers of periodic points. Let us denote

$$Z_n(F,t) := \sum_{a \in \operatorname{Fix}(F^n)} |F'_n(a)|^{-t},$$

see [21] regarding the connection with dynamical zeta-function.

Theorem B. If a polynomial F of degree d has no non-repelling cycles, then

$$P_F(t) \geq \limsup_{n \to \infty} \frac{1}{n} \log_d Z_n(F, t).$$

It is of course well known that for hyperbolic polynomials we have

$$P_F(t) = \lim_{n \to \infty} \frac{1}{n} \log_d Z_n(F, t).$$

1.4. Holomorphic families of polynomials. The second ingredient in the proof of Theorem A is a construction due to Branner and Hubbard [1], which we recall in Section 2; also see [16] for an interpretation in terms of Teichmüller's spaces. Given a polynomial F with all critical points escaping to infinity, there is a canonical way to embed F in a holomorphic polynomial family:

$$\lambda \in \mathbb{D} \mapsto F_{\lambda}, \qquad (F_0 = F).$$

In the case of quadratic polynomials, we simply take

$$F_{\lambda}(z) = z^2 + c(\lambda)$$

where $\lambda \mapsto c(\lambda)$ is a universal covering map of the complement $\mathbb{C} \setminus \mathcal{M}$ of the Mandelbrot set \mathcal{M} .

Theorem C. Let F be a polynomial with all critical points escaping to infinity, and let $\{F_{\lambda}\}$ be its Branner-Hubbard family. Then the following is true for almost every point $\zeta \in S^1$: there exists a limit

$$F_{\zeta}(z) := \lim_{r \to 1^{-}} F_{(r\zeta)}(z),$$

and the polynomial $F_{\boldsymbol{\zeta}}$ has connected Julia set and has no non-repelling cycles.

For quadratic polynomials this was proved in [5]. Moreover, it was shown in [2], [6], and [23] that almost every point on the boundary of the Mandelbrot set is a Collet-Eckmann polynomial.

1.5. Proof of Theorem A (assuming Theorems B and C). As we mentioned, it is sufficient to show that if all critical points of F escape to infinity, then

$$P_F(t) \le \Pi(t), \qquad (t > 0).$$

Let us introduce the functions

$$s_n(\lambda) := \frac{1}{n} \log_d Z_n(F_\lambda, t), \qquad (\lambda \in \mathbb{D}),$$

and also define

$$s_n(\zeta) := \frac{1}{n} \log_d Z_n(F_{\zeta}, t)$$

for points $\zeta \in S^1$ satisfying the condition of Theorem C. It is clear that $s_n(\zeta)$ are radial boundary values of the function $s_n(\lambda)$.

Our first observation is that the functions s_n are uniformly bounded by 1. (This is the only place where we use the restriction $t \ge 0$.)

Next we observe that the functions s_n are subharmonic in the unit disc. Indeed, each periodic point $a_{\nu} \in Fix(F^n)$ determines a holomorphic function

$$\lambda \mapsto a_{\nu}(\lambda) \in \operatorname{Fix}(F_{\lambda}^n), \qquad (a_{\nu}(0) = a_{\nu}),$$

and so we have holomorphic functions

$$h_{\nu} \equiv h_{\nu}(\lambda) := [(F_{\lambda}^n)'(a_{\nu}(\lambda))]^{t/2}.$$

Since

$$s_n = \frac{1}{n} \log_d \sum_{\nu} h_{\nu} \bar{h}_{\nu},$$

we have

$$\Delta s_n = \text{const} \ \frac{\sum |h_\nu|^2 \sum |\partial h_\nu|^2 - |\sum \bar{h}_\nu \partial h_\nu|^2}{(\sum |h_\nu|^2)^2} \ge 0.$$

The boundedness and subharmonicity of s_n imply the inequality

$$s_n(0) \le \frac{1}{2\pi} \int s_n(\zeta) |d\zeta|.$$

Denote

$$\hat{s}_n(\zeta) = \sup_{k \ge n} s_k(\zeta).$$

Applying the dominated convergence theorem, Theorem B and Lemma 1, we have

$$P_F(t) = \lim_{n \to \infty} s_n(0) \le \lim_{n \to \infty} \frac{1}{2\pi} \int \hat{s}_n(\zeta) |d\zeta|$$
$$= \frac{1}{2\pi} \int \limsup_{n \to \infty} s_n(\zeta) |d\zeta|$$
$$= \frac{1}{2\pi} \int P_F(\zeta) |d\zeta| \le \Pi(t).$$

2. Branner-Hubbard families

In this section we briefly recall the Branner-Hubbard construction [1] of wringing complex structures, and then derive Theorem C from a result of Jan Kiwi [8], [9]. We will use the half plane

$$\mathbb{H} = \{ \gamma = \alpha + i\beta : \alpha > 0, \beta \in \mathbb{R} \},\$$

as parameter space of Branner-Hubbard families $\{F_{\gamma}\}$. The map

$$\lambda(\gamma) = \frac{\gamma - 1}{\gamma + 1}$$

transforms this parameter space into \mathbb{D} , the case we considered in Section 1.

2.1. Wringing complex structures. Let Γ denote the subgroup of $GL(2,\mathbb{R})$ formed by matrices

$$\gamma = \begin{bmatrix} \alpha & 0\\ \beta & 1 \end{bmatrix} \quad \text{with} \quad \alpha > 0,$$

which we will identify with the complex numbers

$$\gamma = \alpha + i\beta \in \mathbb{H}.$$

 Γ acts on S^2 as a group of quasiconformal homeomorphisms

$$A_{\gamma}(z) := z|z|^{\gamma-1}, \qquad (0 \mapsto 0, \ \infty \mapsto \infty). \tag{6}$$

The Beltrami coefficient of A_{γ} is

$$\mu_{\gamma}(z) = \lambda(\gamma) \frac{z}{\bar{z}},$$

and the corresponding Beltrami field \mathcal{E}_{γ} of infinitesimal ellipses is invariant with respect to the transformation $T: z \mapsto z^d$.

Let $\mathcal{P} \equiv \mathcal{P}_d$ denote the space of polynomials of degree d, and let \mathcal{S} be the subspace of \mathcal{P} which consists of polynomials with all critical points escaping to infinity (the so called *shift locus*). We also use the notation \mathcal{P}_* and \mathcal{S}_* for the corresponding spaces of monic centered polynomials. Clearly,

$$\mathcal{P}_* \cong \mathbb{C}^{d-1}$$

and if we identify equivalent polynomials (two polynomials are equivalent if they are conformally conjugate), then

$$\mathcal{S}/\sim \cong \mathcal{S}_*/\sim \cong \mathcal{S}_*/\mathbb{Z}_{d-1},$$

where \mathbb{Z}_{d-1} acts according to the formula $P(z) \mapsto \bar{\eta} P(\eta z)$, $(\eta^{d-1} = 1)$.

Given a polynomial $F \in S$, there exists a conformal map ("extended Böttcher function" of F)

$$\phi: \Omega^* \to \Delta^*$$

such that

$$\Gamma \circ \phi = \phi \circ F,$$

and such that Ω^* is an open *F*-invariant set of full area measure in S^2 and Δ^* is an open *T*-invariant set of full measure in Δ . Thus the Beltrami fields $\phi^{-1}\mathcal{E}_{\gamma}$ are defined almost everywhere on S^2 , and the corresponding family of quasiconformal homeomorphisms

$$R(\gamma, F): S^2 \to S^2, \qquad (0, 1, \infty) \mapsto (0, 1, \infty),$$

is holomorphic in γ . It is shown in [1] that the equivalence class $[\gamma F] \in S / \sim$ of the polynomial

$$\gamma F := R(\gamma,F) \circ F \circ R(\gamma,F)^{-1}$$

depends on [F] and γ only, and that the map

$$(\gamma, [F]) \mapsto [\gamma F]$$

is a group action on \mathcal{S}/\sim .

Consider now an orbit $O \subset \mathcal{S}_*/\mathbb{Z}_{d-1}$ of Γ . If $F_1 \in \mathcal{S}_*$ and $[F_1] \in O$, then the map

 $(\gamma \in \mathbb{H}) \mapsto ([\gamma F_1] \in O)$

lifts to a map $\mathbb{H} \to \mathcal{P}_*$. Notation:

$$\gamma \mapsto F_{\gamma} \quad \text{or} \quad \{F_{\gamma}\}_{\gamma \in \mathbb{H}}.$$

We will call this map the Branner-Hubbard family of F_1 . Note that because of the group action structure,

$$\{F_{\gamma\gamma_0}\}_{\gamma\in\Gamma}$$
 is the Branner-Hubbard family of F_{γ_0} . (7)

The (monic centered) polynomials F_{γ} depend analytically on γ . In fact, we have

$$F_{\gamma} = R_{\gamma} \circ F_1 \circ R_{\gamma}^{-1}$$

for some holomorphic family $\{R_{\gamma}\}$ of quasiconformal automorphisms of S^2 . We also have the following equation

$$\phi_{\gamma} := A_{\gamma} \circ \phi_1 \circ R_{\gamma}^{-1}, \qquad (\text{near } \infty), \tag{8}$$

for the Böttcher functions ϕ_{γ} of F_{γ} satisfying $\phi_{\gamma}(z) \sim z$ at infinity.

The following lemma describes the boundary behavior of a Branner-Hubbard family.

Lemma 3. Consider a Branner-Hubbard family

$$F_{\gamma}(z) = z^d + a_{d-2}(\gamma)z^{d-2} + \dots + a_0(\gamma), \quad (\gamma \in \mathbb{H}).$$

The functions $a_j(\gamma)$ have finite angular limits $a_j(i\beta)$ almost everywhere on $\partial \mathbb{H}$. The limit polynomials

$$F_{i\beta}(z) = z^d + a_{d-2}(i\beta)z^{d-2} + \dots + a_0(i\beta)$$

have connected Julia sets.

6

Proof: For a polynomial F, let $G_F(\cdot)$ denote the Green's function of the Julia set J_F with pole of infinity, and let m(F) be the maximal escape rate of the critical set:

$$m(F) := \max\{G_F(c) : c \in \operatorname{Crit}(F)\}.$$

To prove the first statement, we need the following result of Branner and Hubbard [1]:

$$\forall \varrho > 0, \quad \text{the set} \quad \{F \in \mathcal{P}_* : \ m(F) \le \varrho\} \quad \text{is compact.} \tag{9}$$

By (8), we have

$$G_{\gamma} \circ R_{\gamma} = \alpha G_1, \qquad (\alpha := \Re[\gamma]),$$

where G_{γ} denotes the Green's function for F_{γ} . Since R_{γ} sends the critical set of F_1 onto the critical set of F_{γ} , it follows that

$$m(F_{\gamma}) = \alpha m(F_1). \tag{10}$$

Applying (9), we see that the coefficients $a_j(\gamma)$ are uniformly bounded (if $\alpha < 1$), and so the existence of angular limits follows from Fatou's theorem.

The second statement of the lemma follows from (10) and from the well-known fact that the function $m(F): \mathcal{P}_* \to \mathbb{R}$ is continuous.

2.2. **Proof of Theorem C.** The rest of the argument is based on Kiwi's approach in [8], [9].

Let F_1 be a monic centered polynomial and let $\{F_{\gamma}\}$ be its Branner-Hubbard family. For simplicity, let us assume that F_1 (and hence every polynomial in the family) is such that the orbits of the critical points are disjoint. We say that F_{γ} is *visible* if for each critical point c_j , $(1 \le j \le d-1)$, there are precisely two external rays terminating at c_j . In this case, let

$$\Theta_j(\gamma) \equiv \Theta_j = \{\theta_j^-, \theta_j^+\} \subset S^1$$

be the set of the corresponding external arguments. The collection of the sets Θ_j ,

$$\Theta(F_{\gamma}) := \{\Theta_1, \dots \Theta_{d-1}\},\$$

is called the *critical portrait* of F_{γ} . Every critical portrait determines a partition of S^1 into d sets of length 1/d each. The portrait is *periodic* if the itinerary of each point θ_i^{\pm} with respect to this partition is periodic.

The action of the subgroup of Γ formed by diagonal matrices determines the flow

$$t \mapsto F_{t\alpha+i\beta}, \qquad (t>0),$$
(11)

in the Branner-Hubbard family. This flow preserves the visibility (or invisibility) of polynomials. The flow also preserves the critical portraits of visible polynomials. As it is mentioned in [8], these assertions with $\beta = 0$ follow from the fact that by (8), the homeomorphism A_{γ} with γ real throws the hedgehog of F_1 onto the hedgehog of F_{γ} . (See [11] regarding hedgehogs and disconnected Julia sets.) On the other hand, we can assume $\beta = 0$ without loss of generality, just by choosing a different uniformization of the Branner-Hubbard family, see (7).

Let us parametrize the orbits of the flow (11) by real numbers β . It is easy to see that only countably many orbits contain invisible polynomials.

Lemma 4. For a.e. β , the critical portrait of the corresponding polynomials is aperiodic.

Proof: Using the group action structure, see (7), it is sufficient to show that if F_1 is a visible polynomial, then there is a number $\varepsilon > 0$ such that for almost every $\beta \in (-\varepsilon, \varepsilon)$, the critical portrait of $F_{1+i\beta}$ is aperiodic.

Let $\theta_j^{\pm} \in S^1$ be the external angles and g_j the escape rates of the critical points of F_1 . It is clear from (6) and (8) that for small β 's the polynomials $F_{1+i\beta}$ are visible and that their external angles $\theta_i^{\pm}(\beta)$ satisfy the equation

$$\theta_j^{\pm}(\beta) = \theta_j^{\pm} + \beta g_j. \tag{12}$$

Fix j and some integer p, and consider the set E of β 's in $(-\varepsilon, \varepsilon)$ such that the itinerary of the point

$$\vartheta \equiv \vartheta(\beta) := T\theta_i^{\pm}(\beta)$$

is *T*-periodic with period *p*. Let $L(\beta)$ denote the element of the partition of S^1 corresponding to $F_{1+i\beta}$ such that $\vartheta \in L(\beta)$. If ε is small enough, we can find an interval $I \subset S^1$ which does not intersect all sets $L(\beta)$. The periodicity of the itinerary implies that

$$\forall n, \quad T^{np}\vartheta \notin I. \tag{13}$$

By ergodicity of T^p , the set of ϑ 's satisfying (13) is a set of measure zero , and by (12), the same is true for E.

We can now complete the proof of Theorem C by referring to the following result of Kiwi [8], [9]:

If a sequence of visible polynomials with the same aperiodic critical portrait tends to a polynomial, then the latter has no non-repelling cycles.

3. Periodic cycles

In this section we prove Theorem B. The proof is preceded by several technical lemmas. For the rest of the paper we will be considering polynomials F with connected Julia sets and *all periodic cycles repelling*. We will also assume that the critical points c_j of F are simple and non-preperiodic.

3.1. Multiplicity of the kneading map. A point $b \in J_F$ is a *cut point* if there are at least two external radii landing at b. Let G be a finite, forward invariant set which consists of cut points. For a point $z \in J$, which is not in the grand orbit $\mathcal{O}(G)$ of G, we denote by P(z) the component of $J \setminus G$ containing z. Depending on the context, we use the same notation P(z) for the corresponding *unbounded puzzle piece*, i.e. the component of the complement of external rays landing at G, see [18]. Let us number the pieces of the G-partition as P_1, P_2, \ldots, P_N . The kneading map

knead_G: $J \setminus \mathcal{O}(G) \to \{1, \dots, N\}^{\mathbb{Z}_+}$

is the function $z \mapsto \{i_0(z), i_1(z), \dots\}$, where $F^{\nu}(z) \in P_{i_{\nu}(z)}$.

Lemma 5. For any $\varepsilon > 0$, there exists a finite, forward invariant set G such that if $n > n_0(F, \varepsilon)$ and if $a \in \text{Fix}(F^n) \setminus \mathcal{O}(G)$, then

$$\# \{a' \in \operatorname{Fix}(F^n) \setminus \mathcal{O}(G) : \operatorname{knead}_G(a) = \operatorname{knead}_G(a')\} \leq e^{\varepsilon n}.$$

Proof: Given $\varepsilon > 0$, we choose a large number $m = m(\varepsilon)$ to be specified later. For simplicity of notation, let us assume that the fibers of the critical points have pairwise disjoint orbits, in which case there is a finite, forward invariant set \tilde{G} such that the sets

$$\bigcup_{j} \tilde{P}(c_{j}) \quad \text{and} \quad \bigcup_{j} \bigcup_{k=1}^{m} F^{-k}c_{j} \quad \text{are disjoint,}$$
(14)

where $\tilde{P}(\cdot)$ denote the \tilde{G} -pieces. (For an explanation of this fact and for the definition of a fiber, see Appendix at the end of the section.) Replacing each critical piece $\tilde{P}(c_j)$ with components of the $F^{-1}\tilde{G}$ -partition, we obtain a new puzzle. Let G denote the corresponding set, i.e.

$$G = \tilde{G} \bigcup_{j} [F^{-1}\tilde{G} \cap \tilde{P}(c_j)].$$

The G-partition has the following (modified) Markov property (cf. [19], Section 7): each critical puzzle piece maps onto the corresponding critical value piece by a 2-fold branched covering, while every non-critical piece maps univalently onto a "union" of puzzle pieces.

A sequence $\{i_0, \ldots, i_{n-1}\}$ is called a *Markov cycle* if

$$P_{i_1} \subset FP_{i_0}, P_{i_2} \subset FP_{i_1}, \ldots, P_{i_0} \subset FP_{i_{n-1}}.$$

By (14), the number of critical indices in such a sequence does not exceed n/m. To each periodic point $z \in \operatorname{Fix}(F^n) \setminus \mathcal{O}(G)$ there corresponds the Markov cycle $\{i_0(z), \ldots, i_{n-1}(z)\}$, and the Markov cycles of two periodic points are equal if and only if the points have the same *G*-kneading. Thus it remains to show that the number of points $z \in \operatorname{Fix}(F^n) \setminus \mathcal{O}(G)$ with the same Markov cycle $\{i_0, \ldots, i_{n-1}\}$ does not exceed $C2^{n/m}$, where *C* is a constant independent of *n*. This would give an explicit formula for $m = m(\varepsilon)$.

To this end, let us inductively define puzzle pieces $\Pi(k) \subset P_{i_k}$, $(0 \le k \le n-1)$, as follows:

$$\Pi(n-1) := P_{i_{n-1}}, \quad \Pi(k) := F_{i_k}^{-1} \Pi(k+1),$$

where F_{ik}^{-1} denotes preimage under the map

$$F: P_{i_k} \to FP_{i_k} \supset \Pi(k+1).$$

It is clear that the puzzle piece $\Pi(0)$ contains all periodic points with the given Markov cycle.

To bound the number of *n*-periodic points in $\Pi(0)$, we consider the sets

 $\pi\Pi(k) \subset S^1$, defined as the intersection of $\Pi(k)$ with the "circle at infinity". Each set $\pi\Pi(k)$ consists of finitely many open arcs. The map $T: z \to z^d$ takes $\pi\Pi(k)$ onto $\pi\Pi(k+1)$ homeomorphically if the index i_k is non-critical, and as a two-fold cover if i_k is critical. Let C be a constant such that each set πP_j has at most C components. It follows that the number of arcs in $\pi\Pi(0)$ is at most $C2^{n/m}$. It is also clear that each arc in $\pi\Pi(0)$ has at most one T-periodic point of period n. \Box

3.2. Cycles with close orbits. We will use Lemma 5 to prove the following estimate for polynomials without indifferent periodic points. We don't know if the estimate is true for arbitrary polynomials.

Lemma 6. For any $\varepsilon > 0$, there exists a positive number $\rho = \rho(F, \varepsilon)$ such that if $n > n_0(F, \varepsilon)$ and if $a \in \text{Fix}(F^n)$, then

$$\# \{a' \in \operatorname{Fix}(F^n) : \forall i, |F^i(a) - F^i(a')| \le \rho\} \le e^{\varepsilon n}.$$

Proof: Given $\varepsilon > 0$, we find a finite, invariant set G according to Lemma 5. The argument is based on the notion of the sector map τ associated with G. For each $b \in G$, the external rays at b divide the plane into sectors. Since we assumed that b is not a critical point, the polynomial F is a local diffeomorphism identifying sectors S at b with sectors τS at F(b):

$$F(S \cap U) \subset \tau S,$$

where U is some small neighborhood of b. Denote by C the total number of sectors (considering all points of G), and fix a number $m = m(\varepsilon) \gg C$. It follows that if z is sufficiently close to the set G, then the initial kneading segment of length m is determined up to C choices by the sector map.

Let us now choose $\rho > 0$ so small that if $|z - z'| < \rho$, then either the points z and z' are in the same component of $J \setminus G$, or they are both close to the set G and so we have the situation described in the previous sentence. If the orbits of periodic points a and a' are ρ -close, then their kneading sequences of length $n \gg m$ coincide except for at most n/m segments of length m, for which we have $C^{n/m}$ choices. Combining this computation with the estimate of Lemma 5, we complete the proof.

We will use Lemma 6 in combination with the following statement, which is a special case of Manees' lemma [15].

Lemma 7. Given $\rho > 0$, there is a positive number $\delta = \delta(F, \rho)$ such that if $n \ge 0$, and if D is a domain such that F^n maps D univalently onto a disk B of radius 2δ , then

diam
$$(F^n|_D)^{-1}(B/2) < \rho.$$
 (15)

Here and elsewhere, the notation B/2 means concentric disc of radius half the radius of B.

3.3. Good and bad cycles. Let $\delta > 0$. For want of a better name, we say that a cycle $A \in \text{Cycle}(F, n)$ is δ -good if there is a periodic point $a \in A$ and a topological disc D containing a such that the restriction of F^n to D is univalent and $F^n(D) = B(a, \delta)$. Otherwise, we say that the cycle is δ -bad. The next lemma states that for polynomials without non-repelling periodic points, most of the cycles are "good".

Lemma 8. For any $\varepsilon > 0$, there exists a positive number $\delta = \delta(F, \varepsilon)$ such that if $n > n(F, \varepsilon)$, then

$$\# \{ \delta \text{-bad } n \text{-cycles} \} \leq e^{\varepsilon n}.$$

Proof: Fix a large number $m = m(F, \varepsilon)$ to be specified later. For simplicity, we will assume that the orbits of the critical points are pairwise disjoint, and so there is a number $\rho = \rho(F, m)$ such that if $c \neq c'$ are two critical points, then

$$dist(c, F^{k}(c')) > 10\rho, \qquad (0 \le k \le m).$$
 (16)

We can take ρ small enough so that the estimate of Lemma 6 is valid for a given ε . Finally, we choose $\delta > 0$ satisfying the following two conditions

- : for all $x \in J$ and $k \in [0, m]$, each component of the set $F^{-k}B(x, \delta)$ has diameter less than ρ ;
- : the conclusion (15) of Mane's lemma holds.

Let us estimate the number of δ -bad cycles.

Fix a cover \mathcal{B} of the Julia set with discs of radius 2δ . Clearly, we can assume that the concentric discs of radius δ still cover J, and that the multiplicity of the covering is bounded by some absolute constant M. Let $n \gg m$. For each periodic point $a \in \operatorname{Fix}(F^n)$, select a disc $B(a) \in \mathcal{B}$ with $a \in B(a)/2$. For i > 0, let $B_{-i}(a)$ denote the component of the $F^{-i}B(a)$ containing the point $F^{n-i}(a)$ and define j(a)to be the smallest positive integer such that $B_{-j}(a)$ contains a critical point, which we denote by c(a). Note that if j(a) > n, then the cycle of a is δ -good.

We need some further notation. Given $a \in Fix(F^n)$, we define inductively a sequence of positive integers j_1, j_2, \ldots and a sequence of points $a_1 \equiv a, a_2, \ldots$ in the orbit of a as follows :

$$f_k = j(a_k), \qquad a_{k+1} = F^{n-j_k} a_k.$$

The main observation is that

$$j_k + j_{k+1} > m.$$
 (17)

Indeed, if $j_k + j_{k+1} < m$, then both j_k and j_{k+1} are $\leq m$. By construction, we have diam $B_{-j_k}(a_k) < \rho$, and so

$$|a_{k+1} - c(a_k)| < \rho$$

On the other hand, the disc $B(a_{k+1})$ contains the j_{k+1} -th iterate of the critical point $c(a_{k+1})$, and therefore

$$|a_{k+1} - F^{j_{k+1}}c(a_{k+1})| < 4\delta < 8\rho.$$

Combining the two inequalities, we get a contradiction with (16).

Define the *schedule* of a to be a finite sequence

$$Sch(a) := \{j_1(a), j_2(a), \dots, j_l(a)\}$$

where l is the minimal number such that $j_1 + \cdots + j_l > n$. By (17), we have

$$l \leq 3n/m. \tag{18}$$

We also consider the corresponding sequence of discs in the cover \mathcal{B} , and the corresponding sequence of critical points:

$$\mathcal{B}(a) := \{ B(a_1), \dots, B(a_l) \}, \qquad \mathcal{C}(a) := \{ c(a_1), \dots, c(a_l) \}.$$

As we mentioned, for δ -bad cycles we have all $j_k \leq n$ and therefore

$$n \le \sum_{k=1}^{r} j_k \le 2n. \tag{19}$$

The lemma now follows from the three observations below.

(i) The number of sequences $\{j_1, \ldots, j_l\}$ satisfying (17) and (19) is $\leq m^{4n/m}$.

Indeed, consider the numbers $j_1, (j_1 + j_2), \ldots$ as points of the interval [1, 2n]. Subdivide the interval into (2n)/m segments of length m. Clearly, there are at most two points in each segment, and there are less than m^2 choices to select at most two points in any particular segment.

(ii) Consider all periodic points $a \in Fix(F^n)$ with a given schedule. Then the number of distinct sequences $\mathcal{B}(a)$ and $\mathcal{C}(a)$ does not exceed $(dM)^{3n/m}$ and $d^{3n/m}$ respectively.

This follows from (18) and the fact that the ball $B(a_k)$ must contain the j_k -th iterate of a critical point, so the number of such balls is less than dM.

(iii) If two periodic points a and a' have identical schedules and identical sequences $\mathcal{B}(a) = \mathcal{B}(a')$ and $\mathcal{C}(a) = \mathcal{C}(a')$, then the orbits of a and a' are ρ -close:

$$\forall i, |F^i(a_1) - F^i(a'_1)| \le \rho.$$

To see this, let $\{j_1, \ldots, j_l\}$ be the schedule and let $B := B(a_1) = B(a'_1)$. By construction, the components of $F^{-j_1}B$ containing the points $F^{n-j_1}a_1$ and $F^{n-j_1}a'_1$ must coincide because both contain the critical point $c(a_1) = c(a'_1)$. It follows that if $n - j_1 < i \leq n$, then the *i*-th iterates of a_1 and a'_1 belong to the same component of the corresponding preimage of B, and this component is mapped univalently onto B. Since a_1 and a'_1 are in B/2, we can apply Lemma 7 to conclude that the iterates of a_1 and a'_1 are ρ -close. Repeat this argument for the discs $B(a_k), k \leq l$.

From (iii) and Lemma 6, it follows that the number of *n*-periodic points with a given schedule and given \mathcal{B} - and \mathcal{C} -sequences is $\leq e^{\varepsilon n}$. On the other hand, by (i) and (ii), the number of possible sequences and schedules satisfying (19) is also $\leq e^{\varepsilon n}$, provided that $m = m(\varepsilon)$ is so large that $m^{-1} \log m \ll \varepsilon$. Thus the number of bad cycles is $\leq e^{2\varepsilon n}$.

3.4. **Proof of Theorem B.** Let F be a polynomial with all cycles repelling. Given small ε , we choose $\rho = \rho(F, \varepsilon)$ according to Lemma 5, so the number of ρ -close *n*-cycles is $\leq e^{\varepsilon n}$. Then we choose a positive number δ such that

- : all but $\leq e^{\varepsilon n}$ *n*-cycles are 4 δ -good, see Lemma 8;
- : the conclusion (15) of Mañe's lemma holds.

Fix $n \gg 1$. In each good *n*-cycle, let us pick a point *a* such that F^n maps some domain $D_a \ni a$ onto $B(a, 4\delta)$ univalently, and denote by *I* the set of the points that we picked. Also let *II* be the set of all periodic points contained in the bad cycles. Then we have

$$Z_{n}(F,t) = \sum_{a \in \operatorname{Fix}(F^{n})} |F'_{n}(a)|^{-t}$$

= $n \sum_{a \in I} |F'_{n}(a)|^{-t} + \sum_{a \in II} |F'_{n}(a)|^{-t}$
 $\leq n \sum_{a \in I} |F'_{n}(a)|^{-t} + ne^{\varepsilon n}.$

To estimate the sum over I, cover the Julia set with $\leq \delta^{-2}$ discs B of radius 2δ . In each B, fix a point $z_B \notin J$ so that the points z_B are distinct. Finally, to each $a \in I$ assign one of the discs B = B(a) such that $a \in B(a)/2$. Note that $B(a) \subset B(a, 3\delta)$.

Let z_a denote the preimage of $z_{B(a)}$ under the map $F^n : D_a \to B(a, 4\delta) \supset B(a)$. Since F^n takes both a and z_a inside $B(a, 3\delta)$, by Koebe's lemma we have

$$|F'_n(a)| \asymp |F'_n(z_a)|.$$

Note that if $z_a = z_{a'}$ for some $a, a' \in I$, then the orbits of a and a' are ρ -close. Indeed, for B := B(a) = B(a'), we have $B \subset B(a, 4\delta) \cap B(a', 4\delta)$, and therefore F^n maps some domain univalently onto B with both a and a' in the preimage of B/2, and so we can apply (15).

It follows that the number of points a such that z_a is a given point of $F^{-n}z_B$ is at most $e^{\varepsilon n}$. We have

$$\sum_{a\in I} |F_n'(a)|^{-t} \lesssim e^{\varepsilon n} \sum_B \sum_{z\in F^{-n}(z_B)} |F_n'(a)|^{-t}.$$

Since for each z_B , we have

$$P_F(t) = \limsup_{n \to \infty} \frac{1}{n} \log_d \sum_{z \in F^{-n}(z_B)} |F'_n(z)|^{-t},$$
(20)

the theorem follows.

3.5. Appendix: Fibers. Let F be a polynomial without non-repelling cycles, and let $z \in J_F$. Following Kiwi [8], consider a sequence of partitions corresponding to the sets

$$G_l(F,z) := \{b \in J \setminus \mathcal{O}(z) : b \text{ is a cut point}, F^l b \text{ is periodic of period } \leq l\}.$$

Let $P_l(\cdot)$ denote the $G_l(F, z)$ -pieces. The connected compact set $X(z) := \bigcap_l P_l(z) \subset J$ is called the *fiber* of z. (We use the term from a paper of Schleicher [22], see also [?].) The fibers satisfy the equation

$$FX(z) = X(Fz).$$

It is also clear that if two points z_1 and z_2 have infinite orbits, or if they land on the same cycle, then the fibers $X(z_1)$ and $X(z_2)$ are disjoint or coincide.

Our proof of Lemma 5 was based on the following fact mentioned in the proof of Lemma 13.3 of Kiwi's thesis [8]. To make this section self-contained, we reproduce his argument. We will denote by $P'_{l}(\cdot)$ the puzzle pieces corresponding to $F^{-1}G_{l}$.

Lemma 9. If z has an infinite orbit, then the fiber of z is wandering.

Proof: (i) Let us first show that if z is a periodic point, then $X(z) = \{z\}$. Since $G_l(F^p, z) \subset G_{lp}(F, z)$, fibers of F^p contain fibers of F, and so by replacing F with some iterate, we can assume that z is fixed. For the same reason we can assume that the landing rays at z are all fixed. The latter implies

$$b \in \operatorname{Fix}(F) \cap \overline{P}_2(z) \Rightarrow \text{ rays landing at } b \text{ are fixed.}$$
 (21)

Indeed, suppose b is not a landing point of some fixed ray. Then $b \in G_1$, and $P_1(z)$ is contained in some sector S at b. We have $FP_2(z) \subset P_1(z) \subset S$. Taking some point in $P_2(z)$ close to b, we see that $\tau S = S$, where τ is the sector map, and so the rays at b have to be fixed.

Let k-1 be the number of critical points in the fiber X(z). For $l \gg 1$, the map $P_l(z) \to P'_l(z)$ extends to a polynomial-like map g of degree k. Observe that $X(z) \subset J_g$, and since the critical points of g belong to X(z) = gX(z), the Julia set J_g of g is connected. It remains to show that k = 1. (Then $X(z) \subset J_g = \{z\}$.) The fixed points of g belong to the set $\operatorname{Fix}(F) \cap \overline{P}_2(z)$. By (21), for each fixed point of g there is an F-invariant (and therefore g-invariant) arc in $J^c \subset J_g^c$ tending to the fixed point.

Let Q be a polynomial of degree k conjugate to g. It follows that there are Q-invariant arcs in $\mathbb{C} \setminus J_Q$ tending to each of k fixed points of Q. Applying the Riemann map, we get k arc tending to k distinct points on the circle invariant with respect to $\zeta \mapsto \zeta^k$. A contradiction.

(ii) Suppose now that z is not preperiodic. Replacing F with some iterate, we can reduce the problem to showing that

$$X(Fz) = X(z) \quad \Rightarrow \quad z \in \operatorname{Fix}(F).$$

Suppose X(Fz) = X(z). Then for every l, we have a map $F : P_l(z) \to P'_l(z)$, which extends to a polynomial-like map with Julia set contained in $\overline{P}_l(z)$. It follows that

$$\forall l, \quad \bar{P}_l(z) \cap \operatorname{Fix}(F) \neq \emptyset,$$

and therefore X(z) contains at least one fixed point b. Since the partition $G_l(z, F)$ is finer than $G_l(b, F)$, by (i) we have $X(z) \subset X(b) = \{b\}$.

If the fibers of the critical points have pairwise disjoint orbits, then from Lemma 9 it follows that the statement (14) holds for puzzle pieces $\tilde{P}(c_j) = P_l(c_j)$ with l sufficiently large. This is the fact that we used earlier.

References

- B. Branner, J. H. Hubbard, The iteration of cubic polynomials. Part I: The global topology of parameter space, Acta Math. 160 (1988), 143–206
- [2] H. Bruin, D. Schleicher, Symbolic dynamics of quadratic polynomials, preprint, 2000
- [3] L. Carleson, T. W. Gamelin, *Complex dynamics*, Universitext: Tracts in Mathematics. Springer-Verlag, New York 1993
- [4] L. Carleson, P. Jones, On coefficient problems for univalent functions and conformal dimension, Duke Math. J. 66 (1992), 169–206
- [5] A. Douady, Algorithms for computing angles in the Mandelbrot set, Chaotic Dynamics and Fractals (Atlanta, Ga 1985), 155–168, Notes Rep. Math. Sci. Engrg. 2, Academic Press, Orlando, Fl, 1986
- [6] J. Graczyk, G. Swiatek Collet-Eckmann maps on the boundary of the connectedness locus, preprint, 1998
- [7] P. Jones, T. Wolff, Hausdorff dimension of harmonic measure in the plane, Acta Math. 161 (1988), 131–144
- [8] J. Kiwi, Rational rays and critical portraits of complex polynomials, SUNY-IMS Preprint 1997/15
- [9] J. Kiwi, From the shift loci to the connectedness loci of complex polynomials, Contemp. Math. 240 (1999), 231-245
- [10] G. Levin, On backward stability of holomorphic dynamical systems, Fund. Math. 158 (1998), 97–107
- [11] G. Levin, M. Sodin, Polynomials with disconnected Julia sets and Green's maps
- [12] N. Makarov, On the distortion of boundary sets under conformal mappings, Proc. London Math. Soc. 51 (1985), 369–384
- [13] N. Makarov, Fine structure of harmonic measure, St. Petersburg Math. J. 10 (1999), 217–268
- [14] R. Mañé, On a theorem of Fatou, Bol. Soc. Brasil Math. 24 (1993), 1–11

- [15] A. Manning The dimension of the maximal measure for a polynomial map, Ann. of Math. 119 (1984), 425–430
- [16] C. McMullen, D. Sullivan, Quasiconformal homeomorphisms and dynamics III: The Teichmüller space of a holomorphic dynamical system
- [17] J. Milnor, Dynamics in One Complex Variable: Introductory lectures, SUNY Stony Brook Institute for Mathematical Sciences Preprints, 5, 1990
- [18] J. Milnor, Local connectivity of Julia sets: expository lectures, SUNY Stony Brook Institute for Mathematical Sciences Preprints, 11, 1992
- [19] J. Milnor, Periodic orbits, external rays and the Mandelbrot set: an expository account SUNY Stony Brook Institute for Mathematical Sciences Preprints, 3, 1999
- [20] F. Przytycki, M. Urbanski, A. Zdunik, Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps, I, Ann. of Math. 130 (1989), 1–40
- [21] D. Ruelle, Thermodynamic formalism. The mathematical structures of classical equilibrium statistical mechanics, Encyclopedia of Mathematics and its Applications, 5, Addison-Wesley, 1978
- [22] D. Schleicher, On fibers and local connectivity of compact sets in \mathbb{C} , SUNY-IMS Preprint 1998/12
- [23] S. Smirnov, Symbolic dynamics and Collet-Eckmann conditions, International Math. Research Notices (2000) No. 7, 333–350

HARVARD UNIVERSITY, DEPARTMENT OF MATHEMATICS, CAMBRIDGE, MA 02138, USA *E-mail address*: ilia@math.harvard.edu

CALTECH, DEPARTMENT OF MATHEMATICS, PASADENA, CA 91125, USA *E-mail address*: makarov@cco.caltech.edu

KTH, DEPARTMENT OF MATHEMATICS, STOCKHOLM, S10044, SWEDEN $E\text{-mail} address: stas@math.kth.se}$