AN EXERCISE CONCERNING THE SELFDUAL CUSP FORMS ON GL(3)

DINAKAR RAMAKRISHNAN

The object of this Note is to supply a proof of the following result, which is in the folklore, and deduce a Corollary. There is no pretension to anything creative here, and all that is involved is a synthesis of results due to various people.
Theorem A Let F be a number field, and Π a cuspidal, selfdual automorphic representation of $G L_{3}\left(\mathbb{A}_{F}\right)$. Then there exists a non-dihedral cusp form π on $G L(2) / F$, and an idele class character ν of F with $\nu^{2}=1$, such that

$$
\begin{equation*}
\Pi \simeq A d(\pi) \otimes \nu \tag{1}
\end{equation*}
$$

The form π is unique up to a character twist, while ν is simply the central character of Π. The central character ω of π may be chosen to be of finite order. Moreover, we may choose π such that, for any finite place v, π_{v} is unramified, resp. Steinberg, when $\Pi_{v} \otimes \nu_{v}$ is unramified, resp. Steinberg.

Here $\operatorname{Ad}(\pi)$ denotes the Adjoint of π, a selfdual automorphic form on $\mathrm{GL}(3) / F$, defined to be $\operatorname{sym}^{2}(\pi) \otimes \omega^{-1}$, where $\operatorname{sym}^{2}(\pi)$ is the symmetric square of π, defined by Gelbart and Jacquet in [GJ]. As π is non-dihedral, $\operatorname{Ad}(\pi)$ is cuspidal.

Note that Theorem A remains valid for any cusp form Π on GL(3)/F which satisfies $\Pi^{\vee} \simeq \Pi \otimes|\cdot|^{t}$ for some t, the reason being that we may replace Π by $\Pi \otimes|\cdot|^{t / 2}$, which is selfdual.

Theorem A has been known to experts for a while. It is a consequence of a comparison of the stable trace formula for $\mathrm{SL}(2) / F$ with the twisted trace formula for PGL(3) $/ F$ (relative to transpose inverse); this fundamental idea of Langlands has been carried out in detail by Flicker in a series of papers. It will also be a special case of Arthur's forthcoming major work relating selfdual automorphic representations of $\mathrm{GL}(n)$ with those of suitable classical groups, again comparing appropriate trace formulae. In this Note we deduce Theorem A in a different way, via L-functions, by appealing to the backwards lifting ("descent") of Ginzburg, Rallis and Soudry, as well as the forward transfer, for generic cusp forms, from odd orthogonal groups to GL (n), due to Cogdell, Kim, Piatetski-Shapiro, and Shahidi.
Corollary B Let F, Π be as in Theorem, with associated (π, ν). Then at any archimedean place w, Π_{w} has regular parameter iff π_{w} does. Moreover, if Π is algebraic and F totally real, then π can be chosen to be algebraic as
well. Consequently, over totally real fields, π can be chosen to be regular algebraic, hence cohomological, when Π has that property.

Proof of Theorem A Fix a finite set S of places of F containing the ramified and archimedean places, and write $L^{S}(s)$, given any Euler product $L(s)=\prod_{v} L_{v}(s)$, for $\prod_{v \notin S} L_{v}(s)$. Then, Π being selfdual implies that its central character ν, say, must also be selfdual, hence either trivial or quadratic. The selfduality of Π also results in a pole at $s=1$ of the RankinSelberg L-function (on the left hand side of the following factorization):

$$
\begin{equation*}
L^{S}(s, \Pi \times \Pi)=L^{S}\left(s, \Pi ; \operatorname{sym}^{2}\right) L^{S}\left(s, \Pi ; \Lambda^{2}\right) \tag{2}
\end{equation*}
$$

where the right hand side factors are the (incomplete) symmetric and exterior square L-functions of Π. Moreover, one has the identity

$$
\begin{equation*}
L^{S}\left(s, \Pi ; \Lambda^{2}\right)=L^{S}(s, \Pi \otimes \nu) \tag{3}
\end{equation*}
$$

which can be checked factor by factor explicitly. Indeed, at any $v \notin S$, if the unordered triple ("Langlands class") associated to Π_{v} is $\left\{\alpha_{v}, \beta_{v}, \gamma_{v}\right\}$, then we have

$$
\Lambda^{2}\left\{\alpha_{v}, \beta_{v}, \gamma_{v}\right\}=\frac{1}{\alpha_{v} \beta_{v} \gamma_{v}}\left\{\alpha_{v}^{-1}, \beta_{v}^{-1}, \gamma_{v}^{-1}\right\}
$$

and so the v-part of (2) follows by noting that $\nu_{v}\left(\varpi_{v}\right)=\alpha_{v} \beta_{v} \gamma_{v}$, where ϖ_{v} is a uniformizer at v, and $\Pi_{v}^{\vee} \simeq \Pi_{v}$ has the Langlands class $\left\{\alpha_{v}^{-1}, \beta_{v}^{-1}, \gamma_{v}^{-1}\right\}$.

The utility of (3) is that it shows that $L^{S}\left(s, \Pi, \Lambda^{2}\right)$ is, being the L-function (outside S) of the cusp form $\Pi \otimes \nu$, invertible at $s=1$. So we have, thanks to (2) and (3),

$$
\begin{equation*}
-\operatorname{ord}_{s=1} L^{S}\left(s, \Pi ; \operatorname{sym}^{2}\right)=1 \tag{4}
\end{equation*}
$$

Consequently, the parameter $\phi=\phi_{\Pi}$ of Π lands in $O(3, \mathbb{C})$. It lands in $\mathrm{SO}(3, \mathbb{C})$ iff $\nu=1$. Note that if we put

$$
\Pi_{1}:=\Pi \otimes \nu
$$

then Π_{1} is still selfdual. Moreover, its central character $\nu_{1}=\omega_{\Pi_{1}}$ satisfies

$$
\nu_{1}=\nu \cdot(\nu)^{3}=1
$$

implying that the parameter of Π_{1} lands in $\mathrm{SO}(3, \mathbb{C})$.
Thus, after replacing Π by $\Pi \otimes \nu$, we may assume that it has trivial central character, and consequently has parameter in $\operatorname{SO}(3, \mathbb{C})$. Now applying the descent theorem of Ginzburg, Rallis and Soudry ([GRS], [Sou]), we can find a cuspidal, globally generic automorphic representation π_{0} of $\operatorname{Sp}_{2}\left(\mathbb{A}_{F}\right)$, which is the same as $\mathrm{SL}_{2}\left(\mathbb{A}_{F}\right)$. Furthermore, if r denotes the standard (3dimensional) representation of the dual group of $\mathrm{SL}(2)$, which is $\mathrm{PGL}_{2}(\mathbb{C})$, we have the following:
Proposition C The descent $\Pi \mapsto \pi_{0}$ satisfies the following:
(a) If v is a non-archimedean place of F, then

$$
L(s, \Pi)=L^{S}\left(s, \pi_{0} ; r\right)
$$

(b) If w is an archimedean place of F,

$$
\sigma_{w}(\Pi) \simeq r\left(\sigma_{w}\left(\pi_{0}\right)\right),
$$

where $\sigma_{w}(\Pi)$, resp. $\sigma_{w}\left(\pi_{0}\right)$, denotes the parameter of Π_{w}, resp. $\pi_{0, w}$, i.e., the associated representation of the Weil group W_{w} into $G L(3, \mathbb{C})$, resp. $\operatorname{PGL}(2, \mathbb{C})$.

Proof of Proposition C. By the work of Cogdell, Kim, Piatetski-Shapiro ad Shahidi ([CKPSS]), we can transfer π_{0} back to a cusp form Π^{\prime} on $\mathrm{GL}(3) / F$ such that the arrow $\pi_{0, v} \mapsto \Pi_{v}^{\prime}$ is compatible, at every unramified or archimedean place v of F, with the descent of [GRS], [Sou]. So Π^{\prime} and Π are equivalent almost everywhere, hence isomorphic by the strong multiplicity one theorem. So the composition of the parameters of π_{0} with the natural embedding

$$
\begin{equation*}
\operatorname{PGL}(2, \mathbb{C}) \simeq \operatorname{SO}(3, \mathbb{C}) \hookrightarrow \operatorname{GL}(3, \mathbb{C}) \tag{5}
\end{equation*}
$$

are the same as the parameters of Π at the various places v. The assertions of the Proposition now follow.

Proof of Theorem A (contd.)
The next object is to find a generic cuspidal representation of $\mathrm{GL}\left(2, \mathbb{A}_{F}\right)$ whose restriction to $\operatorname{SL}\left(2, \mathbb{A}_{F}\right)$ contains π_{0}. This can be done by appealing to Labesse and Langlands ([LL]). But we want to refine their construction in such a way that we keep track of what happens at the finite primes in order that we do not introduce new ramification. Here is what we do.

First choose a character ω_{1} of $Z\left(\mathbb{A}_{F}\right)$, where Z denotes the center of $\mathrm{GL}(2)$, such that ω_{1} is trivial on $Z_{\infty}^{+} Z(F)$ and agrees with the restriction of π_{0} to $Z\left(\mathbb{A}_{F}\right) \cap \operatorname{SL}\left(2, \mathbb{A}_{F}\right)$. The pair $\left(\pi_{0}, \omega_{1}\right)$ defines a representation π_{1} of the group $H:=\operatorname{SL}\left(2, \mathbb{A}_{F}\right) Z\left(\mathbb{A}_{F}\right)$, such that the central character ω_{1} of π_{1} is trivial on Z_{∞}^{+}and $Z(F)$. If Π has conductor \mathcal{N}, then π_{1} is also unramified outside \mathcal{N}. Moreover, by the Proposition, the transfer at the ramified primes is still functorial and respects the level.

Note that $H\left(\mathbb{A}_{F}\right)$ is a normal subgroup of $\mathrm{GL}_{2}\left(\mathbb{A}_{F}\right)$ with a countable quotient group. Now induce π_{1} to $\mathrm{GL}\left(2, \mathbb{A}_{F}\right)$, and choose (as follows) a cuspidal automorphic representation π of $\mathrm{GL}_{2}\left(\mathbb{A}_{F}\right)$ occurring in the induced representation, which is necessarily globally generic. Denote by ω the central character of π, which, by virtue of being trivial on Z_{∞}^{+}, is of finite order.

Let $K(\mathcal{M})$ denote a principal congruence subgroup of $\mathrm{GL}\left(2, \mathbb{A}_{F, f}\right)$ such that π_{1} has a fixed vector under $K_{1}(\mathcal{M}):=K(\mathcal{M}) \cap \operatorname{SL}\left(2, \mathbb{A}_{F, f}\right)$. Then the induced representation will, by Frobenius reciprocity, have at least one constituent which will have a vector fixed under $K(\mathcal{M})$, and such a π is what we choose. In particular, thanks to Proposition C, at any finite place v, π_{v} is unramified whenever Π_{v} is. Suppose next that v divides \mathcal{M}. Then it is not hard to see that π_{1}, and hence π, is not unramified, the reason being
that the descent of [GRS] is compatible with the transfer of [CKPSS], which preserves the epsilon factors.

Note that by construction, the adjoint representation of the parameter of π is just the symmetric square of that of π_{0}. It follows that

$$
\begin{equation*}
L^{S}(s, \Pi)=L^{S}(s, A d(\pi)), \tag{6a}
\end{equation*}
$$

and at each infinite place w,

$$
\begin{equation*}
\sigma_{w}(\Pi)=\operatorname{Ad}\left(\sigma_{w}(\pi)\right) \tag{6b}
\end{equation*}
$$

In other words,

$$
\begin{equation*}
\Pi \simeq \operatorname{Ad}(\pi) \tag{6c}
\end{equation*}
$$

and if π^{\prime} is another candidate, then by the multiplicity one theorem for SL(2) [Ram], we must have

$$
\pi^{\prime} \simeq \pi \otimes \mu
$$

for an idele class character μ of F.
As noted earlier, we can take π to be unramified at a finite place v when Π is so. Similarly, when Π_{v} has an Iwahori fixed vector at a finite place v, we may choose π_{v} to also have an Iwahori fixed vector. Since π_{v} is ramified (as seen above) when Π_{v} is, π_{v} cannot be fixed by the full maximal compact subgroup at v. So π_{v} is Steinberg when Π_{v} is.

Finally, note that all this applies when the central character ν of Π is trivial central character. But when ν is not trivial, as we observed earlier, $\Pi \otimes \nu$ has trivial central character and we can apply the construction above to deduce that

$$
\begin{equation*}
\Pi \otimes \nu \simeq \operatorname{Ad}(\pi) \tag{7}
\end{equation*}
$$

for a suitable cusp form π on $\mathrm{GL}(2) / F$. As $\nu^{2}=1$, (7) is equivalent to (1).

Proof of Corollary B

Evidently, if $\sigma_{w}(\Pi)$ is regular at an archimedean place w, i.e., has \mathbb{C}^{*} acting on it with multiplicity one, then the same necessarily holds, thanks to (1), for $\sigma_{w}(\pi)$, for any choice of π.

Next recall that the algebraicity of any cusp form η of $\operatorname{GL}\left(n, \mathbb{A}_{F}\right)$ implies by definition (cf. [Clo], Section 1.2.3) that for any $w \mid \infty$, and for any character χ of \mathbb{C}^{*} appearing in the restriction of $\sigma_{w}(\eta)$ to \mathbb{C}^{*}, we have, for suitable integers $p_{w}, q_{w}, \chi(z)=z^{p_{w}+(n-1) / 2} \bar{z}^{q_{w}+(n-1) / 2}$, for all $z \in \mathbb{C}^{*}$. Since the central character ω of π is of finite order by construction, the restriction of $\sigma_{w}(\pi)$ to \mathbb{C}^{*} is, for any $w \mid \infty$, of the form $\mu \oplus \mu^{-1}$. Then we have

$$
\begin{equation*}
\sigma_{w}(\operatorname{Ad}(\pi))_{\left.\right|_{\mathbb{C}^{*}}}=\sigma_{w}(\Pi)_{\left.\right|_{\mathbb{C}^{*}}}=\mu^{2} \oplus 1 \oplus \mu^{-2} \tag{8}
\end{equation*}
$$

As Π is algebraic, we have

$$
\begin{equation*}
\mu^{2}(z)=z^{p_{w}+1} \bar{z}^{q_{w}+1}, \quad \forall z \in \mathbb{C}^{*} \tag{9}
\end{equation*}
$$

for some $p_{w}, q_{w} \in \mathbb{Z}$.

By the archimedean purity theorem for algebraic cusp forms on GL(n) (cf. [Clo], p. 112), we see that $p_{w}+q_{w}$ is constant for all the characters of \mathbb{C}^{*} appearing in $\sigma_{w}(\Pi)$, and it is also independent of $w \mid \infty$. Since the trivial character also occurs by (8), we must have

$$
\begin{equation*}
p_{w}+q_{w}=0, \quad \forall w \mid \infty \tag{10}
\end{equation*}
$$

In other words, $\sigma_{w}(\Pi) \otimes|\cdot|^{-1}$ is tempered at each $w \mid \infty$.
Now let F be totally real. If Π_{w} is not regular, then $p_{w}=0$ or $p_{w}=-p_{w}$, and in either case p_{w} is even and π_{w} is algebraic. So let Π be regular. Then Π_{w} must be an isobaric sum $\mathcal{D}_{k_{w}} \boxplus 1$, with $\mathcal{D}_{k_{w}}$ a discrete series representation of $\mathrm{GL}_{2}(\mathbb{R})$. We get

$$
\begin{equation*}
\sigma_{w}(\Pi) \otimes|\cdot|^{-1} \simeq \operatorname{Ind}_{\mathbb{C}^{*}}^{W_{\mathbb{R}}}\left(\left(\frac{z}{\sqrt{z \bar{z}}}\right)^{k_{w}-1}\right) \oplus 1 \tag{11}
\end{equation*}
$$

with $k \geq 2$. (Here $W_{\mathbb{R}}$ denotes the real Weil group.) Comparing (8) with the restriction to \mathbb{C}^{*} of (11), we see that $k_{w}-1$ must be even, hence of the form $2(m-1)$, for an integer m. Since $k_{w} \geq 2, m=\left(k_{w}+1\right) / 2 \in \mathbb{Z}$ is also ≥ 2. It follows that π_{w} is the discrete series representation \mathcal{D}_{m}, showing that it is algebraic. Since this holds at every archimedean place w, π is algebraic.

In sum, when F is totally real, π can be chosen to be regular algebraic, hence cohomological, when Π has that property. This completes the proof of Corollary B.

References

[Clo] L. Clozel. Motifs et formes automorphes: applications du principe de fonctorialité. In Automorphic forms, Shimura varieties, and L-functions, Vol. I (Ann Arbor, MI, 1988), volume 10 of Perspect. Math., pages 77-159. Academic Press, Boston, MA, 1990.
[CKPSS] J. W. Cogdell, H. H. Kim, I. I. Piatetski-Shapiro, and F. Shahidi. Functoriality for the classical groups. Publ. Math. Inst. Hautes Études Sci. (2004), 163-233.
[GJ] S. Gelbart and H. Jacquet. A relation between automorphic representations of GL(2) and GL(3). Ann. Sci. École Norm. Sup. (4) 11 (1978), 471-542.
[GRS] D. Ginzburg, S. Rallis, and D. Soudry. On explicit lifts of cusp forms from GL m_{m} to classical groups. Ann. of Math. (2) 150 (1999), 807-866.
[LL] J.-P. Labesse and R. P. Langlands. L-indistinguishability for SL(2). Canad. J. Math. 31 (1979), 726-785.
[Ram] D. Ramakrishnan. Modularity of the Rankin-Selberg L-series, and multiplicity one for SL(2). Ann. of Math. (2) 152 (2000), 45-111.
[Sou] D. Soudry. On Langlands functoriality from classical groups to GL_{n}. Astérisque (2005), 335-390. Automorphic forms. I.

Dinakar Ramakrishnan
253-37 Caltech
Pasadena, CA 91125, USA.
dinakar@caltech.edu

