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The object of this Note is to supply a proof of the following result, which
is in the folklore, and deduce a Corollary. There is no pretension to anything
creative here, and all that is involved is a synthesis of results due to various
people.

Theorem A Let F be a number field, and Π a cuspidal, selfdual automor-
phic representation of GL3(AF ). Then there exists a non-dihedral cusp form
π on GL(2)/F , and an idele class character ν of F with ν2 = 1, such that

(1) Π ' Ad(π)⊗ ν.

The form π is unique up to a character twist, while ν is simply the central
character of Π. The central character ω of π may be chosen to be of finite
order. Moreover, we may choose π such that, for any finite place v, πv is
unramified, resp. Steinberg, when Πv ⊗ νv is unramified, resp. Steinberg.

Here Ad(π) denotes the Adjoint of π, a selfdual automorphic form on
GL(3)/F , defined to be sym2(π) ⊗ ω−1, where sym2(π) is the symmetric
square of π, defined by Gelbart and Jacquet in [GJ]. As π is non-dihedral,
Ad(π) is cuspidal.

Note that Theorem A remains valid for any cusp form Π on GL(3)/F
which satisfies Π∨ ' Π ⊗ | · |t for some t, the reason being that we may
replace Π by Π⊗ | · |t/2, which is selfdual.

Theorem A has been known to experts for a while. It is a consequence
of a comparison of the stable trace formula for SL(2)/F with the twisted
trace formula for PGL(3)/F (relative to transpose inverse); this fundamental
idea of Langlands has been carried out in detail by Flicker in a series of
papers. It will also be a special case of Arthur’s forthcoming major work
relating selfdual automorphic representations of GL(n) with those of suitable
classical groups, again comparing appropriate trace formulae. In this Note
we deduce Theorem A in a different way, via L-functions, by appealing to
the backwards lifting (“descent”) of Ginzburg, Rallis and Soudry, as well as
the forward transfer, for generic cusp forms, from odd orthogonal groups to
GL(n), due to Cogdell, Kim, Piatetski-Shapiro, and Shahidi.

Corollary B Let F, Π be as in Theorem, with associated (π, ν). Then at
any archimedean place w, Πw has regular parameter iff πw does. Moreover,
if Π is algebraic and F totally real, then π can be chosen to be algebraic as
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well. Consequently, over totally real fields, π can be chosen to be regular
algebraic, hence cohomological, when Π has that property.

Proof of Theorem A Fix a finite set S of places of F containing the
ramified and archimedean places, and write LS(s), given any Euler product
L(s) =

∏
v Lv(s), for

∏
v/∈S Lv(s). Then, Π being selfdual implies that

its central character ν, say, must also be selfdual, hence either trivial or
quadratic. The selfduality of Π also results in a pole at s = 1 of the Rankin-
Selberg L-function (on the left hand side of the following factorization):

(2) LS(s,Π×Π) = LS(s,Π; sym2)LS(s,Π;Λ2),

where the right hand side factors are the (incomplete) symmetric and exte-
rior square L-functions of Π. Moreover, one has the identity

(3) LS(s,Π;Λ2) = LS(s,Π⊗ ν),

which can be checked factor by factor explicitly. Indeed, at any v /∈ S, if the
unordered triple (“Langlands class”) associated to Πv is {αv, βv, γv}, then
we have

Λ2{αv, βv, γv} =
1

αvβvγv
{α−1

v , β−1
v , γ−1

v },
and so the v-part of (2) follows by noting that νv($v) = αvβvγv, where $v

is a uniformizer at v, and Π∨v ' Πv has the Langlands class {α−1
v , β−1

v , γ−1
v }.

The utility of (3) is that it shows that LS(s,Π,Λ2) is, being the L-function
(outside S) of the cusp form Π⊗ ν, invertible at s = 1. So we have, thanks
to (2) and (3),

(4) −ords=1 LS(s,Π; sym2) = 1.

Consequently, the parameter φ = φΠ of Π lands in O(3,C). It lands in
SO(3,C) iff ν = 1. Note that if we put

Π1 := Π⊗ ν,

then Π1 is still selfdual. Moreover, its central character ν1 = ωΠ1 satisfies

ν1 = ν · (ν)3 = 1,

implying that the parameter of Π1 lands in SO(3,C).

Thus, after replacing Π by Π⊗ν, we may assume that it has trivial central
character, and consequently has parameter in SO(3,C). Now applying the
descent theorem of Ginzburg, Rallis and Soudry ( [GRS], [Sou]), we can
find a cuspidal, globally generic automorphic representation π0 of Sp2(AF ),
which is the same as SL2(AF ). Furthermore, if r denotes the standard (3-
dimensional) representation of the dual group of SL(2), which is PGL2(C),
we have the following:

Proposition C The descent Π 7→ π0 satisfies the following:
(a) If v is a non-archimedean place of F , then

L(s,Π) = LS(s, π0; r).
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(b) If w is an archimedean place of F ,

σw(Π) ' r(σw(π0)),

where σw(Π), resp. σw(π0), denotes the parameter of Πw, resp.
π0,w, i.e., the associated representation of the Weil group Ww into
GL(3,C), resp. PGL(2,C).

Proof of Proposition C. By the work of Cogdell, Kim, Piatetski-Shapiro
ad Shahidi ( [CKPSS]), we can transfer π0 back to a cusp form Π′ on
GL(3)/F such that the arrow π0,v 7→ Π′v is compatible, at every unrami-
fied or archimedean place v of F , with the descent of [GRS], [Sou]. So Π′
and Π are equivalent almost everywhere, hence isomorphic by the strong
multiplicity one theorem. So the composition of the parameters of π0 with
the natural embedding

(5) PGL(2,C) ' SO(3,C) ↪→ GL(3,C)

are the same as the parameters of Π at the various places v. The assertions
of the Proposition now follow.

¤

Proof of Theorem A (contd.)
The next object is to find a generic cuspidal representation of GL(2,AF )

whose restriction to SL(2,AF ) contains π0. This can be done by appealing
to Labesse and Langlands ( [LL]). But we want to refine their construction
in such a way that we keep track of what happens at the finite primes in
order that we do not introduce new ramification. Here is what we do.

First choose a character ω1 of Z(AF ), where Z denotes the center of
GL(2), such that ω1 is trivial on Z+∞Z(F ) and agrees with the restriction of
π0 to Z(AF ) ∩ SL(2,AF ). The pair (π0, ω1) defines a representation π1 of
the group H := SL(2,AF )Z(AF ), such that the central character ω1 of π1 is
trivial on Z+∞ and Z(F ). If Π has conductor N , then π1 is also unramified
outsideN . Moreover, by the Proposition, the transfer at the ramified primes
is still functorial and respects the level.

Note that H(AF ) is a normal subgroup of GL2(AF ) with a countable
quotient group. Now induce π1 to GL(2,AF ), and choose (as follows) a
cuspidal automorphic representation π of GL2(AF ) occurring in the induced
representation, which is necessarily globally generic. Denote by ω the central
character of π, which, by virtue of being trivial on Z+∞, is of finite order.

Let K(M) denote a principal congruence subgroup of GL(2,AF,f ) such
that π1 has a fixed vector under K1(M) := K(M) ∩ SL(2,AF,f ). Then
the induced representation will, by Frobenius reciprocity, have at least one
constituent which will have a vector fixed under K(M), and such a π is
what we choose. In particular, thanks to Proposition C, at any finite place
v, πv is unramified whenever Πv is. Suppose next that v divides M. Then it
is not hard to see that π1, and hence π, is not unramified, the reason being
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that the descent of [GRS] is compatible with the transfer of [CKPSS], which
preserves the epsilon factors.

Note that by construction, the adjoint representation of the parameter of
π is just the symmetric square of that of π0. It follows that

(6a) LS(s,Π) = LS(s,Ad(π)),

and at each infinite place w,

(6b) σw(Π) = Ad(σw(π)).

In other words,

(6c) Π ' Ad(π),

and if π′ is another candidate, then by the multiplicity one theorem for
SL(2) [Ram], we must have

π′ ' π ⊗ µ,

for an idele class character µ of F .

As noted earlier, we can take π to be unramified at a finite place v when
Π is so. Similarly, when Πv has an Iwahori fixed vector at a finite place v,
we may choose πv to also have an Iwahori fixed vector. Since πv is ramified
(as seen above) when Πv is, πv cannot be fixed by the full maximal compact
subgroup at v. So πv is Steinberg when Πv is.

Finally, note that all this applies when the central character ν of Π is
trivial central character. But when ν is not trivial, as we observed earlier,
Π⊗ ν has trivial central character and we can apply the construction above
to deduce that

(7) Π⊗ ν ' Ad(π),

for a suitable cusp form π on GL(2)/F . As ν2 = 1, (7) is equivalent to (1).
¤

Proof of Corollary B
Evidently, if σw(Π) is regular at an archimedean place w, i.e., has C∗

acting on it with multiplicity one, then the same necessarily holds, thanks
to (1), for σw(π), for any choice of π.

Next recall that the algebraicity of any cusp form η of GL(n,AF ) implies
by definition (cf. [Clo], Section 1.2.3) that for any w | ∞, and for any
character χ of C∗ appearing in the restriction of σw(η) to C∗, we have, for
suitable integers pw, qw, χ(z) = zpw+(n−1)/2zqw+(n−1)/2, for all z ∈ C∗. Since
the central character ω of π is of finite order by construction, the restriction
of σw(π) to C∗ is, for any w | ∞, of the form µ⊕ µ−1. Then we have

(8) σw(Ad(π))|C∗ = σw(Π)|C∗ = µ2 ⊕ 1⊕ µ−2.

As Π is algebraic, we have

(9) µ2(z) = zpw+1zqw+1, ∀ z ∈ C∗,
for some pw, qw ∈ Z.



AN EXERCISE CONCERNING THE SELFDUAL CUSP FORMS ON GL(3) 5

By the archimedean purity theorem for algebraic cusp forms on GL(n) (cf.
[Clo], p. 112), we see that pw + qw is constant for all the characters of C∗
appearing in σw(Π), and it is also independent of w | ∞. Since the trivial
character also occurs by (8), we must have

(10) pw + qw = 0, ∀w | ∞.

In other words, σw(Π)⊗ | · |−1 is tempered at each w | ∞.

Now let F be totally real. If Πw is not regular, then pw = 0 or pw = −pw,
and in either case pw is even and πw is algebraic. So let Π be regular.
Then Πw must be an isobaric sum Dkw ¢ 1, with Dkw a discrete series
representation of GL2(R). We get

(11) σw(Π)⊗ | · |−1 ' IndWR
C∗

((
z√
zz

)kw−1
)
⊕ 1,

with k ≥ 2. (Here WR denotes the real Weil group.) Comparing (8) with the
restriction to C∗ of (11), we see that kw−1 must be even, hence of the form
2(m− 1), for an integer m. Since kw ≥ 2, m = (kw + 1)/2 ∈ Z is also ≥ 2.
It follows that πw is the discrete series representation Dm, showing that it
is algebraic. Since this holds at every archimedean place w, π is algebraic.

In sum, when F is totally real, π can be chosen to be regular algebraic,
hence cohomological, when Π has that property. This completes the proof
of Corollary B.

¤
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