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Abstract. We review Edward Nelson’s contributions to nonrel-
ativistic quantum theory and to quantum field theory.

1. Introduction

It is a pleasure to contribute to this celebration of Ed Nelson’s scien-
tific work, not only because of the importance of that work but because
it allows me an opportunity to express my gratitude and acknowledge
my enormous debt to Ed. He and Arthur Wightman were the key for-
mulative influences on my education, not only as a graduate student
but during my early postdoctoral years. Thanks, Ed!

I was initially asked to talk about Ed’s work in quantum field theory
(QFT), but I’m going to exceed my assignment by also discussing Ed’s
impact on conventional nonrelativistic quantum mechanics (NRQM).
There will be other talks on his work on unconventional quantum the-
ory.

After discussion of NRQM and the Nelson model, I’ll turn to the
truly great contributions: the first control of a renormalization, albeit
the Wick ordering that is now regarded as easy, and the seminal work
on Euclidean QFT.

Many important ideas I’ll discuss below involve crucial remarks of
Ed that — in his typically generous fashion — he allowed others to
publish.

2. NRQM

Ed has very little published specifically on conventional NRQM but
he had substantial impact through his lectures, students, and ideas
from his papers that motivated work on NRQM. In particular, two of
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2 B. SIMON

my own books [68, 73] have subject matter motivated by what I learned
from Ed.

(a) Quadratic Forms. Reed-Simon [64] call the perturbation the-
orem for closed quadratic forms the KLMN theorem for Kato, Lions,
Lax-Milgram, and Nelson. Ed was not the first to prove the KLMN
theorem nor was he the first to use the scale of spaces that lies behind
rigged Hilbert space theory, but so far as I know, he is the first to
use scales in the context of studying selfadjointness of operators asso-
ciated to quadratic forms, not only in the KLMN theorem but in the
selfadjointness theorem [57] I’ll discuss below.

(b) Path Integrals. Ed’s best known published paper on path inte-
grals deals with Feynman path integrals [53], that is, for e−itH where
he uses the Trotter product formula to write (e−itHϕ)(x) as a limit
(in L2 sense in x) of Riemann integral approximations to a formal
path integral. One cannot take the limit inside the integral and get a
well-defined measure in the conventional sense, so these ideas have had
limited use as an analytic tool. Still, they have conceptual uses and
have been the starting point for other work on Feynman path integrals
[4, 18, 24, 79].

From my point of view, the most significant contribution of [53] is the
idea of using the Trotter product formula to prove Feynman-Kac-type
formulae, an idea which is now standard.

Even more, Ed was a strong proponent of using path integrals in
NRQM, an attitude which permeated Princeton in the 1970’s, for ex-
ample, Aizeman-Simon [1], Carmona [12], and Lieb [45].

(c) Selfadjointness Theorems. Proving (essential) selfadjointness of
unbounded operators on a suitable domain is a basic part of mathemat-
ical quantum theory. Besides the KLMN theorem already mentioned,
Ed is responsible for two general theorems and played a role in a third.

If A is a Hermitian operator, an analytic vector for A is a ϕ ∈
∩nD(An) so that for some t > 0,

∑ tn‖Anϕ‖
n!

< ∞.

In [52], Ed proved that if D(A) contains a dense set of analytic vectors,
then A is essentially selfadjoint. This is basic to representation theory.
For extensions of [52], see Nussbaum [62] and Masson-McClary [51].

In [57], Ed proved a result that essentially says that if N ≥ 1 is a
second operator which is selfadjoint and

±A ≤ c1(N + 1)
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±i[N, A] ≤ c2(N + 1),

then A is essentially selfadjoint (I suppress the technical issue of what
[N, A] means; see [57] or [64, Section X.5]). Ed applied this to selfad-
jointness of time-smeared quantum fields, a result that Glimm-Jaffe [28]
also proved using commutator estimates on the operator, commutator,
and double commutator.

While Ed didn’t apply his commutator theorem to NRQM, Faris-
Lavine did [20].

Finally, I should mention the dog that didn’t bark [19]: selfadjoint-
ness and hypercontractive semigroups (the later are discussed in Sec-
tion 4 below). Segal [67], following up on Ed’s work in [56], proved
that if H0 generated a hypercontractive semigroup on L2(M,dµ) and
if V ∈ L2, e−tV ∈ L2 (for all t > 0) for some function, V, then H0 + V
is essentially selfadjoint on e−H0 [L∞] (see also [41, 70]). Rosen [65] in
a concrete setting had a similar idea to Segal [67].

(d) Diamagnetic Inequalities. These inequalities state that if
H(a, V ) is a quantum Hamiltonian (any number of dimensions or par-
ticles, any masses, and any magnetic vector potential, a, and scalar
potential V with enough regularity to define H), then

|(exp(−tH(a, V ))ϕ(x))| ≤ (exp(−tH(0, V ))|ϕ|)(x). (1)

I named them diamagnetic inequalities since they imply a finite tem-
perature analog of the fact that inf spec(H(a, V )) ≥ inf spec(H(0, V )),
an expression of the fact that in the absence of spin (i.e., of magnetic
moments) and/or fermi statistics, energies increase in a magnetic field.
One author tried to name them Nelson-Simon inequalities but the name
didn’t stick, so I guess I should apologize to Ed for coming up with a
name that had such a nice ring to it.

What was Ed’s role in this? The story begins with two of the self-
adjointness results of the last section. Before 1972, the conventional
wisdom was that selfadjointness results for −∆+V on L2(Rν) required
V to be at least locally Lp with p > ν/2 (and p ≥ 2). Since −∆− c/r2

for c large and ν ≥ 5 is not essentially selfadjoint on C∞
0 (Rν), this

condition would seem to be close to optimal since
∫
|r|≤1

(r−2)p dνr < ∞
if p < ν/2. What I discovered is that the “correct” conditions are
asymmetric — positive singularities need only be L2. I proved that if
V ∈ L2(Rν , e−x2

dνx) and V ≥ 0, then −∆+V is essentially selfadjoint
on C∞

0 (Rν) for any ν.
The proof [70] went as follows. By Ed’s result on hypercontrac-

tivity of the fixed Hamiltonians [56], H0 = −∆ + x2 generates a hy-
percontractive semigroup after translating to L2(Rν , Ω2

0 dνx) with Ω0
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the ground state of H0. By Segal’s theorem and a simple approxi-
mation argument, N = H0 + V is selfadjoint on C∞

0 (Rν). Now use
[N,−∆ + V ] = [x2,−∆ + V ] to verify the hypotheses of Nelson’s com-
mutator theorem [57] to conclude that −∆+V is essentially selfadjoint.
Actually, in [70], I used a different argument from the Nelson commu-
tator theorem, but I could have used it!

I conjectured that the weak growth restriction implicit in∫
V (x)2e−x2

dx < ∞ was unnecessary and that V ≥ 0 and V ∈ L2
loc(Rν)

implied −∆ + V was essentially selfadjoint on C∞
0 (Rν). Kato took up

this conjecture and found the celebrated Kato’s inequality approach
to selfadjointness [43]. This is not the right place to describe this in
detail (see [43] or [64, 75]), but what is important is that between the
original draft he sent me and the final paper, he added magnetic fields
and that he used as an intermediate inequality

|(∇− ia)ϕ| ≥ ∇|ϕ| (2)

pointwise in x. Formally, (2) is obvious; for if ϕ = |ϕ|eiη, then
Re(e−iη(∇− ia)ϕ) = Re((∇− ia + i(∇η))|ϕ|) = ∇|ϕ|.

What I realized two years later was that by integrating (2) in x, one
has

(|ϕ|, H(0, V )|ϕ|) ≤ (ϕ,H(a, V )ϕ), (3)

which implies the diamagnetism of the ground state. The analog of (3)
for finite temperature is

Tr(e−βH(a,V )) ≤ Tr(e−βH(0,V ))

and this led me to conjecture the diamagnetic inequality (1).
At the time, every Thursday the mathematical physicists at Prince-

ton got together for a “brown bag lunch.” During 1973–78, the post-
docs/assistant professors included Michael Aizenman, Sergio Albeve-
rio, Yosi Avron, Jürg Fröhlich, Ira Herbst, Lon Rosen, and Israel Sigal.
Lieb, Wightman, and I almost always attended, and often Dyson and
Nelson did. After lunch, various people talked about work in progress.
I discussed (3) and my conjecture (1), explaining that I was working on
proving it. After I finished, Ed announced: “Your conjecture is true;
it follows from the correct variant of the Feynman-Kac formula with a
magnetic field.” So the first proof of (1) was Ed’s. Characteristically,
he refused my offer to coauthor the paper where this first appeared
with another semigroup-based proof [72].

I should mention that the simplest proof of (1) and my favorite [75]
is very Nelsonian in spirit: One uses the Trotter product formula to
get the semigroup (e−tH(a,V )) as a limit of products of one-dimensional

operators e+t(∂j−iaj)
2/n and uses the fact that one-dimensional magnetic
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fields can be gauged away. This is Nelsonian for two reasons. The use
of Trotter product formula in such a context is due to Ed, but also
the proof is a poor man’s version of Ed’s original proof: The gauge
transformations are just a discrete approximation to an Itô stochastic
integral.

(e) Point Interactions. The subject of point interactions has been
heavily studied (see, e.g., [3]). So far as I know, Ed was the first to
study point interactions as limits of potentials with supports shrinking
to a point. He presented this in his courses; an extension of the ideas
then appeared in the theses of his students, Alberto Alonso and Charles
Friedman [22]. The basic points are:
(i) If ν ≥ 4 and Vn is any sequence of potentials, say, each bounded

(but not uniformly bounded in n), supported in {x | |x| < n−1},
then −∆ + Vn → −∆ in strong resolvent sense.

(ii) If ν ≥ 2 and Vn ≥ 0, (i) remains true.
(iii) If ν = 1, 2, 3, there are special negative Vn’s that have strong limits

different from −∆, many with a single negative eigenvalue. These
are the point integrations.

(i) is an immediate consequence of the fact that {f ∈ C∞
0 (Rν) |

f ≡ 0 in a neighborhood of 0} is an operator core of −∆ if ν ≥ 4.
While (ii) can be obtained by similar consideration of form cores (and
a suitable, somewhat subtle, limit theorem for quadratic forms), in
typical fashion, Ed explained it not from this point of view, but by
noting that in dimension 2 or more and x, y 6= 0, almost every Brownian
path from x to y in fixed finite time t avoids 0. Thus, in a Feynman-Kac
formula, if Vn has shrinking support, the integrand goes to one (i.e.,

exp(− ∫ t

0
Vn(ω(ν) ds) → 1); Vn ≥ 0 is needed to use the dominated

convergence theorem in path space.

3. The Nelson Model

A search in MathSciNet on “Nelson model” turns up nineteen papers,
many of them recent [2, 5, 6, 7, 8, 9, 11, 13, 14, 23, 25, 37, 38, 39, 40,
47, 48, 49, 78], so I’d be remiss to not mention the model, although
I’ll restrict myself to describing the model itself and noting that Ed
introduced it in [54] and studied it further in [55].

The nucleon space H(N) is L2(R3n) where n is fixed (most later pa-
pers take n = 1) with elements in H(N) written ψ(x1, . . . , xn) and free
nucleon Hamiltonian

H(N) = −
n∑

j=1

∆j.
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The meson space is the Fock space, H(M), on R3 with creation oper-
ators a†(k) (k ∈ R3). The meson has mass µ (Ed took µ > 0; many
applications take µ = 0) and free Hamiltonian

H(M) =

∫
ω(k)a†(k)a(k) d3k,

where

ω(k) = (k2 + µ2)1/2.

One defines the cutoff field for fixed x ∈ R3 by

ϕχ(x) = 2−1/2(2π)−3/2

∫
ω(k)−1/2(a(k)eik·x + a†(k)e−ik·x)χ(k) dk.

Ed took χ to be a sharp cutoff (characteristic function of a large ball);
some later authors take other smoother χ’s. One defines

H = H(N) ⊗H(M)

and on H,

HI = g

n∑
j=1

ϕκ(xj),

where g is a coupling constant and now x is the nucleon coordinate.
The Nelson model is the Hamiltonian

H(N) + H(M) + HI .

This has been a popular model because it is essentially the simplest
example of an interacting field theory with an infinite number of par-
ticles.

4. Hypercontractivity

The next two sections concern outgrowths of Nelson’s seminal paper
[56]. This paper of only five pages (and because of the format of the
conference proceedings, they are short pages; in J. Math. Phys., it
would have been less than two pages!) is remarkable for its density of
good ideas. The following abstracts a notion Ed discussed in [56]:

Definition. Let H0 ≥ 0 be a positive selfadjoint operator on the
Hilbert space L2(M, dµ) with dµ a probability measure. We say e−tH0

is a hypercontractive semigroup if and only if
(1) ‖e−tH0ϕ‖p ≤ ‖ϕ‖p, 1 ≤ p ≤ ∞, t > 0
(2) For some T0 and some C < ∞,

‖e−TH0ϕ‖4 ≤ C‖ϕ‖2. (4)
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Here the bounds are intended as a priori on ϕ ∈ L2 ∩ Lp. Ed’s
key discovery in [56] is that if V is a function with e−V ∈ ∩p<∞Lp,
then H0 + V is bounded below (to define H0 + V in reasonable cases,
one usually assumes also V ∈ L2 but for any V, and each k < ∞,
Vk = max(V,−k) allows H0 + Vk to be defined as a form sum, and one
has infk min(H0 + Vk) > −∞).

The simplest proof of this boundedness result follows from the for-
mula

‖eA+B‖ ≤ ‖eAeB‖ (5)

for selfadjoint operators A and B. This formula is associated with
the work of Golden, Thompson, and Segal (see the discussion of Sec-
tion 8a in Simon [74]). It is proven by a suitable use of the Trotter
product formula and the fact that ‖CD‖ ≤ ‖C‖ ‖D‖. Typically, in
Ed’s application, he appeals to a Feynman-Kac formula which has the
Trotter formula built in and a use of Hölder’s inequality which can re-
place ‖CD‖ ≤ ‖C‖ ‖D‖ because in the path integral formulation, the
operators become functions.

I’d like to sketch a proof of (5) since it is not appreciated that it
follows from Löwner’s theorem on monotonicity of the square root ([50];
see also [36, 42]). We start with

C1/2ϕ =
1

π

∫ ∞

0

w−1/2(C + w)−1Cϕdw (6)

By the functional calculus, it suffices to prove (6) when C is a number
and by scaling when C = 1, in which case, by a change of variables, it
reduces to an arctan integral. Since C(C +w)−1 = 1−w(C +w)−1, we
have

0 ≤ C ≤ D ⇒ (C + w)−1 ≥ (D + w)−1

⇒ C1/2 ≤ D1/2 (7)

which is Löwner’s result.
Let A, B be finite Hermitian matrices. Since

0 ≤ C ≤ D ⇔ ‖C1/2D−1/2‖ ≤ 1

(7) can be rewritten

‖C1/2D−1/2‖ ≤ 1 ⇒ ‖C1/4D−1/4‖2 ≤ 1

which, letting C1/2 = eA, D1/2 = e−B, implies

‖eA/2eB/2‖2 ≤ ‖eAeB‖ (8)

Iterating (8) implies

‖(eA/2n

eB/2n

)2n‖ ≤ ‖eA/2n

eB/2n‖2n ≤ ‖eAeB‖
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Taking n → ∞ and using the Trotter product formula implies (5) for
bounded matrices, and then (5) follows by a limiting argument.

Once one has (5), one gets lower boundedness by noting

‖e−TV e−TH0ϕ‖2 ≤ ‖e−TV ‖4‖e−TH0ϕ‖4

≤ C‖e−TV ‖4‖ϕ‖2

so hypercontractivity and e−4TV ∈ L1 implies ‖e−T (H0+V )‖ < ∞.
The term “hypercontractive” appeared in my paper with Høegh-

Krohn [41], which systematized and extended the ideas of Nelson [56],
Glimm [27], Rosen [65], and Segal [67]. The name stuck, and I recall
Ed commenting to me one day, with a twinkle in his eye that many
know, that after all “hypercontractive” was not really an accurate term
since the theory only requires (4) with C < ∞, not C ≤ 1! That is,
e−TH0 is only bounded from L2 to L4, not contractive. We should have
used “hyperbounded,” not “hypercontractive.”

Ed was correct (of course!), but I pointed out (correctly, I think!)
that hypercontractive had a certain ring to it that hyperbounded just
didn’t have. There was, of course, a double irony in Ed’s complaint.

The first involves an issue that wasn’t explicitly addressed in [56].
What Ed proved, using Lp properties of the Mehler kernel, is that
for the one-dimensional intrinsic oscillator, H0 = −1

2
d2

dx2 + x d
dx

on

L2(R, π−1/2e−x2
dx), e−tH0 is bounded from L2 to L4 if t is large enough

with a bound on the norm between those spaces of the form 1+O(e−t)
as t →∞. Ed then applied this to a free quantum field in a box with pe-
riodic boundary conditions. Because the eigenvalues of relevant modes
go ω` ∼ `, one has

∏∞
`=0(1 + e−ω`t) convergent, so this application is

legitimate — [56] does not discuss anything explicit about the passage
to infinitely many degrees of freedom, but this step was made explicit
in [21]. (I thank Lenny Gross for making this point to me at the con-
ference in Vancouver.) To handle cases like H0 in infinite volume, it
is important to know that for t large enough, e−tH0 is actually a con-
traction from L2 to L4, so the discreteness of modes doesn’t matter.
This was accomplished by Glimm [27] who showed that if H01 = 0,
H0 ¹ {1}⊥ ≥ m0 and (4) for some C, then by increasing T , (4) holds
with C = 1.

The second irony concerns Ed’s second great contribution to hyper-
contractivity: the proof in [60] of optimal estimates for second quan-
tized semigroups — exactly the kind of special H0 in e−tH0 he consid-
ered in [56]. He proved such an operator from Lp to Lq was either not
bounded or it was contractive!
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His precise result is if H ≥ a ≥ 0, then Γ(e−tH0) is a contraction from
Lq to Lp if e−ta ≤ (q − 1)1/2/(p − 1)1/2 and is not bounded otherwise.
Here Γ( · ) is second quantization of operators; see [71].

Ed’s work in these two papers on hypercontractive estimates spawned
an industry, especially after the discovery of log Sobolev inequalities by
Federbush [21] and Gross [31]. Brian Davies, in his work on ultracon-
tractivity [17] and on Gaussian estimates on heat kernels [15], found
deep implications of extensions of these ideas. While I dislike this
way of measuring significance, I note that eighty papers in MathSciNet
mention “hypercontractive” in their titles or reviews and Google finds
269 hits. See [16, 32] for reviews of the literature on this subject.

5. Taming Wick Ordering

There was a second element in [56] besides hypercontractivity,
namely, the control of e−tV . I want to schematically explain the dif-
ficulty and the way Ed solved it. In adding the interaction to a free
quantum field, one might start with a spatial cutoff and want to con-
sider

Vun =

∫ L

−L

ϕ4(x) dx,

where ϕ is a free field. If g1, . . . , g8 are Gaussian variables, then

〈g1 . . . g8〉 =
∑

pairings

〈gi1gj1〉 . . . 〈gi4gj4〉 (9)

over all 105 pairings of 1, . . . , 8. Thus, in computing 〈V 2
un〉, one gets

〈ϕ4(x)ϕ4(y)〉 and the pairings 〈ϕ(x)ϕ(x)〉 are infinite, since they are∫
dk√

k2+µ2
= ∞.

The solution is the very simplest of renormalizations, Wick ordering.
If g is a finite Gaussian variable, one defines

: g4 := g4 − 6〈g2〉g2 + 3〈g2〉2. (10)

The constants are exactly chosen, so in using (9) to compute 〈: g4 ::
h4 :〉, all cross terms involving 〈g2〉 drop out and

〈: g4 :: h4 :〉 = 24〈gh〉4 (11)

which allows one to prove that V =
∫ L

−L
: ϕ4(x) : dx makes sense and

defines a function in L2, indeed, in ∩p<∞Lp. The difficulty is that (10)
says

: g4 := (g2 − 3〈g2〉)2 − 6〈g2〉2 (12)
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is no longer positive, so since 〈ϕ2(x)〉 = ∞, V is no longer bounded
below. What Ed realized is that it was still true that e−V is integrable
(and that using hypercontractivity, H0 + V is bounded below).

To prove e−V integrable, Ed made a momentum cutoff in ϕ to get a
ϕκ with 〈ϕ2

κ〉 ∼ log(κ) realizing the rate of divergence. He then wrote

V = Vκ +V ′
κ where Vκ is just

∫ L

−L
: ϕ4

κ(x) : dx and V ′
κ is the remainder.

By using (12), Vκ is bounded below

Vκ ≥ −C(log κ)2 (13)

Moreover, it is easy to bound

〈(V ′
κ)

2j〉 =
(8j)!

24j(4j)!
〈(V ′

κ)
2〉j (14)

using Gaussian variable calculations. Here 〈(V ′
κ)

2〉 goes to zero as a
negative power of κ. Since (13) implies

Prob(V ≤ −c(log κ)2 − 1) ≤ Prob(|V ′
κ| ≤ 1)

≤ 〈(V ′
κ)

2j〉
for any κ, one can choose j using the explicit formula in (14) to optimize
this bound and find

Prob(V ≤ −x− 1) ≤ exp(−c1 exp(c2x
1/2)),

which implies 〈e−V p〉 < ∞ for all p.
This general idea of decomposing the interactions, undoing the renor-

malization to control one piece, and using Lp estimates on the other
piece became a standard tool in much later work [29] in constructive
quantum field theory.

6. Euclidean Quantum Field Theory

I’ve saved the best for last. In 1971–72, Ed, with an important boost
from Guerra [33] (also [34]), in part following up on work of Schwinger
[66] and Symanzik [76, 77], caused a revolution in mathematical quan-
tum field theory, at least the model-building side. Ed’s Euclidean Field
Theory and the lattice approximation of Guerra-Rosen-Simon [35] that
it motivated totally changed the objects studied. The structure of QFT
in 1973 looked very different from 1971, although it looks very similar
in 1973 and 2003! The way high energy physicists looked at quantum
fields also changed to Euclidean and lattice models during this period.
I’m not enough of a historian of the subject to know to what extent
mathematicians’ work had an impact on them.
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Ed developed his ideas in the first part of 1971, gave a few lectures
at Princeton (I only heard the first and didn’t understand where it was
heading or what it was good for!), and a lecture in Berkeley [58]. In
retrospect, it is remarkable that — despite Ed talking in Princeton at
a lecture attended by all or almost all the local experts and in Berkeley
to many of the other workers — there was almost no reaction. I don’t
remember the details of the Princeton talk, but I assume it was close
to the published Berkeley lecture [58], and rereading it, I can perhaps
reconstruct my own reasons for not catching on.

I think Ed partly had me in mind when he stated in [58]: “Probabilis-
tic methods ... have been used in quantum field theory particularly by
Glimm, Jaffe, Rosen and myself. The usual reaction of workers in the
field is to recoil in horror and to attempt to find alternate methods.”

It’s true that until Euclidean Field Theory changed my tune, I tended
to think of probabilists as a priesthood who translated perfectly simple
functional analytic ideas into a strange language that merely confused
the uninitiated. In [71], the dedication says: “To Ed Nelson who taught
me how unnatural it is to view probability theory as unnatural.”

Ed’s lecture has one result that should have made everyone sit up and
take notice — a really simple proof of the linear lower bounds on the
cutoff vacuum energy. But by dressing the proof in layers of functors,
Markov properties, multiplicative functionals, and only sketching it
(my brief sketch below is much more detailed than his!), he perhaps
obscured its great simplicity. Because I had then recently found my
own simple (but it turns nor nearly as simple as Ed’s!) proof [69], I
put his work aside.

Francesco Guerra was visiting Princeton at the time and was rather
quiet and unassuming. At Guerra’s request, Arthur Wightman set up
a meeting with Lon Rosen and me in January 1972. Guerra began by
listing on the blackboard what he was going to prove. It was as if he
were from another planet. His first result was the linear lower bound
that Ed and others had proven. All his other results (starting with
existence of the limits) were beyond anything that the then current
technology could prove. I remember thinking to myself: “Yeah, sure,
you’re gonna prove all that.” He proceeded to say he needed Nelson’s
ideas and, in particular, something he called Nelson’s symmetry. I’d
seen this on the blackboard during Ed’s talk eight months before, but
thought it a curiosity. Within fifteen minutes, Guerra had explained
his proofs of the results that I’d found impossible to believe! It was
like a thunderbolt.

Within a week, Guerra, Rosen, and I had used these ideas to recover
[34] some bounds of Glimm-Jaffe [28] whose proofs were regarded as
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very hard. The next week, Glimm visited to give a talk on this bound,
sketching the strategy of their proof. After his talk, Lon and I cornered
Glimm and described the new proof. He seemed to have the same jaw-
dropping reaction I’d had. Euclidean Field Theory had arrived, but
at least six months late. Six months may not seem like a lot, but
in the next six and twelve and eighteen months, there was a flood of
new results that came from exploiting the Euclidean point of view (the
breathless pace is described in some detail in the introduction of [71]).

This is not the place to give a minicourse on Euclidean QFT, but
I’d like to make some general remarks to explain what Ed did.

Prior to Ed’s work, the usual way path integrals came in was to cut
off the field theory to get a finite-dimensional system, write down a
path integral for that, estimate, and try to get results that survived
removal of the cutoff. From my point of view, what Ed did first of all
was to view the free field semigroup as a positivity-preserving operator
on an infinite-dimensional space. Such a positivity condition allows one
to build up an abstract path integral which, for the free field, could be
written as an explicit Gaussian process. This process is formally an
analytic continuation of the quantum field from real time to imaginary
time, and the continuation of Minkowski invariance to the Gausssian
process is Euclidean invariance, that is, the process covariance C(x−y)
is invariant under rotations. Indeed, C is the integral kernel (Green’s
function) for (−∆ + m2)−1.

It turns out that the process Ed wrote down had been written down
somewhat earlier by Pitt [63] who discussed its properties as a multi-
parameter Markov process but didn’t consider any connection to QFT.

Ed’s proof of the linear lower bound depended on this Euclidean
invariance. First, let us describe the Feynman-Kac-Nelson formula,
the Feynman-Kac formula for this case.

Let H0 be a free quantum field Hamiltonian, Ω0 its ground state,
and V ≡ V (ϕ(x, 0)) as functions of the time zero fields. Then

〈F1(ϕ(x, 0))Ω0, e
−t(H0+V )F2(ϕ(x, 0))Ω0〉

=

∫
F1(ϕ(x, t))F2(ϕ(x, 0))e−

R t
0 V (ϕ(x,s)) ds dµ0

(15)

where µ0 is the Gaussian measure for the free Euclidean field. The
proof is by the Trotter product formula method of Nelson [53].

In particular, if V` ≡
∫ `/2

−`/2
F (ϕ(x, 0)) dx, where F (ϕ) is a local func-

tion of the field (think : ϕ4(x, 0) :) and H`(λ) = H0 + λV`, then Eu-
clidean invariance and (15) imply Nelson’s symmetry

Qt,`(λ) ≡ 〈Ω0, e
−tH`(λ)Ω0〉 = 〈Ω0, e

−`Ht(λ)Ω0〉. (16)
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To get the linear lower bound on

E`(λ) = inf spec(H`(λ)),

we need to use hypercontractivity, Ed’s earlier idea, and Hölder’s in-
equality in the FKN formula (15):

|〈F1Ω0, e
−tH`(λ)F2Ω0〉| ≤ 〈Ω0, e

−tH`(4λ)Ω0〉1/4〈|F1|4/3Ω0, e
−tH0|F2|4/3Ω0〉3/4

≤ Qt,`(4λ)1/4‖F1‖2‖F2‖2, (17)

where t is chosen so e−tH0 is a contraction from L4/3 to L4 (if e−sH0 is
a contraction from L2 to L4, by duality, it is a contraction from L4/3

to L2 and so e−2sH0 is a contraction from L4/3 to L4).
(17) says that

e−tE`(λ) ≤ Qt,`(4λ)1/4

= Q`,t(4λ)1/4 by (16)

≤ e−`Et(4λ)/4.

Thus

E`(λ) ≥ `

4t
Et(4λ),

which is the linear lower bound.
This is actually the hardest application of Nelson’s symmetry. What

Guerra shocked us with is actually much simpler! For any selfadjoint
operator, A, bounded from below, and any unit vector ϕ, we have

〈ϕ, e−tAϕ〉 =

∫ ∞

α

e−tx dµ(x)

for some α (= inf spec(A)) and probability measure, dµ. Hölder’s in-
equality thus implies

t → log〈ϕ, e−tAϕ〉
is convex. Since E` = − limt→∞ 1

t
Qt,` (we henceforth set λ ≡ 1 and

drop it!), we see, by Nelson’s symmetry, that ` → E` is concave. Con-
cave functions, g, with a linear lower bound always have that g(`)/`
has a finite limit, e∞, and g(`)− `e∞ is monotone, and so it also has a
limit! In this way, Guerra showed that the energy per unit volume and
the surface energy actually converged!

There is a postscript to Ed’s breakthrough, a final significant con-
tribution. Guerra, Rosen, and I realized that (15) made Euclidean
QFT look like classical statistical mechanics (at least for bosons). A
key tool in the rigorous statistical mechanics of the time were cor-
relation inequalities, starting with Griffiths [30]. It was natural to
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try to prove them in EQFT by approximating with a discrete sys-
tem. Since the free EQFT was the Gaussian process with covariance
(−∆ + m2)−1(x, y), it was natural to use a Gaussian lattice theory
with covariance (−∆δ + m2)−1

ij where ∆δ is a discrete Laplacian. In
the Gaussian measure, the inverse of covariance matrix appears, so
the Gaussian measure here has ∆δ in it, that is, nearest neighbor in-
teractions. So was born the lattice approximation [35]. Using ideas of
Ginibre [26] for general classes of spin systems, we could get correlation
inequalities for EQFT!

In the applications though, there was one catch. One of the nicest
applications of Griffiths’ work was the existence of the infinite volume
limit. A system of spins σj in volume ∧ with no spins outside ∧ has cor-
relations monotone in ∧, so a limit existed. Our problem was that the
δ ↓ 0 limit we could control was to the free, infinite volume (−∆+m2)−1

Gaussian process. The ∧ dependence was where the local interaction
was turned on. There was no monotonicity in ∧ in this limit.

We could follow Griffiths and take a sharp cutoff lattice theory, take
the limit for that as ∧ → ∞, and then hope to take δ ↓ 0, but the
lattice cutoff destroyed rotation symmetry.

Ed made a crucial remark. The finite ∧ theory with sharp cutoff
had a limit as δ ↓ 0. It was just a theory where the (−∆ + m2)−1

Gaussian process was replaced by (−∆∧ + m2)−1 with ∆∧ a Dirichlet
Laplacian! One needs to take a ∧-independent local interaction so
Wick order is done relative to ∆ not ∆∧ ([35] calls this “half-Dirichlet”
boundary conditions). With this remark, it was easy to get a Euclidean
invariant infinite volume limit, and so, using other ideas of Nelson
[59], the first interesting field theory obeying all the Wightman axioms
except perhaps uniqueness of the vacuum.

Many would have insisted on publishing this crucial remark in their
own name, but Ed urged us to use it and we, of course, acknowledged
his contribution. [61] does include this remark, but it is unclear from
the discussion there that the remark is due to Ed and not to GRS!

Kuhn [44] regards the hallmark of a scientific revolution as a change
of paradigm. The only way to think of the change in rigorous QFT
produced by Ed’s introduction of EQFT ideas is as such a change of
paradigm.

7. Some Concluding Remarks

Lipman Bers in the introduction to Löwner’s “Complete Works” [10]
described Löwner in a way that so accurately describes Ed Nelson that
I’ll quote it here: “. . . was a man whom everyone liked, perhaps because
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he was a man at peace with himself. He conducted a life-long passionate
love affair with mathematics, but was neither competitive, nor jealous,
nor vain. His kindness and generosity in scientific matters, to students
and colleagues alike, were proverbial. He seemed to be incapable of
malice. His manners were mild and even diffident, but those hid a will of
steel . . . But first and foremost, he was a mathematician.” Contemplate
how many really first-class mathematicians for whom one can say they
are “neither competitive, nor jealous, nor vain” and appreciate Ed for
who he is!
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Mathematicians, Birkhäuser, Boston, Mass., 1988.

[11] V. Betz, F. Hiroshima, J. Lörinczi, R.A. Minlos, and H. Spohn, Ground state
properties of the Nelson Hamiltonian: A Gibbs measure-based approach, Rev.
Math. Phys. 14 (2002), 173–198.

[12] R. Carmona, Schrödinger eigenstates, Comm. Math. Phys. 62 (1978), 97–106.
[13] M. Davidson, On the equivalence of quantum mechanics and a certain class

of Markov processes, J. Math. Phys. 19 (1978), 1975–1978.
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Birkhäuser, Boston, Mass., 1988.

[47] J. Lörinczi and R.A. Minlos, Gibbs measures for Brownian paths under the
effect of an external and a small pair potential, J. Statist. Phys. 105 (2001),
605–647.

[48] J. Lörinczi, R.A. Minlos, and H. Spohn, Infrared regular representation of
the three-dimensional massless Nelson model, Lett. Math. Phys. 59 (2002),
189–198.

[49] , The infrared behaviour in Nelson’s model of a quantum particle cou-
pled to a massless scalar field, Ann. Henri Poincaré 3 (2002), 269–295.
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