
STURM OSCILLATION AND COMPARISON
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BARRY SIMON

Abstract. This is a celebratory and pedagogical discussion of
Sturm oscillation theory. Included is the discussion of the differ-
ence equation case via determinants and a renormalized oscillation
theorem of Gesztesy, Teschl, and the author.

1. Introduction

Sturm’s greatest contribution is undoubtedly the introduction and
focus on Sturm-Liouville operators. But his mathematically deepest re-
sults are clearly the oscillation and comparison theorems. In [22, 23], he
discussed these results for Sturm-Liouville operators. There has been
speculation that in his unpublished papers he had the result also for
difference equations, since shortly before his work on Sturm-Liouville
operators, he was writing about zeros of polynomials, and there is a
brief note referring to a never published manuscript that suggests he
had a result for difference equations. Indeed, the Sturm oscillation
theorems for difference equations written in terms of orthogonal poly-
nomials are clearly related to Descartes’ theorem on zeros and sign
changes of coefficients.

In any event, the oscillation theorems for difference equations seem
to have appeared in print only in 1898 [2], and the usual proof given
these days is by linear interpolation and reduction to the ODE result.
One of our purposes here is to make propaganda for the approach
via determinants and orthogonal polynomials (see Section 2). Our
discussion in Section 3 and 4 is more standard ODE theory [3] — put
here to have a brief pedagogical discussion in one place. Section 5 makes
propaganda for what I regard as some interesting ideas of Gesztesy,
Teschl, and me [8]. Section 6 has three applications to illustrate the
scope of applicability.
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Our purpose here is celebratory and pedagogical, so we make sim-
plifying assumptions, such as only discussing bounded and continuous
perturbations. Standard modern techniques allow one to discuss much
more general perturbations, but this is not the place to make that
precise. And we look at Schrödinger operators, rather than the more
general Sturm-Liouville operators.

We study the ODE

Hu = −d2u

dx2
+ V u = Eu (1.1)

typically on [0, a] with u(0) = u(a) = 0 boundary conditions or on
[0,∞) with u(0) = 0 boundary conditions. The discrete analog is

(hu)n = anun+1 + bnun + an−1un−1 = Eu (1.2)

for n = 1, 2, . . . with u0 ≡ 0.

It is a pleasure to thank W. Amrein for the invitation to give this
talk and for organizing an interesting conference, Y. Last and G. Kilai
for the hospitality of Hebrew University where this paper was written,
and F. Gesztesy for useful comments.

2. Determinants, Orthogonal Polynomials, and Sturm

Theory for Difference Equations

Given a sequence of parameters a1, a2, . . . and b1, b2 for the difference
equation (1.2), we look at the fundamental solution, un(E), defined
recursively by u1(E) = 1 and

anun+1(E) + (bn − E)un(E) + an−1un−1(E) = 0 (2.1)

with u0 ≡ 0, so

un+1(E) = a−1
n (E − bn)un(E) − a−1

n an−1un−1(E) (2.2)

Clearly, (2.2) implies, by induction, that un+1 is a polynomial of degree
n with leading term (an . . . a1)

−1En. Thus, we define for n = 0, 1, 2, . . .

pn(E) = un+1(E) Pn(E) = (a1 . . . an)pn(E) (2.3)

Then (2.1) becomes

an+1pn+1(E) + (bn+1 − E)pn(E) + anpn−1(E) = 0 (2.4)

for n = 0, 1, 2, . . . . One also sees that

EPn(E) = Pn+1(E) + bn+1(E)Pn(E) + a2
nPn−1(E) (2.5)

We will eventually see pn are orthonormal polynomials for a suitable
measure on R and the Pn are what are known as monic orthogonal
polynomials.
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Let Jn be the finite n × n matrix

Jn =




b1 a1 0
a1 b2 a2

0 a2 b3
. . .

. . . . . . . . .
. . . bn−1 an−1

an−1 bn




Proposition 2.1. The eigenvalues of Jn are precisely the zeros of
pn(E). We have

Pn(E) = det(E − Jn) (2.6)

Proof. Let ϕ(E) be the vector ϕj(E) = pj−1(E), j = 1, . . . , n. Then
(2.1) implies

(Jn − E)ϕ(E) = −anpn(E)δn (2.7)

where δn is the vector (0, 0, . . . , 0, 1). Thus every zero of pn is an
eigenvalue of Jn. Conversely, if ϕ̃ is an eigenvector of Jn, then both
ϕ̃j and ϕj solve (2.2), so ϕ̃j = ϕ̃1ϕj(E). This implies that E is an
eigenvalue only if pn(E) is zero and that eigenvalues are simple.

Since Jn is real symmetric and eigenvalues are simple, pn(E) has n

distinct eigenvalues E
(n)
j , j = 1, . . . , n with E

(n)
j−1 < E

(n)
j . Thus, since

pn and Pn have the same zeros,

Pn(E) =
n∏

j=1

(E − E
(n)
j ) = det(E − Jn)

�
Proposition 2.2. (i) The eigenvalues of Jn and Jn+1 strictly inter-

lace, that is,

E
(n+1)
1 < E

(n)
1 < E

(n+1)
2 < · · · < E(n)

n < E
(n+1)
n+1 (2.8)

(ii) The zeros of pn(E) are simple, all real, and strictly interlace those
of pn+1(E).

Proof. (i) Jn is obtained from Jn+1 by restricting the quadratic form

u → 〈u, Jn+1u〉 to C
n, a subspace. It follows that E

(n+1)
1 =

minu,‖u‖=1〈u, Jn+1u〉 ≤ minu∈Cn,‖u‖=1〈u, Jn+1u〉 = E
(n)
1 . More gener-

ally, using that min-max principle

E
(n+1)
j = max

ϕ1,...,ϕj−1

min
‖u‖=1

u⊥ϕ1,...,ϕj−1

〈u, Jn+1u〉
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one sees that
E

(n)
j ≥ E

(n+1)
j

By replacing min’s with max’s,

E
(n)
j ≤ E

(n+1)
j+1

All that remains is to show that equality is impossible. If E0 ≡
E

(n)
j = E

(n+1)
j or E0 ≡ E

(n)
j = E

(n+1)
j , then pn+1(E0) = pn(E0) = 0.

By (2.4), this implies pn−1(E0) = 0 so, by induction, p0(E) = 0. But
p0 ≡ 1. Thus equality is impossible.

(ii) Given (2.6), a restatement of what we have proven about the
eigenvalues of Jn. �

Here is our first version of Sturm oscillation theorems:

Theorem 2.3. Suppose E0 is not an eigenvalue of Jk for k =
1, 2, . . . , n. Then

#(j | E
(n)
j > E0) = #{� = 1, . . . , n | sgn(P�−1(E0)) �= sgn(P�(E0))}

(2.9)

#(j | E
(n)
j < E0) = #{� = 1, . . . , n | sgn(P�−1(E0) = sgn(P�(E0))}

(2.10)

Proof. (2.9) clearly implies (2.10) since the sum of both sides of the
equalities is n. Thus we need only prove (2.9).

Suppose that E
(�)
1 < · · · < E

(�)
k < E0 < E

(�)
k+1 < E

(�)
n . By eigenvalue

interlacing, J�+1 has k eigenvalues in (−∞, E
(�)
k ) and n− k eigenvalues

in (E
(�)
k+1,∞). The question is whether the eigenvalue in (E

(�)
k , E

(�)
k+1)

lies above E0 or below. Since sgn det(E − J (�+1)) = (−1)#(j|E(�)
j >E0),

and similarly for J�+1, and there is at most one extra eigenvalue above
E0, we see

sgn P�(E0) = sgn P�+1(E0) ⇔ #(j | E
(�)
j > E0) = #(j | E

(�+1)
j > E0)

sgn P�(E0) = sgn P�+1(E0) ⇔ #j(| E
(�)
j > E0) + 1 = #(j | E

(�+1)
j > E0)

(2.9) follows from this by induction. �
We want to extend this in two ways. First, we can allow Pk(z0) = 0

for some k < n. In that case, by eigenvalue interlacing, it is easy to
see Jk+1 has one more eigenvalue than Jk−1 in (E0,∞) and also in
(−∞, E0), so sgn(Pk−1(z0)) = − sgn(Pk+1(z0)) (also evident from (2.5)
and Pk(z0) = 0). Thus we need to be sure to count the change of sign
from < 0, 0 to > 0, a as only a simple change of sign. We therefore
have
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Proposition 2.4. (2.9) and (2.10) remain true so long as Pn(E0) �= 0
so long as we define sgn(0) = 1. If Pn(E0) = 0, they remain true so
long as � = n is dropped from the right side.

One can summarize this result as follows: For x ∈ [0, n], define y(x)
by linear interpolation, that is,

x = [x] + (x) ⇒ y(x) = P[x] + (x)(P[x]+1 − P[x])

Then the number of eigenvalues of Jn above E is the number of zeros
of y(x,E) in [0, n). If we do the same for ỹ with P[x] replaced by

(−1)[x]P[x], then the number of eigenvalues below E is the number
of zeros of ỹ in [0, n). Some proofs (see [5]) of oscillation theory for
difference equations use y and mimic the continuum proof of the next
section.

The second extension involves infinite Jacobi matrices. In discussing
eigenvalues of an infinite J , domain issues arise if J is not bounded (if
the moment problem is not determinate, these are complicated issues;
see Simon [21]). Thus, let us suppose

sup
n

(|an| + |bn|) < ∞ (2.11)

If J is bounded, the quadratic form of Jn is a restriction of J to
C

n. As in the argument about eigenvalues interlacing, one shows that
if J has only N0 < ∞ eigenvalues in (E0,∞), then Jn has at most

N0 eigenvalues there. Put differently, if E
(∞)
1 > E

(∞)
2 > · · · are the

eigenvalues of J , E
(∞)
j ≥ E

(n)
j . Thus, if Nn(E) = # of eigenvalues

of Jn in (E,∞) and N∞ the dimension of Ran P(E,∞)(J), the spectral
projection

Nn(E) ≤ Nn+1(E) ≤ · · · ≤ N∞(E) (2.12)

On the other hand, suppose we can find an orthonormal set {ϕj}N
j=1

with M
(∞)
jk = 〈ϕj, Jϕk〉 = ejδjk and min(ej) = e0 > E0. If M

(n)
jk =

〈ϕj, Jnϕk〉, M (n) → M (∞), so for n large, M (n) ≥ min(ej)+
1
2
(e0−E0) >

E0. Thus Nn(E0) ≥ N for n large. It follows that lim Nn ≥ N∞, that
is, we have shown that N∞(E0) = limn→∞ Nn(E0). Thus,

Theorem 2.5. Let J be an infinite Jacobi matrix with (2.11). Then
(with sgn(0) = 1) we have

N∞(E0) = #{� = 1, 2, . . . | sgn(P�−1(E0)) �= sgn(P�(E0))}
(2.13)

dim P(−∞,E0)(J) = #{� = 1, 2, . . . | sgn(P�−1(E0)) = sgn(P�(E0))}
(2.14)
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Corollary 2.6. a− ≤ J ≤ a+ if and only if for all �,

P�(a+) > 0 and (−1)�P�(a−) > 0 (2.15)

While on the subject of determinants and Jacobi matrices, I would
be remiss if I did not make two further remarks.

Given (2.6), (2.5) is an interesting relation among determinants, and
you should not be surprised it has a determinantal proof. The matrix
Jn+1 has bn+1 and an in its bottom row. The minor of E − bn+1 in
E − Jn+1 is clearly det(E − Jn). A little thought shows the minor of
−an is −an det(E − Jn−1). Thus

det(E − Jn+1) = (E − bn+1) det(E − Jn) − a2
n det(E − Jn−1) (2.16)

which is just (2.5).
Secondly, one can look at determinants where we peel off the top

and left rather than the right and bottom. Let J (1), J (2) be the Jacobi
matrices obtained from J by removing the first row and column, the
first two, . . . . Making the J-dependence of Pn( · ) explicit, Cramer’s
rule implies

(z − Jn)−1
11 =

Pn−1(z, J
(1))

Pn(z, J)
(2.17)

In the OP literature, a−1
1 pn(z, J (1)) are called the second kind polyno-

mials.
The analog of (2.16) is

Pn(z, J) = (z − b1)Pn−1(z, J
(1)) − a2

1Pn−2(z, J
(2))

which, by (2.17), becomes

[(z − J)−1
11 ]−1 =

1

(z − b1) − a2
1(z − J

(1)
n−1)

−1
11

(2.18)

In particular, since dγ is the spectral measure of δ1, J , we have

(z − J)−1
11 =

∫
dγ(x)

z − x
≡ −m(z, J) (2.19)

and (2.18) becomes in the limit with (z − J (1))−1
11 → −m(z, J (1))

m(z; J) =
1

b1 − z − a2
1m(z; J (1))

(2.20)

(2.18) leads to a finite continued fraction expansion of (z − Jn)−1
11 due

to Jacobi, and (2.20) to the Stieltjes continued fraction. Sturm’s cel-
ebrated paper on zeros of polynomials is essentially also a continued
fraction expansion. It would be interesting to know how much Sturm
and Jacobi knew of each other’s work. Jacobi visited Paris in 1829 (see
James [10]), but I have no idea if he and Sturm met at that time.
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3. Sturm Theory of the Real Line

We will suppose V is a bounded function [0,∞). We are interested
in solutions of

−u′′ + V u = Eu (3.1)

for E real.

Theorem 3.1 (Sturm Comparison Theorem). For j = 1, 2, let uj be
not identically zero and solve −u′′

j + V uj = Ejuj. Suppose a < b,
u1(a) = u1(b) = 0 and E2 > E1. Then u2 has a zero in (a, b). If
E2 = E1 and u2(a) �= 0, then u2 has a zero in (a, b).

Proof. Define the Wronskian

W (x) = u′
1(x)u2(x) − u1(x)u′

2(x) (3.2)

Then
W ′(x) = (E2 − E1)u1(x)u2(x) (3.3)

Without loss, suppose a and b are successive zeros of u1. By changing
signs of u if need be, we can suppose u1 > 0 on (a, b) and u2 > 0 on
(a, a + ε) for some ε. Thus W (a) = u′

1(a)u2(a) ≥ 0 (and, in case
E1 = E2 and u2(a) �= 0, W (a) > 0). If u2 is nonvanishing in (a, b),

then u2 ≥ 0 there, so W (b) > 0 (if E2 > E1, (E2 − E1)
∫ b

a
u1u2 dx > 0,

and if E2 = E1 but u2(a) �= 0, W (a) > 0). Since W (b) = u′
1(b)u2(b)

with u′
1(b) < 0 and u2(b) ≥ 0, this is impossible. Thus we have the

result by contradiction. �
Corollary 3.2. Let u(x,E) be the solution of (3.1) with u(0, E) = 0,
u′(0, E) = 1. Let N(a,E) be the number of zeros of u(x,E) in (0, a).
Then, if E2 > E1, we have N(a,E2) ≥ N(a,E1) for all a.

Proof. If n = N(a,E1) and 0 < x1 < · · · < xn < a are
the zeros of u(x,E1), then, by the theorem, u(x,E2) has zeros in
(0, x1), (x1, x2), . . . , (xn−1, xn). �

This gives us the first version of the Sturm oscillation theorem:

Theorem 3.3. Let E0 < E1 < · · · be the eigenvalues of H ≡ − d2

dx2 +
V (x) on L2(0, a) with boundary conditions u(0) = u(a) = 0. Then
u(x,En) has exactly n zeros in (0, a).

Proof. If uk ≡ u( · , Ek) has m zeros x1 < x2 < · · ·xm in (0, a), then for
any E > Ek, u( · , E) has zeros in (0, x), . . . , (xm−1, xm), (xm, a) and so,
uk+1 has at least m + 1 zeros. It follows by induction that un has at
least n zeros, that is, m ≥ n.

Suppose un has m zeros x1 < · · · < xm in (0, a). Let v0, . . . , vm be
the function un restricted successively to (0, x1), (x1, x2), . . . , (xm, a).
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The v’s are continuous and piecewise C1 with v�(0) = v�(a) = 0. Thus
they lie in the quadratic form domain of H (see [16, 17] for discussions
of quadratic forms) and

〈vj, Hvk〉 =

∫ a

0

v′
jv

′
k +

∫ a

0

V vjvk

= δjkE

∫ a

0

v2
j dx (3.4)

since if j = k, we can integrate by parts and use −u′′ + V u = Eu.
It follows that for any v in the span of vj’s, 〈v,Hv〉 = E‖v‖2, so by

the variational principle, H has at least m+1 eigenvalues in (−∞, En),
that is, n + 1 ≥ m + 1. �

Remark. The second half of this argument is due to Courant-Hilbert
[4].

If we combine this result with Corollary 3.2, we immediately have:

Theorem 3.4 (Sturm Oscillation Theorem). The number of eigenval-
ues of H strictly below E is exactly the number of zeros of u(x,E) in
(0, a).

As in the discrete case, if Ha is − d2

dx2 + V (x) on [0, a] with u(0) =
u(a) = 0 boundary conditions and H∞ is the operator on L2(0,∞)
with u(0) = 0 boundary conditions, and if Na(E) = dim P(−∞,E)(Ha),
then Na(E) → N∞(E), so

Theorem 3.5. The number of eigenvalues of H∞ strictly below E,
more generally dim P(−∞,E)(H), is exactly the number of zeros of
u(x,E) in (0,∞).

There is another distinct approach, essentially Sturm’s approach in
[22], to Sturm theory on the real line that we should mention. Consider
zeros of u(x,E), that is, solutions of

u(x(E), E) = 0 (3.5)

u is a C1 function of x and E, and if u(x0, E) = 0, then u′(x0, E0) �= 0
(since u obeys a second-order ODE). Thus, by the implicit function
theorem, for E near E0, there is a unique solution, x(E), of (3.4) near
x0, and it obeys

dx

dE

∣∣∣∣
E0

= − ∂u/∂E

∂u/∂x

∣∣∣∣
x=x0,E=E0

(3.6)

Now, v ≡ ∂u/∂E obeys the equation

−v′′ + V v = Ev + u (3.7)
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by taking the derivative of −u′′ + V u = Eu. Multiply (3.7) by u and
integrate by parts from 0 to x0. Since v(0) = 0, there is no boundary
term at 0, but there is at x0, and we find

v(x0)u
′(x0) =

∫ x0

0

|u(x)|2 dx

Thus (3.6) becomes

dx0

dE
= −|u′(x0, E)|−2

∫ x0

0

|u(x,E)|2 dx < 0 (3.8)

Thus, as E increases, zeros of u move towards zero. This immedi-
ately implies the comparison theorem. Moreover, starting with un, the
(n + 1)-st eigenfunction at energy En, if it has m zeros in (0, a) as E
decreases from En to a value, E ′ below −‖V ‖∞ (where u(x,E ′) > 0
has no zeros in (0,∞)), the m zeros move out continuously, and so
u(a,E) = 0 exactly m times, that is, m = n. This proves the oscilla-
tion theorem.

4. Rotation Numbers and Oscillations

Take the solution u(x,E) of the last section and look at the point

π(x,E) =

(
u′(x,E)

u(x,E)

)

in R
2. π is never zero since u and u′ have no common zeros. At most

points in R
2, the argument of π, that is, the angle π makes with

(
1
0

)
,

can increase or decrease. u can wander around and around. But not at
points where u = 0. If u′ > 0 at such a point, π moves from the lower
right quadrant to the upper right, and similarly, if u′ < 0, it moves
from the upper left to lower left. Thus, since π starts at

(
1
0

)
, we see

Theorem 4.1. If u(x,E) has m zeros in (0, a), then Arg π(a,E) (de-
fined by continuity and Arg π(0, E) = 0) lies in (mπ

2
, (m + 1)π

2
].

If u and v are two solutions of −u′′ + V u = Eu with u(0) = 0,
v(0) �= 0, we can look at

π̃(x,E) =

(
u

v

)

π̃ is never zero since u and v are linear independent. W (x) = u′v−v′u is
a constant, say c. c �= 0 since u and v are linear independent. Suppose
c > 0. Then if u(x0) = 0, u′(x0) = c/v(x0) has the same sign as v(x0).
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So the above argument applies (if c < 0, there is winding in the (u, v)-
plane in the opposite direction). Rather than look at π̃, we can look
at ϕ = u + iv. Then u′v − vu′ = Im(ϕ̄ϕ′). Thus we have

Theorem 4.2. Let ϕ(x,E) obey −ϕ′′ + V ϕ = Eϕ and be complex-
valued with

Im(ϕ̄(0)ϕ′(0)) > 0 (4.1)

Suppose Re ϕ(0) = 0. Then, if Re ϕ has m zeros in (0, a), then
Arg(ϕ(a)) is in (mπ

2
, (m + 1)π

2
].

The ideas of this section are the basis of the relation of rotation
numbers and density of states used by Johnson-Moser [12] (see also
[11]). We will use them as the starting point of the next section.

5. Renormalized Oscillation Theory

Consider H = − d2

dx2 + V on [0,∞) with u(0) = 0 boundary condi-
tions where, as usual, for simplicity, we suppose that V is bounded.
By Theorem 3.5, dim P(−∞,E)(H) is the number of zeros of u(x,E)
in (0,∞). If we want to know dim P[E1,E2)(H), we can just subtract
the number of zeros of u(x,E1) on (0,∞) from those of u(x,E2). At
least, if dim P(−∞,E2)(H) is finite, one can count just by subtracting.
But if dim P(−∞,E1)(H) = ∞ while dim P[E1,E2) is finite, both u(x,E2)
and u(x,E1) have infinitely many zeros, and so subtraction requires
regularization.

One might hope that

dim P[E1,E2)(H) = lim
a→∞

(N(E2, a) − N(E1, a)) (5.1)

where N(E, a) is the number of zeros of u(x,E) in (0, a). This is
an approach of Hartmann [9]. (5.1) cannot literally be true since
N(E2, a) − N(E1, a) is an integer which clearly keeps changing when
one passes through a zero of u(x,E2) that is not also a zero of u(x,E1).
One can show that for a large, the absolute value of difference of the
two sides of (5.1) is at most one, but it is not obvious when one has
reached the asymptotic region.

Instead, we will describe an approach of Gesztesy, Simon, and Teschl
[8]; see Schmidt [19] for further discussion. Here it is for the half-line
(the theorem is true in much greater generality than V bounded and
there are whole-line results).

Theorem 5.1. Let V be bounded and let H = − d2

dx2 + V (x) on [0,∞)
with u(0) = 0 boundary conditions. Fix E1 < E2. Let

W (x) = u(x,E1)u
′(x,E2) − u′(x,E1)u(x,E2) (5.2)
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and let N be the number of zeros of W in (0,∞). Then

dim P(E1,E2)(H) = N (5.3)

The rest of this section will sketch the proof of this theorem under the
assumption that dim P(−∞,E2)(H) = ∞. This will allow a simplification
of the argument and covers cases of greatest interest. Following [8], we
will prove this in three steps:
(1) Prove the result in a finite interval [0, a] in case u(a,E2) = 0.
(2) Prove dim P(E1,E2)(H) ≤ N by limits from (1) when

dim P(−∞,E2)(H) = ∞.
(3) Prove dim P(E1,E2)(H) ≥ N by a variational argument.

Step 1. We use the rotation number picture of the last section. Define
the Prüfer angle θ(x,E) by

tan(θ(x,E)) =
u(x,E)

u′(x,E)
(5.4)

with θ(0, E) = 0 and θ continuous at points, x0, where u′(x0, E) = 0.
Using d

dy
tan y = 1 + tan2 y, we get

dθ

dx
=

(u′)2 − uu′′

u2 + (u′)2
(5.5)

Let θ1, θ2 be the Prüfer angles for u1(x) ≡ u(x,E1) and u2(x) ≡
u(x,E2). Suppose W (x0) = 0. This happens if and only if
u(x0, E)/u′(x0, E1) = u(x0, E2)/u

′(x0, E2), that is, θ2 = θ1 + kπ
with k ∈ Z. If it happens, we can multiply u2 by a constant so
u1(x0) = u2(x0), u′

1(x0) = u′
2(x0). Once we do that, (5.5) says

d

dx
(θ2 − θ1) =

(E2 − E1)u
2
1(x0)

u′
1(x0)2 + u2

1(x0)
> 0

Thus
θ1 = θ2 mod π ⇒ θ′2 > θ′1 (5.6)

Think of θ2 as a hare and θ1 as a tortoise running around a track
of length π. There are two rules in their race. They can each run
in either direction, except they can only pass the starting gate going
forward (i.e., θj = 0 mod π ⇒ θ′j > 0), and the hare can pass the
tortoise, not vice-versa (i.e., (5.6) holds).

Suppose Ha, the operator on (0, a) with u(0) = u(a) = 0 bound-
ary condition, has m eigenvalues below E2 and n below E1. Since
u(a,E2) = 0, θ2(a) = (m + 1)π, that is, at x = a, the hare makes
exactly m + 1 loops of the track. At x = a, the tortoise has made n
loops plus part, perhaps all, of an additional one. Since θ′2 − θ′1 > 0
at x = 0, the hare starts out ahead. Thus, the hare must overtake the
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tortoise exactly m−n times between 0 and a (if θ1(a) = (n+1)π, since
then θ′2 − θ′1 > 0 at x = 0, θ2 − (m + 1)π < θ1 − (n − 1)π, and x = a;
so it is still true that there are exactly m − n crossings). Thus

P(E1,E2)(Ha) = #{x0 ∈ (0, a) | W (x0) = 0} (5.7)

Step 2. Since dim P(−∞,E2)(H) = ∞, there is, by Theorem 3.5, an
infinite sequence a1 < a2 < · · · → ∞ so that u(aj, E2) = 0. Haj

→ H
in strong resolvent sense, so by a simple argument,

dim P(E1,E2)(H) ≤ lim inf dim P(E1,E2)(Ha)

= N (5.8)

with N the number of zeros of W in (0,∞). (5.8) comes from (5.7).

Step 3. Suppose N < ∞. Let 0 < x1 < · · · < xN be the zeros of W.
Define

ηj(x) =

{
u1(x) − γju2(x) 0 < x ≤ xj

0 x ≥ xj

(5.9)

η̃j(x) =

{
u1(x) + γju2(x) 0 < x < xj

0 x > xj

(5.10)

where uj(x) = u(x,Ej) and γj is chosen by

γj =

{
u1(xj)/u2(xj) if u(xj) �= 0

u′
1(xj)/u

′
2(xj) if u(xj) = 0

(5.11)

Since W (xj) = 0, ηj is a C1 function of compact support and piecewise
C2, and so in D(H). But η̃ is discontinuous.

We claim that if η is in the span of {ηj}N
j=1, then∥∥∥∥

(
H − E2 + E1

2

)
η

∥∥∥∥ =
|E2 − E1|

2
‖η‖ (5.12)

Moreover, such η’s are never a finite linear combination of eigenfunc-
tions of H. Accepting these two facts, we note that since the ηj are ob-
viously linear independent, (5.12) implies dim P(E1,E2)(H) ≥ N . This,
together with (5.8), proves the result.

To prove (5.12), we note that(
H − E2 + E1

2

)
ηj = −|E2 − E1|

2
η̃j (5.13)

Since η̃j is not C1 at xj, no η̃ is in D(H), hence no η can be in D(H2)
(so we get control of dim P(E1,E2)(H), not just dim P[E1,E2](H)).
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Next, note that since W ′(x) = (E2 − E1)u2u1, we have if W (xi) =
W (xi+1) = 0 that ∫ xi+1

xi

u1(x)u2(x) dx = 0

for i = 0, 1, 2, . . . , N where x0 = 0. Thus

〈ηi, ηj〉 = 〈η̃i, η̃j〉 (5.14)

since if i < j, the difference of the two sides is 2(γi +
γj)

∫ xj

xi
u1(x)u2(x) = 0. (5.14) and (5.13) implies (5.12). That com-

pletes the proof if N < ∞.
If N is infinite, pick 0 < x1 < · · · < xL successive zeros and deduce

dim P(E1,E2)(H) ≥ L for all L. �

6. Some Applications

We will consider three typical applications in this section: one clas-
sical (i.e., fifty years old!), one recent to difference equations, and one
of Theorem 5.1.

Application 1: Bargmann’s Bound. Let u obey −u′′ + V u = 0
with u(0) = 0 so, if V is bounded, u(x)/x has a finite limit as x ↓ 0.
Also suppose V ≤ 0.

Define m̃ = −u′/u so

m̃′ = |V | + m̃2 (6.1)

since −V = |V |. Thus m̃ is monotone increasing. It has a pole at each
zero, x0 = 0, x1, x2, . . . , x�, . . . of u. Define

b(x) = −xu′

u
= xm̃(x) (6.2)

Then b(x) has limit −1 as x ↓ 0 and

b′(x) = x|V | + (b + b2)

x
(6.3)

In particular,

−1 ≤ b ≤ 0 ⇒ b′(x) ≤ x|V | (6.4)

By the monotonicity of m̃, there are unique points 0 < z1 < x1 <
· · · < x�−1 < z� < x� where b� = 0, and since b → −∞ as x ↓ xj, there
are last points yj ⊂ [xj−1, zj] where b(y) = −1 for j = 2, 3, . . . , � and
at y1 = 0, b(0) = −1. Integrating b′ from yj to zj, using (6.4), we find∫ zj

yj

x|V (x)| dx ≥ 1
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so ∫ x�

0

x|V (x)| dx ≥ �

By the oscillation theorem, if N(V ) = dim P(−∞,0)(H), then

N(V ) ≤
∫ ∞

0

x|V (x)| dx (6.5)

This is Bargmann’s bound [1]. For further discussion, see Schmidt [20].

Application 2: Denisov-Rakhmanov Theorem. Rakhmanov [14,
15] (see also [13]) proved a deep theorem about orthogonal polynomials
on the unit circle that translates to

Rakhmanov’s Theorem. If J is an infinite Jacobi matrix , dµ =
f dx + dµs and f(x) > 0 and x ∈ [−2, 2] and supp(dµs) ⊂ [−2, 2] (i.e.,
spec(J) ⊂ [−2, 2]), then an → 1, bn → 0.

From the 1990’s, there was some interest in extending this to
the more general result, where spec(J) ⊂ [−2, 2] is replaced by
ess spec(J) ⊂ [−2, 2]. By using the ideas of the proof of Rakhmanov’s
theorem, one can prove:

Extended Rakhmanov Theorem. There exist C(ε) → 0 as ε ↓ 0
so that if dµ = f dx + du and f(x) > 0 a.e. x in [−2, 2] and spec(J) ⊂
[−2 − ε, 2 + C], then

lim sup(|an − 1| + |bn|) ≤ C(ε)

Here is how Denisov [6] used this to prove

Denisov-Rakhmanov Theorem. If dµ = f(x) dx + dµ0, f(x) > 0
a.e. x ∈ [−2, 2] and σess(J) ⊂ [−2, 2], then an → 1 and bn → 0.

His proof goes as follows. Fix ε. Since J has only finitely many
eigenvalues in [2+ε,∞), Pn(2+ε) has only finitely many sign changes.
Similarly, (−1)nPn(−2− ε) has only finitely many sign changes. Thus,
we can find N0 so Pn(2+ε) and (−1)nPn(−2−ε) both have fixed signs

if n > N0. Let ã, b̃ be given by

ãn = aN0+n b̃n = bN0+n

By a use of the comparison and oscillation theorems, J̃ has no eigenval-
ues in (−∞,−2− ε)∪ (2 + ε,∞). Thus, by the Extended Rakhmanov
Theorem,

lim sup(|an − 1| + |bn|) = lim sup(|ãn − 1| + |b̃n|) ≤ C(ε)

Since ε is arbitrary, the theorem is proven.
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Application 3: Teschl’s Proof of the Rofe-Beketov Theorem.
Let V0(x) be periodic and continuous. Let H0 = − d2

dx2 +V0 on L2(0,∞)
with u(0) = 0 boundary condition. Then

σess(H0) =
∞⋃

j=1

[aj, bj]

with bj < aj+1. (In some special cases, there is only a finite union with
one infinite interval.) (bj, aj+1) are called the gaps. In each gap, H0 has
either zero or one eigenvalue. Suppose X(x) → 0 as x → ∞, and let
H = H0+X. Since σess(H) = σess(H0), H also has gaps in its spectrum.
When is it true that each gap has at most finitely many eigenvalues?
Teschl [24, 25] has proven that if

∫ ∞
0

x|X(x)| dx < ∞, then for each j,
the Wronskian, w(x), of u(x, bj) and u(x, aj+1) has only finitely many
zeros. He does this by showing for H0 that |X(x)| → ∞ as x → ∞ and
by an ODE perturbation argument, this implies |w(x)| → ∞ for H.
Thus, by the results of Section 5, there are finitely many eigenvalues
in each gap.

It is easy to go from half-line results to whole-line results, so Teschl
proves if

∫ |x| |X(x)| dx < ∞, each gap has only finitely many eigenval-
ues.

This result was first proven by Rofe-Beketov [18] with another sim-
ple proof in Gesztesy-Simon [7]; see that later paper for additional
references. Teschl’s results are stated for the discrete (Jacobi) case
(and may be the first proof for the finite difference situation), but his
argument translates to the one above for Schrödinger operators.
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[13] A. Máté, P. Nevai, and V. Totik, Asymptotics for the ratio of leading co-
efficients of orthonormal polynomials on the unit circle, Constr. Approx. 1
(1985), 63–69.

[14] E.A. Rakhmanov, On the asymptotics of the ratio of orthogonal polynomials,
Math. USSR Sb. 32 (1977), 199–213.

[15] E.A. Rakhmanov, Asymptotic properties of polynomials orthogonal on the
circle with weights not satisfying the Szegő condition, Math. USSR-Sb. 58
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