SCHRODINGER OPERATORS
IN THE TWENTY-FIRST CENTURY

BARRY SIMON

1. INTRODUCTION

Yogi Berra is reputed to have said, “Prediction is difficult, especially
about the future.” Lists of open problems are typically lists of problems on
which you expect progress in a reasonable time scale and so they involve an
element of prediction.

We have seen remarkable progress in the past fifty years in our under-
standing of Schrédinger operators, as I discussed in Simon [1]. In this com-
panion piece, | present fifteen open problems. In 1984, I presented a list of
open problem in Mathematical Physics, including thirteen in Schrédinger
operators. Depending on how you count (since some are multiple), five have
been solved.

We will focus on two main areas: anomalous transport (Section 2) where
1 expect progress in my lifetime, and Coulomb energies where some of the
problems are so vast and so far from current technology that I do not expect
them to be solved in my lifetime. (There is a story behind the use of this
phrase. I have heard that when Jeans lectured in Gottingen around 1910 on
his conjecture on the number of nodes in a cavity, Hilbert remarked that it
was an interesting problem but it would not be solved in his lifetime. Two
years later, Hilbert’s own student, Weyl, solved the problem using in part
techniques pioneered by Hilbert. So I figure the use of that phrase is a good
jinx!)

In a final section, I present two other problems.

2. QUANTUM TRANSPORT AND ANOMALOUS SPECTRAL BEHAVIOR

For the past twenty-five years, a major thrust has involved the study
of Schriodinger operators with ergodic potentials and unexpected spectral
behavior of Schrodinger operators in slowly decaying potentials. (This is
discussed in Sections 5 and 7 of Simon [1].) The simplest models of ergodic
Schrodinger operators involve finite difference approximations. The first
is the prototypical random model and the second, the prototypical almost
periodic model.
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Example 2.1. (Anderson model) Let V,,(n) be a multisequence of indepen-
dent, identically distributed random variables with distribution uniform on
[a,b]. Here n € Z" is the multisequence label and w the stochastic label. On

02(7V), define
(hou)(n) = Y u(n + j) + Vu(n)u(n).

lil=1
Example 2.2. (Almost Mathieu equation) On ¢2(Z), define
(haxou)(n) =u(n+ 1) +u(n —1) + Acos(mran + 0)u(n).

Here a, A are fixed parameters where o is usually required to be irrational
and X\ is a coupling constant. 0 runs in [0,27) and plays a role similar to
the w of Example 2.1.

It is known that the Anderson model has spectrum [a — 2v, b + 2v] and
that if v = 1, the spectrum is dense pure point with probability 1, and if
v > 2, this is true if |b — al is large enough (we will not try to recount the
history here; see Simon [2] for proofs of these facts and some history) and
also there is some pure point spectrum near the edges of the spectrum when
|b — al is small.

Problem 1. (Extended states) Prove for v > 3 and suitable values of b —a
that the Anderson model has purely absolutely continuous spectrum in some
energy range.

This is the big kahuna of this area, the problem whose solution will make a
splash outside the field. In fact, just proving that there is any a.c. spectrum
will cause a big stir. The belief is that for |b—a| small, there is a subinterval
(¢,d) C [a—2v,b+ 2v] = 0(H,) on which the spectum is purely a.c. and
that on the complement of this interval, the spectrum is dense pure point.
As |b — a] increases beyond a critical value, |d — ¢| goes to zero.

Problem 2. (Localization in two dimensions) Prove that for v = 2, the
spectrum of the Anderson model is dense pure point for all values of b — a.

This is the general belief among physicists, although the claims for this
model have fluctuated in time.

Problem 3. (Quantum diffusion) Prove that for v > 3 and values of |b—a|
where there is a.c. spectrum that >, .. n%[e™H (n,0)|? grows as ct as t —
0.

That is, (z(t)?)1/2 ~ &t1/2. For scattering states, of course, the a.c. spec-
trum leads to ballistic behavior (i.e., (z(t)2)1/2 ~ ct) rather than diffusive
behavior. This problem is one of a large number of issues concerning the long
time dynamics of Schrédinger operators with unusual spectral properties.

An enormous amount is now known about the almost Mathieu model
whose study is a fascinating laboratory. I would mention three remaining
problems about it:
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Problem 4. (Ten Martini problem) Prove for all A # 0 and all irrational «
that spec(hqg,z,0) (which is € independent) is a Cantor set, that is, that it is
nowhere dense.

The problem name comes from an offer of Mark Kac. Bellissard-Simon [3]
proved the weak form of this for Baire generic pairs of (o, A). It would be
interesting to prove this even just at the self-dual point A = 2.

Problem 5. Prove for all irrational o and A = 2 that spec(hq,x¢) has
measure zero.

This is known (Last [4]) for all irrational o’s whose continued fraction
expansion has unbounded entries. But it is open for a the golden mean
which is the value with the most numerical evidence! To prove this, one will
need a new understanding of the problem.

Problem 6. Prove for all irrational o and A < 2 that the spectrum is purely
absolutely continuous.

It is known (Last [5], Gesztesy-Simon [6]) that the Lebesgue measure of
the a.c. spectrum is the same as the typical Lebesgue measure of the spec-
trum for all irrational & and A < 2. The result is known (Jitomirskaya [7]) for
all a’s with good Diophantine properties but is open for other a’s. One will
need a new understanding of a.c. spectrum to handle the case of Louiville
a’s.

While we have focused on the almost Mathieu equation, the general al-
most periodic problem needs more understanding. As for slowly decaying
potentials, I will mention two problems:

Problem 7. Do there exist potentials V(z) on [0,00) so that |V (x)| <
Clz|~1/27¢ for some & > 0 and so that —;i—i%—V has some singular continuous

spectrum.

It is known that such models always have a.c. spectrum on all of [0, c0)
(Remling [8], Christ-Kiselev [9], Deift-Killip [10], Killip [11]). It is also
known (Naboko [12], Simon [13]) that such models can also have dense
point spectrum. Can they have singular continuous spectrum as well?

Problem 8. Let V' be a function on R” which obeys
/|$|_”+1|V(az)|2d”$ < 00.

Prove that —A + V has a.c. spectrum of infinite multiplicity on [0, 00) if
v > 2.

If v = 1, this is the result of Deift-Killip [10] (see also Killip [11]). Their
result implies the conjecture in this problem for spherically symmetric po-
tentials (which is where the |z|“*! comes from).
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3. CouLOMB ENERGIES

The past thirty-five years have seen impressive development in the study
of energies of Schrodinger operators with Coulomb potentials (see Sections 9
and 11 of Simon [1] or the review of Lieb [14]) of which the high points were
stability of matter, the three-term asymptotics of the total binding energy
of a large atom, and some considerable information on how many electrons
a given nucleus can bind.

While these results involve deep mathematics, except for stability of mat-
ter, they are very remote from problems of real physics. Since one does not
often fully ionize an atom, total binding energies are not important, but
rather single ionization energies are. Understanding the binding energies of
atoms and molecules is a huge task for mathematical physics. The prob-
lems in this section may be signposts along the way. As we progress, the
problems will get less specific. We will deal throughout with fermion elec-
trons. 'H;N) will be the space of functions antisymmetric in spin and space
in L2(R3N; C2N).

Define H (N, Z) to be the Hamiltonian on Hy,

N
VA 1
S(-a-H )y

and
E(N, Z) = min H(N, Z).
Hy

No(Z) is defined to be the smallest value of N for which E(N + j, Z) =
E(N,Z) for j =1,2,3,.... Ruskai [15, 16] and Sigal [17, 18] showed such
an No(Z) exists. Lieb [19] showed that No(Z) < 2Z and Lieb et al. [20] that
N(Z)]Z — 1 as Z goes to infinity. By Zhislin [21], we know Ny(Z) > Z.
Problem 9. Prove that No(Z) — Z is bounded as Z — oc.

It is not an unreasonable conjecture that Ny(Z) is always either Z or
Z+ 1.
One has (see Simon [1] for detailed references)

E(Z) =min B(N, z) = aZ™3 + 022 + c2°3 + o(2°13),
but more physically significant is the ionization energy
(OEY(Z)=E(Z,Z—-1)—-E(Z,27).

Problem 10. What is the asymptotics of (0F)(Z) as Z — oco?

There is a closely related issue: to define a radius of an atom (perhaps
that R(Z) so that N — 1 electrons are within the ball of radius R) and
determine the asymptotics of R(Z).

Problem 11. Make mathematical sense of the shell model of an atom.
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This is a vague problem, but the issue is what does the most popular
model used by atomic physicists and chemical physicists have to do with
the exact quantum theory.

Here is an even vaguer problem:

Problem 12. Is there a mathematical sense in which one can justify from
first principles current techniques for determining molecular configurations?
Drug designers and others use computer programs that claim to determine
configurations of fairly large molecules. While one technique these programs
use is called ab initio, all that means is they use few parameter molecular
orbitals. This problem should be viewed as asking for some precise way to
go from fundamental quantum theory to configuration of macromolecules.

Finally,

Problem 13. Prove that the ground state of some neutral system of mole-
cules and electrons approaches a periodic limit as the number of nuclei goes
to infinity.

That is, prove crystals exist from first quantum principles.

4. OTHER PROBLEMS

Here are two final open problems:

Problem 14. Prove the integrated density of states, k(F), is continuous in
the energy.

For a definition of k(F), see Cycon et al. [22]. Continuity is known in
one dimension and for the discrete case, but has been open in the higher-
dimensional continuum case for over fifteen years.

Problem 15. Prove the Lieb-Thirring conjecture on their constants L.,
_ 1 3
forv=1and 5 <y <3.
L., is defined to be the smallest constant so that

Z |€j(V)|7 S L%V/dm‘v(l-)"yﬂ//Q dV,I’
J

where e;(V) is the jth negative eigenvalues of —A +V on L?(RY).

Here v > % in ¥ = 1 dimension and « > 0 in dimensions > 2. Two lower
bounds on L., can be computed the quasiclassical value L5} and the
best constant, LE?,P for one bound state (which is related to best constants
in Sobolev inequalities). For v = 1, Lieb-Thirring [23] conjectured

_ .C. Sob
L, = max(L35, L35))

which is LYy if v > % and Lg?yb if % <v< % The conjecture is known
to hold if v > 2 (Aizenman-Lieb [24]) and if v = } (Hundertmark-Lieb-
Thomas [25]). Also open is the best value of the constant if ¥ > 2 and
0 < < 3. It is known that if v > 8 and v = 0, L,,, > max(Ljy, L3%)
with strict inequality.
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