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1. INTRODUCTION

The twentieth century is the century of science. In a century that has seen
special and general relativity, quantum electrodynamics and chromodynam-
ics, a total revamping of our understanding of molecules and of the cosmos,
plate tectonics, and the rise of microbiology, one can make the case that
the most spectacular scientific development was the discovery of nonrela-
tivistic quantum mechanics in the first quarter of the century. Its aftermath
not only changed the physicist’s view of matter but it set the stage for the
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revolutions in chemistry, our understanding of stars, biology, and practical
electronics.

In what is one of the more striking cases of serendipity, just as Heisenberg
and Schrodinger were discovering the “new” quantum theory, von Neumann
was developing the theory of unbounded self-adjoint operators and Weyl the
representations of compact Lie groups two subjects of great relevance to
the mathematics underlying nonrelativistic quantum mechanics. In short
order they produced books (von Neumann [271] and Weyl [275]) that used
this mathematics to give a mathematical foundation to the framework of
quantum mechanics. With later additions, notably by Bargmann, Wigner,
and Mackey, the basic foundations are mathematically firm.

This is analogous to having formulated classical mechanics as Hamilton-
ian flows on symplectic manifolds. What remains is what might be called
the second-level foundations—existence of solutions of the time-dependent
Schrodinger equation (which is equivalent to self-adjointness of these opera-
tors) and general qualitative issues in dynamics. It is this subject, essentially
born fifty years ago, that I will review here. The subject matter is vast with
hundreds of contributors and thousands of papers. Each section of this pa-
per is a proxy for what deserves a book or at least a very long review article.
In attempting to overview such a vast area in a few pages, I have had to
focus on the high points. No proofs are given and I have settled for usually
quoting the initial or especially significant papers. I have no doubt that I
have left out some important papers, and if so, I ask the forgiveness of the
reader (and their authors!).

To keep this paper a reasonable size, I have focused almost entirely on
the general basics of Schrodinger operators and some simple applications
to atomic and molecular Hamiltonians. That means, among other areas,
I haven’t considered general second-order operators on R™ and on general
manifolds (but see Davies-Safarov [57], Davies [55], and Kenig [154]) nor
have I considered some of the detailed papers on perturbations of Hamiltoni-
ans with periodic potential (see, e.g., Deift-Hempel [58] and Gesztesy-Simon
[91]) nor the extensive literature on Dirac operators nor the considerable
work on Schrodinger operators in a bounded region with some boundary
conditions including subtle results on what happens at irregular boundary
points (see Davies [55]) nor the results on phenomena like the quantum Hall
effect that apply and extend the general theory to results in condensed mat-
ter physics. While there are a few results about —A + V' for cases where
V(x) — oo as |x| — oo, again there is a large literature we won’t attempt
to review. While Section 10 has a brief discussion of constant magnetic
field, we have not attempted to discuss the recent extensive literature on
nonconstant magnetic fields.

There is a companion piece to this one on open problems (Simon [260]).

I would like to thank Michael Aizenman, Brian Davies, Percy Deift, Fritz
Gesztesy, Dirk Hundertmark, Walter Hunziker, and Rowan Killip for useful
input.
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2. MATHEMATICAL TOOLS AND ISSUES

The mathematics most relevant to the modern theory of Schrodinger op-
erators is functional, real, harmonic, and complex analysis. In this section,
we will briefly set the stage to fix notation. For more details, see Reed-Simon
214, 211].

Quantum Hamiltonians are unbounded operators, defined on a dense sub-
space rather than the whole Hilbert space. Physics books tend to em-
phasize the symmetry (“Hermiticity”) of the Hamiltonian; that is, that
(Hp, ) = (@, H) for all ¢, in D(H). But more important is a prop-
erty called self-adjointness. The adjoint H* of an operator H is defined to
be the maximal operator so that (H*p,v) = (¢, HY) for all ¢» € D(H),
¢ € D(H*). Hermiticity says only that H* is an extension of H.

We say H is self-adjoint if H = H*, H is called essentially self-adjoint if
and only if H is symmetric and has a unique self-adjoint extension. This
holds if and only if H* is self-adjoint. Self-adjointness is important in the
first place because if H is self-adjoint, one can form the unitary group e "
and so solve i ¢y = Hopy (as o = e~ o) for initial conditions ¢ € D(H).
Indeed, Stone’s theorem says that any one-parameter continuous unitary
group is associated to a self-adjoint operator. Secondly, self-adjointness
implies the spectral theorem. There is for each Borel set A C R, a projection,
Es(H),so that H = [AdEy and e=" = [e7"* dE,. One defines spectral

measures d ,ug by

pl (A) = (¢, EA(H)p) (2.1)
so that
[ et = o) (2.2)
and
dp (N)

[522 -2, (23)

o(H), the spectrum of H is precisely, U, Supp(d,ug).
Much of what we discuss in this paper involves two distinct decomposi-
tions of the spectrum of H. The first is

odgisc(H) = {\ | A is an eigenvalue of finite multiplicity
and an isolated point of o(H)}
Uess(H) = U(H)\UdiSC(H)'
Equivalently, A € oqisc(H) if and only if for some € > 0, dim E(y_. y1.)(H)
is finite and for all € > 0, E(\_c x4¢)(H) # 0. 04isc(H) captures the notion
of bound states.

The second breakup involves the fact that any measure dy on R has a
decomposition

dp = dppp + dptac + dpisc,
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where djipp, is a pure point measure (sum of delta functions), dpuac is F'(X) dA,
with F' a nonnegative locally integrable density, and dusg. is a singular con-
tinuous measure (like the Cantor measure). 1 will define op,(H) to be the
set of eigenvalues of H; it is not the union of the supports of u,, because it
may not be closed

Oac(H) = U Supp(dﬂg)ac
v

USC(H) = U SUPP(dMg)sc-
®

One often defines a refined set ,. with X, = 0ac(H), the essential sup-
port of the a.c. measure. Basically, the essential support of the a.c. measure
F(A)dXis {\ | F(X\) # 0}. It is defined modulo sets of Lebesgue measure
zero. Y, is the union of the essential support of (d,ug )ac OVer a countable
dense set of ¢’s.

3. SELF-ADJOINTNESS

The theory of Schrodinger operators was born with Kato’s famous self-
adjointness theorem for atomic Hamiltonians. His theorem abstracted says
the following:

Theorem 3.1. (Kato [144]) Let H = L*(R3N) where x € R3N is written
(1,...,2N) with x; € R3. Let A; be the Laplacian in x; and let V;, Vi; be
functions on R? in L?(R3) + L>®(R?). Let

N
Hy=— Z<2M)_1Ai (3.1)
Nz:l
V=> Vi) + > Vilai — ;) (3.2)
i=1 i<j

and let H = Ho+ V. Then H defined on D(Hy) is self-adjoint and is
essentially self-adjoint on Cg°(R3V).

Remarks. 1. See Reed-Simon [211] for a proof.

2. The basic idea of the proof is a perturbation theoretic one. There
is a general theorem (the Kato-Rellich theorem) that if A is a self-adjoint
operator and B is a symmetric operator with D(B) D D(A) and for some
a<1land 8 >0 andall ¢ € D(A), that

1Bl < af Apll + Bllel], (3.3)

then A+ B is self-adjoint on D(A) and essentially self-adjoint on any domain
of essential self-adjointness for A. If (3.3) holds, we will say B is A-bounded.
The infimum over all « is called the relative bound of B with respect to A.
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3. If one looks at a general bound of type (3.3) with @ < 1 where A = —A

on L?*(R¥) and B is multiplication by V, then in terms of requirements that
V e LF (RF), one needs

loc
p>2 k=1,2,3 (3.4a)
p>2 k=4 (3.4b)
p>%  k>5 (3.4c)

by using Sobolev estimates (see, e.g., Cycon et al. [53])

4. If k = 3N and we use only the L? requirements of Remark 3, Coulomb
potentials stop working already at N = 2. Thus, for Kato’s theorem, it is
critical to use Sobolev estimates in subsets of variables as Kato did.

An industry developed in understanding when —A + V' is essentially self-
adjoint on C§°(R™). An illustrative example is

Example. Let H = —A — ¢z 2 on C§°(RF) with n > 5 (needed for Hy €
L2 for all ¢ € C3°(R¥)). Then it can be seen (Reed-Simon [211, Example 4

in Section X.2]) that if ¢ > ¢y = @, then H is not self-adjoint on C§°.
This is a quantum analog of the classical fact that if V = —c|z|~2 for any

¢ > 0, a set of initial conditions of positive measure falls into x = 0 in finite
time (co > 0 is a reflection of an uncertainly principle repulsion).

This example shows that for pure L? requirements, one cannot do better
than (3.4) since |z[~2 € LP + L™ if p < £. But it turns out this is only so
if V' is allowed to have any sign. For V' > 0, one can do much better. The
best result of this genre is

Theorem 3.2. (Leinfelder-Simader [173]) Let V. > 0, V € L2 _(RF),

loc
{aj};?:l € L (R¥) with V -a € L2 _(R¥) (distributional derivatives). Then

k
H = Z(Zaj — aj)2 +V (35)

j=1
is essentially self-adjoint on C§°(RF).

Remarks. 1. For a proof, see Cycon et al. [53].

2. This is essentially a best possible result. If a = 0, H is defined on
Cg° if and only if V € L12oc§ so the result says for positive V, we have
essential self-adjointness if and only if H is defined. Similarly, unless there
are cancellations, a; € Lfoc and V.a € L120c is required for H to be defined
on C§°.

3. It was Simon [239] who first realized that for V' > 0, there only
needed to be local L? conditions. However, he required a global condition
J |V (z)|2e 7" dz < oo for some b > 0. It was Kato [152] who proved the
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general a = 0 result (and also allowed for smooth a’s). Kato’s paper used
the distributional inequality, now called Kato’s inequality

Alu| > Re(sgnuAu) (3.6)

that is also critical to the Leinfelder-Simader proof.

4. (3.6) is essentially equivalent to the fact that e® is positivity preserv-
ing. The version of (3.6) with magnetic fields is equivalent to diamagnetic
inequalities:

(™) ()] < () () (3.7)

for the H of (3.5) (with V' > 0). These ideas were discovered by Nelson
[198], Simon [241, 247], and Hess-Schrader-Uhlenbrock [119].

While there are best possible self-adjointness results for magnetic fields
and positive potentials, the results for V’s which can be negative are not in
such a definitive form. All the basic principles are understood but I'm not
aware of a single result that puts them all together (one of the best results
is in Kato’s paper [151] although, as we will see, it is not quite optimal with
regard to local singularities). So I will present the general principles that
are understood in this case.

(a) —|z|? borderline for behavior at infinity. Negative potentials V' of com-
pact support for which H = —A 4V is essentially self-adjoint on C§° nor-
mally obey a global estimate of the form (3.3) (with A = —A, B = V)
and, in particular, H is bounded from below. However, if V' is not of com-
pact support, it can go to minus infinity at infinity without destroying self-
adjointness. More or less, the borderline for keeping self-adjointness is —|x|2.
For example, it can be proven (see, e.g., Reed-Simon [211, Theorem X.9])
that _d% — |2]® on L?(—o0, 00) is essentially self-adjoint on C5°(—o0, 0o)
if and only if a < 2. This is attractive since a classical particle with the
same potential reaches infinity in finite time if and only if @ > 2. Nelson
has examples (see Reed-Simon [211], p. 156) of V (z) with V(z) < —cz? so
—% + V(z) is still essentially self-adjoint and thus, the borderline won’t
be if and only if, but the general version of this is that if V(z) > —c2? in
some averaged sense, then —A+ V' (z) will be essentially self-adjoint on C§°.
The earliest version of this is Ikebe-Kato [130]. My favorite theorem of this
genre is due to Faris and Lavine [80] (see Reed-Simon [211, Theorem X.38]).
In particular, Stark Hamiltonians where V = ¢ - Z + V| are essentially self-
adjoint for suitable V. In any event, I will focus henceforth on cases where
—A 4 V is not unbounded from below.

(b) Stability of relative boundedness under adding V' > 0 or a magnetic field.
Suppose A > 0. Then (3.3) holds for some a < 1 if and only if

Tim |BA+9)7 < 1.
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On the other hand, (3.7) implies that for V' > 0, any @ and any multiplication
operator W:

IW(H +7) 7 < WA+~

and so the second principle is that in studying the negative part of V., one can
assume V' is negative and then add back an arbitrary positive L120c positive V.
While this is true, it ignores situations where there are cancellations between
the positive and negative parts which can occur (see, e.g., Combescure-
Ginibre [48]).

(¢) Relative bounds need only hold uniformly locally. The following proposi-
tion holds:

Proposition 3.3. Suppose V is a function on R? so that for some a, 3 and
every y,

IVx(- = y)ell < all = Agll + Bllell; (3.8)

where X is the characteristic function of the unit cube. Then for any & > a,
there is some 3 so that

Vel < all — Al + Bllll. (3.9)

This result is proven by a variant of an idea of Sigal [231]. Find a “par-
tition of unity” {j,}, so that Zjﬁ =1, each j, is supported in some unit
cube (so jux(- —y,) = ju for some j,), and the j,’s are locally finite,

Z(ﬁju)2 is uniformly bounded (the j,’s can be translates of a single j,)
and ) |Aj,| is uniformly bounded. If Hy = —A, we have (where C is related

60 (| 32(V5)?lloe and || 35(Ag) o)

> s L H3l) < C(Ho +1)
m
and from this that

> I Hojuell? < (1+ &)l Hogll* + Cellell*. (3.10)
Thus

Vel = > IVx(- — yu)iuel®
m

< (1+e)a?) [[Hojawll? + (1 +e B 0l®  (by (3.8)
I

< (1+€)%a®||Hopl” + (1 +e71)8% + C)llpl*  (by (3.10)

which yields (3.9).
Proposition 3.3 says that the proper condition on V to yield a —A bound
is a uniform local condition.

(d) Convolution results are the proper local condition. As discussed earlier,
LP conditions on V' do not properly control functions on subspaces. Explic-
itly, let 7 : R¥ — R’ be a projection and V (z) = W (w(z)). Then for V to
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Q o )4 4
be —A bounded (assuming k > ¢ > 5), we need W € L{ (R") for p > 5

loc
and so V € LY (R¥) with p > £. But if V is not a function of a subset
of variables, in general we need p > % It is a discovery of Stummel [262]
that by stating conditions in terms of convolution estimates, one can find
conditions that respect subsets of variables. In particular, the following is a
space, Sy, introduced in Stummel [262]: Let V be a function on RY; we say
V € S, if and only if

lim [sup/ lz — y[*|V (y)? d”y] =0 ifvr>5
0L = Jjz—y|<a

lim [sup/ In(|z — y|1)|V(y)|2d”y] =0 ifv=4
0l 2 Jiz—y|<a

sup/ V(y)?dy < oo ifv <3.
z J|z—y|<1

This class respects functions of subvariables in the sense that if 7 : R¥ —
R? is a projection, V(z) = W (m(z)) and W € S, then V € Sj. Moreover,
it is not hard to show (see, e.g., Cycon et al. [53]) that if V € S, then V
is —A-bounded with relative bound zero. Moreover (see Cycon et al. [53],
Thm. 1.9), if for some a,b > 0 and § with 0 <6 <1 and all 0 <& < 1 and
¢ € D(Hy)

IVell? < el Apll? + aexp(be)lloll?, (3.11)
then V is in S,. See Schechter [226] for more on Stummel conditions.

(3) The Kato class and going beyond relative boundedness. In his inequality
paper [152], Kato introduced a form analog, K,, of S,: Let V be a function
on R”; we say V' € K, if and only if

lim [sup/ lz —y> |V (y)| d”y] =0 ifvr>3 (3.12a)
o0l 2 Jz—y|<a
lim [Sup/ In(|z —y| " H|V(y)| d”y] =0 ifv=2 (3.12Db)
a0l @ Jjz—yl<a
sup/ V(y)|d'y <oo ifv=1. (3.12¢)
v Jjz—yl<1

Then Kato [151] proved if max(—V,0) € K, and V € L (R), then —A+
V' is essentially self-adjoint on C3°(R”). While it is not Kato’s proof, this is
intimately connected with the semigroup result discussed in the next section.
Defining the form sum, H, one knows exp(—tH) : L? — L™® so L>® N L?N
D(H) is a domain of essential self-adjointness. It is not hard to then show
LF N D(H), the L* functions of compact support are a domain of essential

self-adjointness. Then convolution allows one to get C§° approximations.

(f) Logarithmic improvements. Neither S, nor K, is quite the ideal space
for essential self-adjointness. For example, if v > 5 and V(x) = |z|2(1 +



SCHRODINGER OPERATORS IN THE TWENTIETH CENTURY 9

|log|z| )™, V is in K, only if @ > 1, in S, only if @ > 1, but —A-bounded
with relative bound zero if a > 0.

Analogous to the issue of self-adjointness is a question of whether maximal
and minimal forms agree. This is discussed in Kato [152] and Simon [248§]
(see Thm. 1.13 in Cycon et al. [53]).

4. PROPERTIES OF EIGENFUNCTIONS, GREEN’S FUNCTIONS,
SEMIGROUPS, AND ALL THAT

I wrote a long review of these subjects twenty years ago (Simon [250])
and the situation has hardly changed since then, although there has been
extensive interesting work on what happens for general elliptic operators
and for bounded regions (see, e.g., Davies [55]). So it will suffice to hit a
few major themes. The basic theorem is

Theorem 4.1. Let Vi € L (RY) and V_ € K,, the space of (3.12). Let
H=—-A+YV as a form sum. Then for any p < q, e " maps LP to LT and
fort <1,

le™ |l < Ct7, (4.1)

az%(%—é) . (4.2)

Remarks. 1. Semigroup LP bounds were first found by Davies [54], Herbst-
Sloan [118], and Kovalenko-Semenov [161] with further developments by
Carmona [41], Simon [246], and Aizenman-Simon [12].

where

2. In particular, it was Aizenman-Simon [12] who found that K, is the
natural class for LP bounds. Indeed, they not only proved Theorem 4.1 in
this form but also showed that if V' < 0 and exp(—tH) maps L to itself
with limg o |le 7 ||oo,00 = 1, then V € K,,.

3. The result holds when magnetic fields are added (by a diamagnetic
inequality).

4. Most of these authors use a combination of path integral estimates
and LP-interpolation theory. In particular, the Feynman-Kac and Feynman-
Kac-It6 formulae (see Simon [246] for extensive discussion) are useful tools
in studying Schrodinger operators. See Simon [259] for an extension to cases
when V (z) > —ca?.

5. In fact, e "7 takes LP not only into L> but into the continuous
functions (see Simon [250, Thm. B.3.1]).

6. (4.1)/(4.2) are precisely the best results for H = —A.

7. This theorem says that H can be defined as the generator of a semi-
group on each L? space. The spectrum has been shown to be LP independent
in Hempel-Voight [113]. For a general discussion of LP Schrédinger opera-
tors, see Davies [56].
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Once one has these estimates, they can be used to derive:

(a) Sobolev estimates: As in the free case if V obeys the conditions of
Theorem 4.1, then (H — z)™" takes LP to L7 if

p g l< (2_(1) . (4.3)

v

The result (see Simon [250, Thm. B.2.1], ) is obtained by integrating

the semigroup bound. (4.3) comes from (4.2) and the requirement of
integrability at ¢ = 0.

(b) Integral kernels: Bounded operators from L' to L° have bounded
integral kernels and so Theorem 4.1 can be used (see Simon [250,
Thm. B.7.1]) to prove e *#, (H — z)™® (a > %) are integral opera-
tors with continuous integral kernels. One can also show (Simon [250,
Thm. B.7.2]) that for 0 < a < &, (H — 2z)~* is an integral operator
with an integral kernel that is continuous away from z = y with a
precise singularity at = = y.

(¢) Eigenfunctions: Since global eigenfunctions (i.e., ¢ € L? that obey
Hy = Ep) are in Ran(e™*?), Theorem 4.1 implies such eigenfunctions
are in L*°. In fact, all this can be done locally. Any eigenfunction
(distributional solution of Hyp = E¢) is automatically continuous and
one can prove Harnack inequalities and subsolution estimates. This is
discussed in detail in Aizenman-Simon [12] and Simon [250].

We end this section with a discussion of some issues involving eigen-
functions. There is a huge literature on when Schrodinger operators have
positive solutions. This was begun by Allegretto [13] and Piepenbrink [206]
with later results by Agmon [5] and Pinchover [207].

Here is a typical theorem (Simon [250, Thm. C.8.1]):

Theorem 4.2. Let V. € K, and K, € K°°. Then Hu = Eu has a
nonzero distributional solution which is everywhere positive if and only if
inf spec(H) > E.

There is also a huge literature on the issue of exponential decay of eigen-
functions. One result (see Simon [250, Thm. C.3.1]) says that any L? eigen-
function actually goes to zero pointwise—of interest only for eigenfunctions
of embedded eigenvalues. For discrete spectrum, the decay is at least expo-
nential under minimal regularity hypothesis on V. The original key papers
on this theme are by O’Connor [200] and Combes-Thomas [47]. From their
ideas, one obtains (see Section C.3 of Simon [250]);

Theorem 4.3. Let V. € K,, Vi, € K¢ and let H = —A +V and let
Hu = Eu with u € L%. Then

lu(z)] < Ce=All, (4.4)

where:
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(i) For general E in the discrete spectrum, (4.4) holds for some A > 0 and
C>0.
(ii) If H has compact resolvent, then (4.4) holds in the sense for any A > 0,
there is a suitable C' > 0.
(iii) If Yess = inf oess(H) and E < Yess, then (4.4) holds in the sense that
for any A < JE — Yess, there is a suitable C > 0.

One can go beyond this to get fairly detailed behavior on decay in cases
when H has compact resolvent or for N-body potentials. In one dimension,
one can justify under some regularity conditions the WKB formula that says
when V(z) — oo, eigenfunctions decay like

V(z) M *exp (— / ' VV(y) —E dy>. (4.5)

It was Agmon [4] who realized the proper higher-dimensional analog for
this involves what is now called the Agmon metric: p(z) is the geodesic
distance of z to 0 in the Riemannian metric p;;(z) = §;;(V(z) — E) 4+ d*z.
There is a related but more subtle definition for N-body systems. See Agmon
[4] and Deift et al. [59] for further discussions. See Simon [253] and Helffer-
Sjostrand [111] for an application to tunnelling probabilities.

Eigenfunctions play a critical role in explicit spectral representations of
Schrodinger operators. The basic ideas go back to work of Browder [39],
Garding [88], Gel'fand [89], Kac [137], and especially Berezanskii [29, 30].
See Section C.5 of Simon [250] and Last-Simon [170] for some addditional
one-dimensional results.

Finally, we mention issues of cusps and nodes of eigenfunctions. Kato
[148] has a famous paper on cusps at Coulomb singularities for atomic
eigenfunctions. See Hoffmann-Ostenhof et al. [108, 120, 121] for recent
developments in this area.

5. ONE-DIMENSIONAL DECAYING POTENTIALS

One-dimensional Schrédinger operators
d2

on L?(—o00,00) and L?(0, 00) and their discrete analogs
hu(n) =u(n+1) +u(n — 1)+ V(u)u(n) (5.2)

on £?(—o00, 00) and 20, 00) have been heavily studied for two reasons. First,
ODE/difference equation methods allow one to study them in much greater
detail than one can the higher-dimensional analogs. Second, if V(x) =
V(]z|) is a spherically symmetric function on R, then —A + V' is unitarily
equivalent to a direct sum of operators on L?(0, c0) or the form (5.1) where
the effective Vs have the form V(x) = k¢|z| "2+ V (x) for suitable x,’s. The
details can be found, for example, in Reed-Simon [211], Example 4 to the
Appendix for X.1.
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The one-dimensional theory has been in and out of vogue. It was exten-
sively studied from 1930 1950 with important contributions by Titchmarsh,
Kodaira, Gel’fand, Hartman-Wintner, Levinson, Coddington-Levinson, and
Jost. Significant developments during the next twenty-five years were mainly
in the area of inverse spectral theory (a major exception was Weidmann’s
work [273], to be discussed shortly) which will be discussed in Section 6
below. From about 1975 starting with work of Goldsheid, Molchanov, and
Pastur [98] and Pearson [204], this has been an active area with extensive
study of the one-dimensional case, especially with long-range and with er-
godic potentials.

One special feature of one dimension is that one can limit spectral multi-
plicities under very general conditions on V:

Theorem 5.1. (a) Let H = —% + V(x) on L*(0,00) with fized hu(0) +
u'(0) = 0 boundary conditions and suppose H is essentially self-adjoint on
C3°[0,00). Then H has simple spectrum (multiplicity 1).
(b) Let H = _d%c_é + V(x) on L?*(—o0,00) and suppose H is essentially
self-adjoint on C§°(—o0, 00). Then
(i) The a.c. spectrum of H is of multiplicty at most 2.
(ii) The singular spectrum of H is of multiplicity 1.

Remarks. 1. All one needs for local regularity of V is V' € L0, R] for all
R>0or L{ (—o00, ).
2. The result holds even if H is not essentially self-adjoint (V' limit circle

at +00) so long as a boundary condition is imposed at oo or at —oo.

3. The only subtle part of the result is that the s.c. spectrum is simple
on the real line. This is a theorem of Kac [138, 139]; see also Berezanskii
[29, 30]. My preferred proof is due to Gilbert [95, 96].

In this section, we will discuss the case where V(z) — 0 at infinity. In
the next section, we will discuss inverse spectral theory, and in the section
after that, we will discuss ergodic potentials. (These two subjects are mainly
one-dimensional.) The issue of the asymptotic eigenvalue distribution when
V — 00 as oo is discussed in Section 14 on the quasiclassical limit.

This section will discuss (5.1)/(5.2) in situations where V(x) (or V(n))
goes to zero (at least in an average sense) as x — oo (or n — 00). The in-
teresting thing is that there are three natural breaks in behavior. Expressed
in terms of ||~ behavior, they are

(i) At o = 2, we shift between a finite number of bound states (a > 2) or
an infinite number (a < 2) at least if V' (z) < 0.

(i) At @ = 1 (V € L), we shift between a pure scattering situation for
positive energies (o > 1) and the possibility of positive energy bound
states (a < 1).

(iii) At @ = 3, (V € L?), we shift from there being a.c. spectrum for
a.e. positive energy (a > %) to at least the possibility of very different
spectrum.
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(i) and (ii) have been known since the earliest days of quantum mechanics.
1

The a = 5 borderline first occurred in Simon [251] who found that random
decay potentials had point spectrum when a < % Delyon, Simon, and
Souillard [64] then showed if o = %, there may be some nonpoint spectrum.
As we will see, subsequent results confirmed this borderline.

The negative spectrum for decaying potentials is easy: So long as
ff“ |V(y)|dy — 0, H is bounded below and has [0, c0) as essential spec-
trum by Weyl’s criterion (see, e.g., Reed-Simon [213, Section XI11.4]), which
means that (—oo, 0) has only discrete eigenvalues of finite multiplicity, which
can only accumulate at energy 0. Indeed, by Theorem 5.1, the point spec-
trum is of multiplicity 1. Once these basics are established for the discrete
spectrum, a number of detailed questions about it arise:

(a) Is oqisc finite or infinite? The borderline, as mentioned above, is 72

decay. Explicitly, one has Bargmann’s bound [24] that the number of eigen-
values on a half-line with u(0) = 0 boundary conditions is bounded by
[ #|V(x)|dz and on a whole line by 1+ [*_|z[|V(z)|dz (see Simon [240]
for a review of bounds on the number of bound states). On the other hand,
if im y—00|@|?V(z) < —1, one can prove that H has an infinity of bound
states (see, e.g., Reed-Simon [213, Thm. XIIL.6]).

(b) If oaisc is infinite, how does limyyo dim E(_, y)(H) diverge? This is a
quasiclassical limit and discussed in Section 14 below.

(¢) Bounds on moments of eigenvalues. Lieb and Thirring [186], motivated
in part by their work on the stability of matter [185], initiated extensive
study on the best constant L, in

S e < Lo / V(@)Y da,
J

which holds if v > . Here {e;} are the negative eigenvalues of H. For
v > 2, the constant L, ; is known to be quasiclassical (Aizenman-Lieb [9]).
For ~ € [%, %), it is known that L. 1 is strictly larger than the quasiclassical
result [186]. It is conjectured to be the optimal value for a single bound
state, as explained in Lieb-Thirring [186], but this is still open (except at

v = 3 (Hundertmark-Lieb-Thomas [125])).

(d) Is there a bound state for weak coupling? In one (and two) dimensions,
H has bound states even for very weak coupling. The result (Simon [242])
is that if [ |z||V(z)|dz < co and [ V(z)dz <0 and V # 0, then H always
has a bound state and the binding energy of —A + uV is ~ cu? as p | 0 (if
JV(z)dz < 0; it is ~ cpt if [V(z) =0).

As for positive energies, the situation is simple if V € L'

Theorem 5.2. Let V € L'(—00,00) or L'(0,00). Then HE( »\(H) is
unitarily equivalent to —% (on L*(—o0,00) or L*(0,00) with u(0) = 0
boundary conditions).
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Remarks. 1. This result is essentially due to Titchmarsh [267].
2. In terms of 7~ falloff, V € L' means o > 1.

3. Using scattering theoretic ideas, one can prove wave operators exist
and are complete (see Section 8).

4. This says there is no point of singular continuous spectrum at posi-
tive energies and that the a.c. spectrum has essential support (0, 00) with
multiplicity 2 or 1.

5. We have stated the result for »(0) = 0 boundary condition for simplic-
ity; it holds for all boundary conditions at 0.

As for slower decay than L', if one has control of derivatives, one can
still conclude the positive spectrum is purely absolutely continuous. The
simplest result of this genre is

Theorem 5.3. (Weidmann [273]) Let V. = Vi + Vo where Vi is in L1,
Va(z) — 0 as * — +oo, and V3 is of bounded variation. Then, H Eg )(H )

is unitarily equivalent to f% (on L*(—00, ) or on L?(0, 0o) with u(0) = 0
boundary conditions).

Remarks. 1. V5 of bounded variation with Vo — 0 at infinity essentially says
that —% € L'; in fact, any V5 of bounded variation can be written Vi + Vj
with V3 € L' and V4 a C! function with % e L.

2. Pure power potentials v~ for any a > 0 are included in this theorem;
indeed, any monotone function V(z) with V' (z) — 0 as x — oo is of bounded
variation.

For a short proof of Theorems 5.2/5.3, see Simon [256]. Both theorems can
be understood as coming from the fact that all solutions of —u” + Vu = \u
with A > 0 are bounded. That such a conclusion implies the spectrum
is purely absolutely continuous was first indicated by Carmona [42] (who
required some kind of uniformity in \). Important later developments that
capture this idea are due to Gilbert-Pearson [97], Last-Simon [170], and
Jitomirskaya-Last [135]. The tools in those papers are also important for
the proofs of the results of Section 7.

Once one allows decay slower than 17 for both V and V’, the conclu-
sion of Theorems 5.2/5.3 can fail because of embedded point spectrum. The
original examples of this were found by von Neumann-Wigner [272]. Basi-
cally, if V(z) = y|z| ' sin(z) for z large and v > 1, then —u” +Vu = $u has
a solution which is L? at infinity (see, e.g., Theorem XI.67 in Reed-Simon
[213]). By adjusting V' at finite x, one can arrange for any boundary con-
dition one wants at x = 0. In fact, if one allows slightly slower decay than
|z| 1, one can arrange dense point spectrum. Naboko [197] and Simon [257]
have shown that for any sequence {A,}°°; of energies in (0,00) (Naboko
has a mild restriction on the \’s) and any g(r) obeying lim, . 7 g(r) = 00,
there is a V' (z) obeying;:

(i) |V (x)| < g(|x|) for = large
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(i) —u” 4+ Vu = A\,u has a solution L? at infinity
and obeying a prescribed boundary condition at = = 0.

Remark. 1t is an interesting open question about whether there exist poten-
tials decaying faster than |:E|*1/ 2=¢ with dense singular continuous spectrum
(rather than dense point spectrum).

The interesting fact is that even though potentials of Naboko-Simon type
have dense point spectrum, they may also have lots of a.c. spectrum. The
best result is:

Theorem 5.4. (Deift-Killip [60]) Let V € L. Then the essential support
of the a.c. spectrum of H = —558—22 + V is [0, 00).

Remarks. 1. In terms of r— decay, this result requires o > %

2. This result is optimal in that it is known for any Orlicz space strictly
larger than L? in terms of behavior at infinity, there are V’s whose associated
H has no a.c. spectrum.

3. The first result of this genre was found by Kiselev [156] who proved the
conclusion of this theorem for |V (z)| < C'z~3/47¢. There were subsequent
improvements of this by Kiselev [157], Christ-Kiselev [46], and Remling
218].

4. Killip [155] has a partially alternate proof of Theorem 5.4.

1/2

Once the decay is allowed to be slower than r=%/% one can have much

different spectrum in [0, 0o):

(i) If W is a suitable family of random homogeneous potentials and V' (z) =
1

|z|*W(z) with o < 3, then H has only dense point spectrum in
(0,00). This was first proven in the discrete case by Simon [251] and
later in the continuum case by Kotani-Ushiroya [160].

(ii) Generic potentials decaying like |z|=® (3 > a > 0) produce singular
continuous spectrum as discovered by Simon [255]. For example, in
{V € C(R) | sup, |z|*V(z)| = [|[V]|a} viewed as a complete metric
space in || - ||a, a dense G5 of Vs are such that —jz—22 +V (z) has purely
singular continuous spectrum on [0, 00).

(iii) Much more is known in the borderline o = % case, at least for the
discrete Schrodinger operator (5.2). For example, if a, are indepen-
dent, identically distributed random variables uniformly distributed in
[—1,1] and V(n) = un /?a,, then for suitable coupling constants u
and energies E in [—2, 2], the spectral measures have fractional Haus-
dorff dimension with an exactly computable local dimension. This is
discussed in Kiselev-Last-Simon [158]. There are earlier results on this
model by Delyon-Simon-Souillard [64] and Delyon [62].
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(iv) A very different class of decaying potentials was studied by Pearson
[204]. His potentials are of the form

o

Viz) = Zan W(x —x,), (5.3)

n=1

where W > 0, a,, — 0, and x,, — oo very rapidly so the bumps are
sparse. He showed that for suitable a,, x,, the corresponding H has
purely singular spectrum—providing the first explicit examples of such
spectrum. Strong versions of his results were found by Remling [217]
and Kiselev-Last-Simon [158]. In particular, the latter authors proved
if ¥ — oo (e.g., xn, = n!), then potentials of the form (5.3) lead
to H’s with purely singular spectrum if 3" a2 = oo and to ones with
purely a.c. spectrum if Y a2 < oo.

6. INVERSE SPECTRAL THEORY

One area related to Schrodinger operators, especially in one dimension, is
the question of inverse theory: How does one go from spectral or scattering
information to the potential. There is a huge literature, including three
books 1 would like to refer the reader to: Chadan-Sabatier [45], Levitan
[176], and Marchenko [190]. I will only touch some noteworthy ideas here.

In one dimension, a key role is played by the Weyl m-function and the
associated spectral measure, dp. Given a potential V so that H is self-
adjoint with u(0) = 0 boundary conditions, for each z with Im z > 0, there
is a solution u(x; z) of —u”+Vwu = zu which is L? at infinity. The m-function
is defined by

u'(0; 2)

= . 6.1
m(z) = Lo (6.1)
Imm(z) > 0 in Imz > 0 so by the Herglotz representation theorem
m(z)—B+/d o) - A (6.2)
- PYIN=Z T 1T+ ‘

for a suitable constant B. dp is called the spectral measure for H. One can
recover dp from m by

% Imm (X +ig) dX — dp(X) (63)

weakly as € | 0 and (6.2) allows the recovery of m from dp given the known
asymptotics (Atkinson [15], Gesztesy-Simon [93])
m(—k?) = —k + o(1) (6.4)

as |k| — oo with 6 < Argk < § — 4. dp really is a spectral measure for
let p(z, A) solve —¢" + V@ = Ap with boundary conditions ¢(0,\) = 0,



SCHRODINGER OPERATORS IN THE TWENTIETH CENTURY 17

¢'(0,2) =1, and define for f € C5°(0, )
UHO) = / Bz, N f(x) do. (6.5)

Then U is a unitary map of L?(0, oo, dx) to L?(R,dp())); in particular,

[0 = [ 1) da (6.6)

/ (@ Np(y, X) dp(N) = 8(z — y). (6.7)

Moreover, (UH f)(A) = AU f)(X). dp and its equivalent function m is there-
fore close to spectral information. One way of seeing this explicitly is if
V(xz) — oo. In that case, m is meromorphic, the poles of m are precisely
the eigenvalues of H with u(0) = 0 boundary conditions and by definition
of m, the zeros are precisely the eigenvalues with «/(0) = 0 boundary con-
ditions. m is uniquely determined by these two sets of eigenvalues.

In many ways, the fundamental result in inverse theory is the following
one:

Theorem 6.1. (Borg [37]-Marchenko [188]) m determines q, that is, if q1
and qo have equal m’s, then q1 = qo.

or formally

Recently, the following local version of the Borg-Marchenko theorem was
proven

Theorem 6.2. Let g, and g be potentials and m1 and mo their m-functions.
Then q1 = q2 on [0,a] if and only if

mi(=+?) —ma(—r?)| = O(e™")

as k — 00 for k obeying § < argk < 5 — 9.

Remarks. 1. This result was first proven by Simon [258] when ¢; and ¢ are
bounded from below.

2. The general result which even allows g; to be limit circle at infinity
was first obtained by Gesztesy-Simon [93].

3. A simple proof of Theorem 6.2 was subsequently obtained by Gesztesy-
Simon [94].

Given the uniqueness result, it is natural to ask about concrete methods
of determining ¢ given m. There are two approaches for the general case.
The first is due to Gel'fand-Levitan [90] and depends on the orthogonality
relation (6.7), while the other, due to Simon [258], is a kind of continuum
analog of the continued fraction approach to solving the moment problem.

The Gel’fand-Levitan approach depends on a representation of the solu-
tions ¢ due to Povzner [208] and Levitan [175]:

k
o, \) = sin(kx) /K qln )dy, (6.8)
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where A = k?. In essence, (6.7) leads to a linear Volterra integral equation
for K whose kernel is determined by p. Once one has K, one can determine
V from (6.8) and —¢” + V¢ = Ap or from more direct relations of K to V.

The approach of Simon depends on a representation of m as a Laplace
transform:

m(—k2) = — — /0 " A e da + O(e=2), (6.9)

which determines A given m (there is also a direct relation of A to p given
in Gesztesy-Simon [93]). One can introduce a second variable and function
A(z,a) so A(x =0,a) = A(a). A obeys

0A 0A A
0222 /0 Az, B)A(z,a— B) dB (6.10)
and
li%A(x, a)=V(x). (6.11)

In this approach, m determines A(x = 0, - ) by (6.9); the differential equation
(6.10) determines A(x, ), and then (6.11) determines V.

Inverse spectral theory is connected to inverse scattering for short-range
potentials since dp on [0, 00) is determined by scattering data. Scattering
data also determine the positions of the negative eigenvalues. One needs to
supplement that with the weight of the pure points at these negative eigen-
values known as norming constants. Marchenko [190, 189] has an approach
to inverse scattering related to the Gel’fand-Levitan approach by using a
different representation than (6.8). When [;* x|V ()| dz < oo, Levin [174]
has proven that in Im k& > 0, there is a solution ¥ (z, k) of —" + Vi) = k%)
given by

Pz, k) = e’k +/ f((x, Y) ™ dy.

Krein [162, 163, 164] also developed an approach to inverse problems.
A different approach to inverse scattering is due to Deift-Trubowitz [61].
For another approach to inverse problems, see Melin [195]. Inverse the-
ory for periodic potentials also has an extensive literature starting with
Dubrovin-Matveev-Novikov [70], Its-Matveev [132], McKean-van Moerbeke
[193], McKean-Trubowitz [192], and Trubowitz [268].

As for higher-dimensional inverse scattering, these scattering data overde-
termine the potential. For example, for short-range V'’s, the scattering am-
plitude at fixed momentum transfer approaches the Fourier transform of V'
at large energy, so the large energy asymptotics of scattering determine V.
There is considerable literature on recovering V' from partial scattering data,
which we will not try to summarize here.

One reason for the interest in inverse theory is the connection it sets up
between spectral theory of Schrédinger operators and the analysis of certain
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nonlinear PDEs like KdV (see Dodd et al. [68], Novikov et al. [199], and
Belokolos [26]).

7. ERGODIC POTENTIALS

Let © be a compact metric space with probability measure dvy and T;
with t € RY or T),, with n € Z" be an ergodic family of measure-preserving
transformations. Let f: £ — R be continuous. For w € §2, define

Vo(z) = f(Thw) (7.1)
and
H,=-A+V,. (7.2)

Note: To allow unbounded V’s as seen, for example, in Gaussian random
potentials, one wants to extend this picture to either allow f to be discon-
tinuous and/or take values in R U {oo}, and/or allow Q to be noncompact;
for simplicity, we will discuss this model for motivation.

H, is a family of Schrodinger operators, not a single one, but by the
ergodicity and an obvious translation covariance Vr,,(z) = V,,(z+y), many
spectral properties occur with probability one. So one can speak of typical
properties. In particular, it is known that the full spectrum X, the essential
support of the absolutely continuous spectrum .., the closure of the point
spectrum ipp, and the singular continuous spectrum X . are a.e. constant
in w (see, e.g., Theorems 9.2 and 9.4 in Cycon et al. [53] for proofs; the
result for ¥ is due to Pastur [202] and the other results to Kunz-Souillard
[165]). Note only X, is a.e. constant; X, the actual set of eigenvalues is
not.

Examples. 1. Let Q = [a,b]%” and let dv be the infinite product of normal-
ized Lebesgue measure on [a,b]. Let (T,w)n = wnitm. The corresponding
discrete Schrodinger operator is called the Anderson model and is typical of
random potential models.

2. If © is a compact Abelian group with Z” or R” as dense subgroup, d~y
is Haar measure and T, is group translate, then V is a periodic or almost
periodic function. A frequently discussed example is

V(n) = Acos(ran + 0), (7.3)

where « is irrational, € runs in [0, 27) (which is 2), and A is a parameter. The
corresponding discrete Schrodinger operator is called the almost Mathieu
model.

The simplest example of this framework—which is atypical in many ways—
is the periodic potential. The basic facts in this case go back to the physics
literature at the start of quantum mechanics (Bloch, Brillouin, Kramer,
and Wigner) and, in one dimension, to work on Hill’s equation (Floquet,
Lyapunov, Hamel, and Haupt). A critical early mathematical paper on the
multidimensional case is Gel'fand [89]. The key result is that for periodic V’s
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with a mild local regularity condition, H = —A + V has purely absolutely
continuous spectrum. This result is discussed in detail in Reed-Simon [212,
Section XIII.16]. The only subtle part of the argument is to eliminate the
possibility of what are called flat bands, a result of Thomas [264].

In the mathematical physics literature, the period from 1975 onwards has
seen enormous interest in the study of almost periodic and random models
and special cases thereof. Three books that discuss this are part of Carmona-
Lacroix [44], Cycon et al. [53], and Pastur-Figotin [203]. We will only touch
some of the general principles, leaving the details—especially of detailed
models—to the books and the vast literature. We will make references to
the Lyapunov exponent without defining it; see Cycon et al. [53], Section
9.3.

For random potentials, the most interesting results concern localization.
While the spectrum is typically an interval (e.g., for the Anderson model
in v-dimensions, it is [a — 2v,b + 2v]), the spectrum is pure point with
eigenvalues dense in the interval and exponentially decaying eigenfunctions.

In one dimension, localization was first rigorously proven by Goldsheid,
Molchanov, and Pastur [98] with a later alternative by Kunz-Souillard [165].
Following an idea of Kotani [159], Simon-Wolff [261] and Delyon-Levy-
Souillard [63] found another proof. Typical is

Theorem 7.1. For the one-dimensional Anderson model, the spectrum is
[a — 2,0+ 2] and is pure point with probability one with eigenfunctions de-
caying at the Lyapunov rate.

Carmona-Klein-Martinelli [43] and Shubin-Vakilian-Wolff [228] have ap-
proaches that work if the single site distribution is discrete (the other quoted
approaches require an absolutely continuous component for this distribu-
tion).

In higher dimensions, the two main approaches to localization are due to
Frohlich-Spencer [87] (see also von Dreifus-Klein [270]) and to Aizenman-
Molchanov [10]. (See also Aizenman-Graf [8] and Aizenman et al. [11].)
Basically, these authors and the many papers that extend their ideas prove
dense point spectrum in regimes where the coupling constant is large or one
is near the edge of the spectrum. It is believed but not proven that in
suitable regimes when v > 3, there is absolutely continuous spectrum.

For almost periodic models, one can have any kind of spectral type. The
almost Mathieu model has been almost entirely analyzed and the spectral
type shows a great variety. Recall this is the discrete model with potential

Vare(n) = Acos(man + 6),

where A, a are fixed parameters and 6 runs through 2. Then

(i) If A < 2, there is always (i.e., for any irrational «) lots of a.c. spectrum
and it is known for some a and believed for all « that is all there is
(see Last [169], Gesztesy-Simon [92], Gordon et al. [100], Jitomirskaya
[134]; the earliest results of this genre are due to Dinaburg-Sinai [67]).
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(ii) If A = 2 and « is an irrational whose continued fraction integers are
unbounded (almost all a have this property), then the spectrum is
known to be purely singular continuous for almost all # (see Gordon
et al. [100]).

(iii) If A > 2 and « is an irrational with good Diophantine properties (ja —
§| > C ¢~ for some C, £ and all p, ¢, € Z), then for a.e. §, the spectrum
is dense pure point (Jitomirskaya [134]; see also Bourgain-Goldstein
[38].

(iv) If A > 2 and « is irrational, there are always lots of 6 (a dense Gjs)
for which the spectrum is purely singular continuous (Jitomirskaya-
Simon [136]). For some a, like those in (iii), the set while a dense G5
has measure 0. For Liouville a (irrational a’s with lim % In|sinmaq| =
—0), the spectrum is purely singular continuous (Avron-Simon [22]
using results of Gordon [99]).

In general, for almost periodic models, the spectral type is dependent on
the number theoretic properties of the frequencies.

Among the general spectral results known for almost periodic models is
that the spectrum is everywhere constant on Q (rather than only almost
everywhere constant; Avron-Simon [22]) and that the essential support of
the a.c. spectrum is everywhere constant (Last-Simon [170]). It is known
(see (iv) above) that op, and og may only be almost everywhere constant
and fail to be constant on all of 2.

8. Two-Bobpy HAMILTONIANS

Hamiltonians of the form —A + V' where V(z) — 0 at infinity are often
referred to as two-body Hamiltonians since the Hamiltonian of two particles
with a potential W (7 —73) reduces to —A +V (where V' is a multiple of W
depending on the masses) after removal of the center of mass. The issues are
essentially the same as for one-dimensional decaying potentials as discussed
in Section 5.

With regard to the negative spectrum, again Weyl’s criterion easily shows
that oess(H) = [0, 00) so that H has only discrete spectrum of finite multi-
plicity in (—o00,0) and only 0 can be an accumulation point. Typical is:

Theorem 8.1. For a € Z¥, let xo be the characteristic function of the unit
cube about a. Let V : R — R. Suppose V € K, and that as a — o0,
IxXaVlk, — 0. Then ces(—A + V) =0, 0).

As for whether N(V), the number of negative bound states (counting
multiplicity, i.e., N(V) = dim E_ )(H)), is finite or infinite, there is
a considerable literature. The earliest bound is due to Birman [32] and
Schwinger [227] for v = 3. It says

V(z IIV ) _
477/ o dedy =) (8.1)
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Perhaps the most famous bound is that of Cwickel [52], Lieb [177], and
Rosenbljum [220]:

N(V) < LO,,,/|V(35)|"/2 dr  (v>3). (8.2)

One reason this is of special interest is that for nice V'’s as A\ — oo,
N(AV)/ [|A\V|*/2 dx converges to a universal constant (see Section 14). In
particular, (8.1) has the wrong large A behavior while (8.2) has the right
such behavior. (Simon [243] had the first bounds with the right large A
behavior for nice enough V’s; he also conjectured (8.2).)

As in the one-dimensional case, there are Lieb—Thirring-type bounds on
the moments of the negative eigenvalues e; of —A +V

> leil” < Lo / dz |V (@) &z
J

fory > 0if v =2and vy > 0ifv > 3. These were proven first in Lieb-Thirring
[185]. There has been considerable literature on best values of L. ,. In
particular, a recent pair of papers of Laptev-Weidl [168] and Hundertmark-
Laptev-Weidl [124] has obtained a breakthrough in understanding the v-
dependence of L ,. In particular, they show that for v > %, L., is given
by the quasiclassical value. On the other hand, it is known that L,—q, >
ngo,w the quasiclassical value for all v (Helffer-Robert [109, 110]).

For a review of the literature on bounds on the number of eigenvalues,
especially the subtle two-dimensional case, see Birman-Solomyak [36].

The absence of eigenvalues at positive energies is a specialized issue largely
independent of the rest of the analysis of positive spectrum. Given the
examples of Wigner-von Neumann and related ones of Naboko and Simon
discussed in Section 5, one needs some condition on the falloff or lack of
oscillations. Here is a simple result:

Theorem 8.2. Let V(z) = Vi(x) + Va(x) where |x| |Vi(z)| — 0 and |(x -
V)Va(z)| — 0. Then —A +V has no eigenvalues in [0, 00).

Remarks. 1. The stated theorem requires local regularity (V7 bounded near
infinity and V3 is C1), but there are extensions that allow local singularities.

2. Rellich [216] proved that if V' has compact support, there are no
positive energy eigenvalues. Theorem 8.2 when V5 = 0 is due to Kato [150]
and the full result to Agmon [2] and Simon [235].

3. See Froese et al. [86] for another result of this genre; we will discuss
their result further in Section 9.

The methods we will discuss below typically show that op, N (0, 00) is
finite; one can then usually use Theorem 8.2 to prove that the set is actually
empty.
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As for positive spectrum, it is intimately related to scattering theory.
Given two self-adjoint operators A, B, one says the wave operators exist if

OF (A, B) = s-lim e B P, (B)

t—TFoo

exists where P, is the projection onto the a.c. subspace for B. We say they
are complete if Ran Q% (A4, B) = Ran P,.(A), in which case Q*(A, B) are
unitary maps of Ran P,.(B) to Ran P,.(A) which intertwine A and B. See
Reed-Simon [213], Baumgirtel-Wollenberg [25], or Yafaev [277] (or many
other books) for a discussion of the physics involved.

The development of abstract scattering theory is closely intertwined (pun
intended) to its applications to Schrodinger operators. Fundamental work
was done by Jauch [133], Cook [51], Rosenblum [221], Kato [149], Birman
[33], and Birman-Krein [35].

The basic result for positive spectrum for “short-range” potentials is:

Theorem 8.3. Let V be such that (1 + |z|)*¢V(x) € LP + L®(RY) for
max(2,%) < p <oo and let H=~A+V and Hy = —A. Then Q*(H, Hy)
exist and are complete. Moreover, H has no singular continuous spectrum
and any eigenvalues in (0,00) are isolated (from other eigenvalues) and of
finite multiplicity.

Remarks. 1. The first results on absence of singular continuous spectrum
depended on eigenfunction expansions and were obtained by Povzner [209]
(V’s of compact support) and Ikebe [129] (Vs which were O(|z|27°) at
infinity). The earliest results on completeness of wave operators depended
on the trace class theory of scattering (of Rosenblum [221] and Kato [149])
and were obtained by Kuroda [166, 167]. From 1960 to 1972, the decay
was successively improved until Agmon [3] obtained the O(|z|™17%) result
quoted.

2. Enss [77] has a different, quite physical, approach to this result. Enss’
work depends in part on an earlier geometric characterization of the con-
tinuous subspace of a Schrodinger operator by Ruelle [222] and Amrein-
Georgescu [14]. This is sometimes called the RAGE theorem after the ini-
tials of the authors.

3. It is known (e.g., Dollard [69]) that if V(z) = O(|z|~Y), Q*(H, Hy)

may not exist,.

For long-range behavior decaying slower than O(|z|~1), there are results if
VV decays faster than O(|z|~17¢). Basically, there is only a.c. spectrum at
positive energy if V = Vi + V5 with Vi = O(|z|717%) and = - VV, = O(|z|~%).
For details, see Lavine [172], Agmon-Hoérmander [6], and Hérmander [122].
These works use modified wave operators as introduced by Dollard [69].
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9. N-Bobpy HAMILTONIANS

Let H be the Hamiltonian of N particles in R”. Explicitly, H is an
operator on L?(R"N) given by H = Hy + V where

- N
Hy=— — A,
0 Z 2mj T
=1
with # = (21,...,2x) a point in R"Y =RY x R¥ x --- x R” (N times) and
V=2 Vijei—1)
1<j

with V;; a function in RY which decays at infinity. There is a standard way
of removing the center of mass and getting an associated Hamiltonian H
on L2(R*™=1). For a more extensive review of the subject than this brief
discussion, see Hunziker-Sigal [128].

For any partition a of {1,..., N} into disjoint subsets, one defines I(a) =
>(ij)za Vij over the pairs (i, j) in distinct clusters and H(a) = H — I(a).

The issues one faces are similar to those in the two-body case but often
more subtle. The first thing one needs to establish about N-body systems
is where the essential spectrum of H lies. The result involves

Y(a) = inf spec(H (a))

3. = min (X(a)).
min (2(a)
Y. is the minimum energy the system can have after it is broken into two
pieces moved very far from each other. That makes the following physically
attractive:

Theorem 9.1. (HVZ Theorem) Suppose each Vij viewed as an operator on
LA(RY) obeys Vij(—A;j + 1) is compact. Then
Oess(H) = [, 00).
Remarks. 1. The name “HVZ” comes from work of Hunziker [126], van
Winter [269], and Zhislin [280] who first proved it.
2. The original proofs used resolvent equations; a geometric proof was

later found by Enss [76] and Simon [244].

The next issue is whether the discrete spectrum is finite or infinite. A
great deal of attention has been paid to atomic or ionic Hamiltonians. Define
on L?(R3N):

al Z 1 1
Hu(N, Z) = Z(—Ai - —) + =3V VY ——
i1 |l'z| M ~—~ — |Ii*l'j|
= 1<j 1<]
which describes N electrons moving around a nucleus of charge Z and mass
M. A basic result says that neutral atoms and positive ions always have an
infinite number of bound states:
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Theorem 9.2. (Zhislin [280]) If N < Z, dim E(_ s (Hum(N, Z)) = oo for
any M (including M = c0).

Remarks. 1. The first result of this genre was Kato [145] who proved the
result if N = Z = 2 and M = oo (Helium). He did not properly handle
M < oo because he did not use the right coordinate systems. As shown
by Simon [236], Kato’s idea, which involved placing N — 1 electrons in the
ground states for the N — 1 ion and the Nth in a hydrogen-like state around
the core, can prove Theorem 9.2.

2. This result holds even if one adds Fermi statistics (see, e.g., Simon
[236]).

3. If Z is not restricted to be an integer, the proper conditionis N < Z+1.

As for negative ions, we have
Theorem 9.3. (Zhislin [281]) dim B(_ s (Hy(Z + 1, Z)) < o0

Remarks. 1. This result also has a geometric proof by Sigal [231] and Simon
[244].

2. This result may not be true for fermion electrons because the N —
1 problem may have a degenerate ground state which allows one with a
nonzero dipole moment.

3. While it is presumably true that dim F(_ 5y (Hy (N, Z)) < oo for all
N > Z + 1, that is not known.

Finally, with regard to bound states of atoms, there is the issue of when
dim B x) = 0. The result is the following:

Theorem 9.4. Let M = oo.

(a) (Ruskai [223, 224] and Sigal [231, 232]) For any Z, there is an No(Z)
so that for N > Ny(Z), there is no spectrum in (—oo,X). No(Z)
denotes the smallest Ny for which this true.

(b) (Lieb et al. [181]) For fermions, No(Z)/Z — 1 as Z — oc.

(c) (Benguria-Lieb [28]) Without Fermi statistics, No(Z) > 1.2Z for Z
large.

(d) (Lieb [178]) No(Z) < 2Z.

Remarks. 1. If N > Ny, then infspec(H (N, Z)) = inf spec(H (Ny, Z)) <
inf spec(H(Ng — 1, Z)).

2. Some of these results hold if M < oc.

With short-range potentials, the situation is simple if the bottom of the
essential spectrum is two body. Define

Yo = min (X(a)).
3 #1(1533( (a))

Then (see Cycon et al. [53, Section 3.9]),

Theorem 9.5. (Sigal [231]) Suppose ¥3 > X, v > 3, and each V;j lies in
LY/2(R¥). Then dim E_oox)(H) < 0.
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On the other hand, if X3 = 3, there can be an infinite number of bound
states even if the V;’s have compact support (in z;;). In particular, if N = 3,
Vig = Vog = Vi3 = —cxq with x the characteristic function of a unit ball
and ¢ chosen so that inf spec(H) = 0 but inf spec(H +eV') < 0 for all € > 0,
it is known that dim E(_ 5)(H) = oo. This is known as the Efimov effect
after work of Efimov [74, 75]. For proofs of this phenomenon, see Yafaev
[276] and Ovchinnikov-Sigal [201].

In analyzing the spectrum of H on [X, 00), a particular class of physically
significant energies occurs, the thresholds. For each partitiona of {1,..., N}
with #a > 2, there is a natural decomposition of L2(R*(N=1) = H, @ H®
where H, are functions of z; — x; with ¢ and j in the same cluster of a and
H® are functions of R, — Rg where R, is the center of mass of a cluster (see
[128] for an elegant way of doing this kinematics). Under the decomposition
H(a)=H,®I+1®T" H, is the internal energy of the cluster and T the
kinetic energy of the cluster centers of mass. Z(a) is the set of eigenvalues of
H, (with the condition that if #(a) = N, so H, is 0 on C, then Z(a) = {0}.
The set of thresholds is defined to be

7=JZ(a).

Note: An energy in Z(a) is a sum of eigenvalues of individual cluster Hamil-
tonians. In particular, the statement in the theorems below that the set
of thresholds is a closed countable set follows by induction from the other
statement that eigenvalues can only accumulate at thresholds.

The three-body problem turns out to have some aspects that make it
simpler than the general N-body problem, and Faddeev [79] and later Enss
[78] (using very different methods) have fairly complete results on spectral
and scattering theory for NV = 3. We will focus here on results that apply
for all N.

Historically, the first aspect of the continuous spectrum for general N-
body systems controlled was the absence of singular continuous spectrum.
The earliest result required analyticity of the potentials but included atoms:

Theorem 9.6. (Balslev-Combes [23]) Suppose each Vij(z) = fij(xi — ;)
where fij is a function on RY\{0} that obeys

A0) = V(Pz)(—A+1)71

is compact and has an analytic continuation from 0 € R to {0 | |Im| < e}
for some € > 0. Then os.(H) = 0.
Moreover,

(i) Any eigenvalue of H in R\Z is of finite multiplicity, and eigenvalues
can only accumulate at thresholds.
(ii) The set of eigenvalues union thresholds is a closed countable set.

Remarks. 1. Such potentials are called dilation analytic.
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2. This result was first proven for two-body systems by Aguilar-Combes
[7].
3. See Simon [237, 238] for extensions of this result.

The most general results on absence of singular continuous spectrum de-
pend on ideas of Mourre [196].

Theorem 9.7. Suppose V;j(x) = fij(x; — ;) where fij is a function on R”
that obeys (as operators on L*(RY))

(i) fij(@)(=A+ 1)1 is compact

(ii) (=A+1)"tz - Vfi;(=A+ 1)1 is compact.
Then oess(H) is empty. Moreover, any eigenvalue in R\Z is discrete, eigen-

values can only accumulate at thresholds, and the set of eigenvalues and
thresholds is a closed countable set.

Remarks. 1. This theorem was proven for N = 3 by Mowrre [196]. His
methods were extended and elucidated by Perry-Sigal-Simon [205] who ob-
tained the general N-body result. Substantial simplifications of the proof
were found by Froese-Herbst [85].

2. Condition (ii) does not require that f;; be smooth because Vf;; =
[V, fij] and V(—A + 1)7! is bounded. Basically, (i), (ii) hold if fi; =
fz(Jl) + fz(f) where :vfi(jl)(—A + 1)1 is compact and fz(f) is smooth with
-V f(z) —A+1)"!and f(2) —A + 1)~ compact.

1] )

3. Froese-Herbst [85] have some general results that imply that Z N

(0,00) =0 (see Thm. 4.19 in Cycon et al. [53]).

Finally, there has been extensive study of scattering theory and complete-
ness. For each cluster with #(a) > 2, let P, on H, be the projection onto
the point spectrum of H, and let P(a) = P, ® I, the projection onto vectors
which are bound within the clusters and arbitrary for the centers of mass
coordinates. The cluster wave operators are defined by

Q% (a) = s-lim eTHeH@) p(q). (9.3)

t—TFoo
Ran(Q*(a)) are those states which in the distant past look like bound clus-
ters (coresponding to the partition a) moving freely relative to one another.

The existence of cluster wave operators (9.3) was proven first by Hack
[103]. It is not hard to see (e.g., Theorem XI1.36 in Reed-Simon [213]) that
for a # b, Ran Q7 (a) is orthogonal to Ran QT (b). Asymptotic completeness
is the statement that

D Ran(Q*(a)) = Hauo(H).
#(a)22
where H,.(H) is the absolutely continuous subspace for H. After fairly
general results for N = 3 (Faddeev [79] and Enss [78]) and for general N

with weak coupling (Iorio-O’Carroll [131]) and repulsive potentials (Lavine
[171]), Sigal and Soffer [233] solved the general result. Their theorem is
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Theorem 9.8. (Sigal-Soffer [233]) If each Vij(x) = fij(x; — x;) where
(D fi;(x)] < C(1+ |=|)71===1 for all multi-indices with |a| < 2, then
asymptotic completeness holds.

Extensions and clarifications of this work are due to Graf [101], Hunziker
[127], and Yafaev [278]. Long-range potentials are discussed in Derezinski

[65], Sigal-Soffer [234], and Derezinski-Gerard [66].

10. CONSTANT ELECTRIC AND MAGNETIC FIELDS

Quantum mechanics with a potential and constant electric or magnetic
field played a critical role experimentally and theoretically in the earliest
days of the subject, and there has been considerable mathematical literature
on the spectral properties of these operators. The basic Stark Hamiltonian
on L%(RY) is

H=-A+Ex +V(x), (10.1)

where V is short range. A key role has been played by an explicit formula
of Avron-Herbst [18] for the operator when V' = 0, viz.,

exp(—it(—A + x1)) = exp(—it®/3) exp(—itx;) exp(—itA +ipit?), (10.2)

where p; = %i

oy Classically in an electric field, a particle has z; = N — ct?
as t — oo and (10.2) realizes this with the pit? term. It means the borderline
for short range is |z| /2% rather than |z|~1~¢. The result is

Theorem 10.1. Suppose |V(z)| < C(1 + |z|)~¢(1 + |z1|)~V/?5. Then H
gwen by (10.1) has complete wave operators and empty singular continuous
spectrum. FEigenvalues are isolated and of finite multiplicity.

This result and ones similar to it are discussed by Herbst [114], Yajima
[279], and Simon [249]. Multiparticle completeness in electric fields has been
studied by Herbst-Mgller-Skibsted [116], and Adachi-Tamura [1].

There is a large literature on both constant and variable magnetic fields
but an extensive review of it is beyond the scope of this article. One can
begin looking at the literature by consulting a series by Avron, Herbst, and
Simon [19, 20, 21] and Chapter 6 of Cycon et al. [53] and references therein.
See also Section 12.

11. CouLoMB ENERGIES

While much of the mathematical theory of nonrelativistic quantum me-
chanics has focused on general potentials, nature uses the Coulomb potential
and there is considerable literature on binding energies of Coulomb systems,
especially as some parameter goes to infinity. Section 9 (see Theorem 9.4)
already discussed one such result. We will only introduce some seminal
themes; consult Lieb [179] for a review of the subject.
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The most famous of these results is the stability of matter. In its simplest
form, it concerns the Hamiltonian

H(NaM;Rla"'aRM):

N 1 1 1
_;Ai_%:lxi—ffal +;|xi—fﬂj| +O;|Ra_Rﬂ|

of N electrons moving in the field of M infinitely massive protons. Let H
be the functions on L2(R3*Y) thought of as functions +(z1,...,zn) of N
variables in R? which are antisymmetric, that is,

¢(xw(1)7 SERE) xw(n)) = (—1)W¢($1’ SRS IL'N)
for any permutation, 7; that is, Hy is the wave function with Fermi statistics
(we ignore spin which is easily accommodated). Define
E(N,M)= inf (¢, H(N,M;Ry,..., Ry)).

PeH ¢
J

Stability of matter says that
E(N,M)> —c(N + M). (11.1)

Among other things, this bound is important because it is equivalent to the
fact that the radius of a chunk of matter with N = M does not shrink to
zero as N — oo.

The first proof of (11.1) was obtained by Dyson-Lenard [72, 73] with
a constant C' that was many powers of ten too large. Lieb-Thirring [186]
found an elegant proof with a constant C' that is on the order of magnitude of
Rydbergs. The result (11.1) fails if one does not impose Fermi statistics (see
Dyson [71] and Conlon-Lieb-Yau [50]). Extensions that involve relativistic
kinetic energy, magnetic and/or radiation fields can be found in Conlon [49],
Lieb-Loss-Solovej [180], and Fefferman-Frohlich-Graf [81].

Another Coulomb energy problem that has been extensively studied is
the total binding energy in the limit of large of Z. One defines

H(N Z)—EN: NS +Z#
T N — |z; — x|
i=1 1<J
on Hy and
E(N,Z)= inf (¢, H(N, Z)y)
YeEH ¢
and

E(Z) = mAi]nE(N, Z).
One knows that
E(Z)=aZ® + B2% + 253 1 o(Z5/3). (11.2)
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The a term is given by Thomas-Fermi theory and this leading asymptotics
was proven by Lieb-Simon [182]. The 3 term is called the Scott correc-
tion and it was established by a combination of ideas of Hughes [123] and
Siedentop-Weikard [229, 230]. The full asymptotics (11.2) was obtained by
Fefferman-Seco [82]. Results for large Z and large magnetic field can be
found in Lieb-Solovej-Yngvason [183, 184].

12. EIGENVALUE PERTURBATION THEORY

Some of Schrédinger’s earliest papers on quantum mechanics concerned
eigenvalue perturbation theory. Kato’s book [153] is a source of detailed
information on what we will call regular and asymptotic perturbation theory
below. A review of some of the other aspects can be found in Reed-Simon
[212] and Simon [254].

If A is self-adjoint and B is A-bounded in the sense of (3.3), and if Ej is
a simple eigenvalue of A, then for § small, A + 8B has a unique eigenvalue
E(B) near Ey and E() is analytic in 5. This is a result of Rellich [215] and
Kato [142, 143]. An example is

1 1 1 1
A Ay —

- 12.1
ECRNACE (12.1)

about % = 0 which is equivalent after scaling (of space and energy) to

A Z 1
A — Ay —

21| za| a1 — 2]

The numerical radius of convergence in || is about 1.06 so H(Z = 2) and
H(Z = 1) are both included. Kato [147] developed the theory for form
perturbations. Rellich and Kato included degenerate eigenvalues.
Titchmarsh [265, 266] and Kato [146] also developed the theory of asymp-
totic situations like the anharmonic oscillator
d2

a4 et (12.2)

where each eigenvalue E, () for > 0 has an asymptotic series

o

En(ﬁ) ~ Z anﬁn

n=0

even though this series can be divergent (and is for the case (12.2), as shown
by Bender-Wu [27]). See Herbst-Simon [117] for an example where an as-
ymptotic series converges but to the wrong answer! See Simon [252] for a
study of multiwell problems.

In some cases, including (12.2), it is known that the divergent pertur-
bation series can be made to give the right eigenvalue with a summability
method, either Padé approximation (Loeffel et al. [187]) or Borel summa-
tion (Graffi et al. [102]). Borel summability is also known to work for the
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Zeeman series for hydrogen-hydrogen perturbed by turning on a constant
magnetic field; see Avron-Herbst-Simon [21] and Avron et al. [17].

In certain cases, eigenvalues are perturbed into resonances, the subject of
Section 13. For eigenvalues embedded in continuous spectrum under regular
perturbations (like (12.1)), the convergence of the perturbation series for a
resonance and its related time-dependent perturbation theory and the Fermi
golden rule is discussed in Simon [237, 238]. For Stark Hamiltonians, the
basic paper is Herbst [115]. Harrell-Simon [107] found the leading resonance
asymptotics in this case.

13. RESONANCES

Almost everything we have discussed so far has involved a single opera-
tor and properties invariant under unitary transformations. The notion of
resonances has got to involve additional structure. For example, the op-
erators —A — |z|™t — Fz = H(F) are unitarily equivalent for all F' # 0.
But according to the physics lore, there is a resonance with an F-dependent
position. We will not emphasize the extra structure, but it is there. We
will focus on two definitions of resonances: one suitable for potentials that
decay very rapidly (see Zworski [284, 285] for reviews) and the method of
complex scaling already discussed in a different context in Section 9. (See
Reed-Simon [212] and Simon [245] for reviews.)

Let v be an odd dimension, let V' be a bounded potential of compact
support on RY, and for Re k > 0, define

B(r) = [V['"2(—A +#%)7VI2,

where V1/2 = |V|/2sgn(V)). Then —£? is an eigenvalue of —A + V if and
only if —1 is an eigenvalue of B(k). Since v is odd, B(k) has an analytic
continuation as a compact operator-valued function of k to all of C (when
v =1, there is a simple pole at k = 0 but kB(k) is entire). If Rex < 0 and
—1 is an eigenvalue of B(k), we say —k? is a resonance of —A + V.

Froese [83] has a lovely formula that relates resonances defined by this
method to scattering theory. For all k, B(k) — B(—k) is trace class so
(1+ B(—~r))(1 + B(x))™! is 1 plus trace class and has a determinant as an
operator on L?(R¥). For k real and S(k), the S-matrix on L%(S*™1),

det(S(k)) = det((1 + B(—ik))(1 + B(ik)) 1Y),

so resonances are related to poles of the analytic continuation of S.

There has been considerable literature on the number of resonances. Let
N(R) be the number of resonances with energy E obeying |E| < R. In one
dimension, one has a complete result:

Theorem 13.1. (Zworski [282]) Let v = 1 and suppose [a,b] is the convex
hull of the support of V. Then

2
lim R™Y2N(R)= Z|b—al.
T

R—o0
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Remarks. 1. The result depends on a theorem of Titchmarsh and Cartwright
on the zeros of Fourier transforms of functions of compact support.

2. Froese [83] has obtained some results for cases when a potential decays
faster than any exponential but may not have compact support.

In higher dimensions, much less is known. Zworski [283] proved that for
V of compact support, N(R) < C(R + 1)"/? (see also Froese [84]). On the
other hand for general Vs, it is only known (S& Barreto-Zworski [225]) that
limp_ N(R) = 0.

Suppose V is a dilation analytic potential in the sense of Theorem 9.6.
Let

H(0) = —e 2A+V(er).

Because of the analyticity assumption, H(#) is analytic in {0 | | Im(0)| < a}
for some . Then Aguilar-Combes [7] found the essential spectrum of H(0)
for N = 2 and Balslev-Combes [23] for general V:

Theorem 13.2. 0cx(H(0)) = Ugere)(F + e 2R)

Remarks. 1. Z(0) is the thresholds of H(6) defined analogously to the case
0 = 0. It is not hard to see that oess(H(0)) and Z(0) depend only on Im 6.

2. If Im@ > 0, oess(H(0)) N R consists precisely of Z. Basically as we
increase Im 6 from 0, the essential spectrum rotates about the thresholds.
In doing that, it can uncover resonances.

Resonances defined by this method have been used by quantum chemists
for numerical calculations as well as a theoretical tool. Simon [237, 238] used
it to study the Fermi golden rule and Harrell-Simon [107] to prove various
one-dimensional tunnelling estimates.

Avron [16] used these ideas to study large-order perturbation theory for
Hydrogen in a magnetic field; a rigorous proof of his results was obtained
by Helffer-Sjostrand [112].

Herbst [115] has extended the ideas to Hamiltonians with constant electric
field. Among his results is the surprising one that if 0 < Im6 < %, then
—e %A + €2 has empty spectrum!

14. THE QUASICLASSICAL LIiMIT

There has been considerable literature on the connection between quan-
tum and classical mechanics. Much of it has focused on what happens as
h — 0, but there are other limiting situations where a classical or semiclassi-
cal picture is appropriate for example, the large Z limit of atoms. We will
touch on some of the subjects considered, but the literature is vast. Robert
[219] has an excellent review of those results obtained for very smooth poten-
tials using the Fourier integral operator methods pioneered by Hérmander
and Maslov. Therefore, I will not try to cover these results here. We note
that in Section 11, we referenced the Thomas-Fermi limit, which is quasi-
classical.
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Consider first the A | 0 limit. Let Hy = —Q%A + V. Kac [140, 141] had
the idea that the small & limit of exp(—sHp) was the same as the zero time
limit in Brownian motion. This allows one to prove under great generality
that the quantum partition function Tr(exp(—sHp)) approaches a classical
partition function as i | 0; see, for example, Theorem 10.1 in Simon [246].
The earliest results I know of on this subject are due to Berezin [31].

Quantum dynamics, e~*Hn/fa)y  on suitable states ¥, make an elegant
classical limit one takes 1y to be a coherent state which collapses to a
single point in phase space as h | 0. Such results were found by Hagedorn
[104, 105, 106] (similar methods were developed independently by Ralston
[210]).

Since —h2A +V = R} [~A + h72V], the small A limit is the same as
the large coupling constant limit for —A 4+ AV. In particular, if N(V) =
dim B 0)(—A + V), the quantity discussed in Section 8, one has

Theorem 14.1. Letv > 3 andV € L*/?(R¥). Thenlimy_o N(AV)/\V/2 =
(2m) "1, fv<0(—V(:p)”/2 d"x where T, is the volume of a unit ball in R”.

Remarks. 1. This theorem is quasiclassical since the right side is (27) 7"
times the volume of the classical phase space region where p? + V (x) < 0.

2. The historical thread for this theorem goes back to a celebrated paper
of Weyl [274] on Dirichlet Laplacians. Theorems like 14.1 with stronger
conditions on V' are due to Birman-Borzov [34], Kac [141], Martin [191],
and Tamura [263]. See Reed-Simon [212, Theorem XIII.80] for the proof
under the stated assumptions.

Let V(z) — oo as |x| — oo in a fairly regular way (e.g., suppose V
is an elliptic polynomial). Then —A + V has discrete spectrum and the
asymptotics of the number of eigenvalues dim F(_ (A + V) as a — o0
is determined by phase space. Results of this type go back to Titchmarsh
[267]; see also Reed-Simon [212, Theorem XIIL.81]. Similarly, if V(z) — 0
but so slowly that N (V) = oo, for example, V (z) ~ —|z|? with 0 < 8 < 2,
then the divergence of dim E(_ o)(—A + V) as a T 0 is sometimes given
by quasiclassical considerations; see Brownell-Clark [40], McLeod [194], and
Reed-Simon [212, Theorem XI11.82].
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