
A TALE OF THREE COAUTHORS

BARRY SIMON1,2

Abstract. We tell the story of the discovery of an interesting
bound on finite sums and its application to comparison of Ising
models.

1. Introduction

In 2022, we celebrated Elliott Lieb’s 90th birthday. On Friday, Jan
14, 2022, I had a draft of a single authored paper intended for a
Festschrift to be published for Lieb. Six days later, that paper had
three coauthors who I hadn’t met before Jan 14, 2022 (indeed, even
now, I’ve only met them on Zoom). This paper will explain the inter-
esting story, expose some underlying machinery and sketch the proof
of a lovely inequality on certain finite sums. It will include an im-
provement of 50 year old bounds of Griffiths [7] comparing transition
temperatures on generalized Ising models for different spins. Because
its a fun story and involves a charming inequality, I’ve given several
talks on the material including at the Seminar on Analysis, Differential
Equations and Mathematical Physics [20], an online seminar sponsored
by the Institute of Mathematics, Mechanics and Computer Sciences of
Southern Federal University, Rostov-on-Don, Russia. After the talk, I
was invited to by one of the organizers, Alexey Karapetyants, to con-
tribute an article telling this story for the special 50th anniversary issue
of the Journal of Mathematical Sciences. I was originally reluctant but
persuaded by the fact that I might convince young workers to react
properly to rejections since a paper rejection is part of the story.

I am writing a book for Cambridge Press entitled Phase Transitions
in the Theory of Lattice Gases [21]. It is, in many ways, the succes-
sor to my 1993 book The Statistical Mechanics of Lattice Gases, Vol.
I [17], from Princeton University Press. That earlier book was mainly
framework and largely left out all the most fun and beautiful elements
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of the theory: Correlation Inequalities, Lee-Yang, Peierls’ Argument,
BKT transitions, Infrared Bounds and Random Clusters and Currents
which are the subjects of the new book. But since I decided to use a
different publisher, this is certainly NOT volume 2 of the earlier work.
The main mathematical focus of the story is an inequality which one
can state and admire without knowing anything about Ising models so
I will not bother to define what exactly what they are instead referring
the reader in general to the two books or to the paper with the three
coauthors [13], giving more precise references at appropriate points.

For our discussion we will only need to consider generalized Ising
models in finite volume, a subset, Λ, of the lattice Zν . For each site
j ∈ Λ, one has a real valued “spin”, σj. For A ⊂ Λ, one defines

σA =
∏
j∈A

σj (1.1)

One object needed to define the Gibbs measure is a function, J : 2Λ →
R called a coupling which is called ferromagnetic if J(A) ≥ 0 for all A.
One then forms a Hamiltonian,

h = −
∑
A⊂Λ

J(A)σA (1.2)

The name ferromagnetic comes from the fact that when J(A) ≥ 0,
states with more spins parallel have lower energies and so according to
Gibbs rules higher weights.

The other object one needs describes the uncoupled state which gives
the {σj}j∈Λ the distribution of independent, identically distributed ran-
dom variables with some common distribution, dµ, a probability mea-
sure on R called the apriori measure, which we will always suppose
to be even. One then fixes J(·) but varies µ and forms Gibbs states,
⟨·⟩µ,Λ, according to the standard prescription [17, Chap. III].

There are special choices of apriori measure that particularly concern
us beginning with the spin-1

2
measure:

dµ̃
S=

1
2
=

1

2
(δ1 + δ−1) (1.3)

More generally, for any T > 0, we consider

dbT =
1

2
(δT + δ−T ) (1.4)

b is for Bernoulli. Finally, for S = 1
2
, 1, 3

2
, 2, . . . , we consider the mea-

sure dµ̃S which takes 2S + 1 values equally spaced between −1 and 1,
each with weight 1/(2S + 1). This is a scaled version of what is called
spin S Ising (which has maximum spin value 2S).
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2. Wells Ordering

As I began to write about correlation inequalities, I wondered about a
natural question. Say that an apriori measure, ν, on R Ising dominates
another measure µ if and only if for all J(A) ≥ 0 and all B, one has
that

⟨σB⟩µ,Λ ≤ ⟨σB⟩ν,Λ (2.1)

In particular, for general µ of compact support, does one have that µ
Ising dominates bT− and is Ising dominated by bT+ for suitable 0 < T− <
T+ < ∞. That would imply phase transitions occur for one apriori
measure if and only if they do for all and inequalities on transition
temperatures. To be explicit, if µ Ising dominates bT−(µ), and if Tc(µ) is
a transition temperature for some fixed ferromagnetic pair interaction,
one easily sees that

Tc(µ) ≥ T−(µ)
2Tc(classical Ising) (2.2)

For most even minor aspects of the subject of correlation inequalities,
there are several papers, sometimes as many as a dozen. So I was
surprised that I was unable to find a single published paper on the
subject of what I just called Ising domination! Of course, it was unclear
how to search for the subject in Google. Eventually, I did find one paper
of van Beijeren and Sylvester [22] that is unsatisfactory in that, in their
theory, the analog of what I call T− is 0 if 0 ∈ supp(µ). And I did find
an appendix of a paper on another subject but that gets ahead of my
story.

One of the pleasant things about writing a book on a subject that I
once knew more about is that I get to rediscover things I’ve forgotten.
With the question of Ising domination in the back of my mind, I found
an interesting footnote in a 1980 paper of Aizenman and er, B. Simon [1]
entitled A comparison of plane rotor and Ising models. The footnote
said

then by results of Wells (D. Wells, Some moment inequalities for gen-
eral spin Ising ferromagnets, Indiana Univ. preprint)

⟨sjsk⟩β,1 ≤ 2⟨σ(1)
j σ

(1)
k ⟩β,2 (2.3)
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Here the left hand side is an Ising expectation and the right with the
apriori measure of the 2D rotor with only couplings of the 1 compo-
nents. So this was part of what seems to be an Ising domination result
(the 2 indicates the Ising measure should really be b1/

√
2).

So I set about finding this preprint. Google didn’t help directly but
did point me to a 1984 paper of Chuck Newman [15] that mentioned
Wells’ Indiana University PhD. thesis. So I wrote to Michael asking if
he knew anything about our footnote and cced Chuck (who had been
a grad student with me at Princeton) because I conjectured Wells had
been his student. Chuck replied and said he remembered that Wells
had been Slim Sherman’s student. Sherman, the S of GKS and GHS
was delightful character, long dead. I then wrote to Kevin Pilgrim,
the chair at Indiana, who located a copy of Wells thesis [23] for me
on Proquest. But he had no luck on the preprint nor on locating
Wells through Indiana University alumni records (to get way ahead
of the story, when I eventually reached Wells, he was surprised by
this remarking “gee, they don’t have trouble finding me to send fund
raising letters”)! While the thesis did not have anything directly about
the above inequality, it did have a general framework on what I called
the Ising domination problem, lovely material that should have been
published.

Given the beauty and relevance of the work in Wells thesis, I decided
to include it in my book and to further develop it. Wells exploited tools
that Ginibre had introduced [6] to prove GKS correlation inequalities
which he applied instead to what I’ve called the Ising domination prob-
lem. I won’t describe his work in detail here (but see [13, 21]) but will
limit things to quoting the part of his major theorem relevant to our
focus in this note.

Theorem 2.1 (Wells[23, 13]). Let dµ be an even probability measure
on R with compact support that is not a point mass at 0. Then there is
a strictly positive number, T−(µ), so that µ Ising doninates bS if and
only if S ≤ T−. Moreover

S ≤ T− ⇐⇒ ∀n∈N

�
R
(x2 − S2)n dµ(x) ≥ 0 (2.4)

I should mention I happened to look at a 1981 paper of Bricmont,
Lebowitz and Pfister [3] that includes in an appendix a proof (with
attribution to Wells) of Wells result about the existence of T− > 0.

One consequence of the theorem is

T− ≤
(�

R
x2 dµ(x)

)1/2

(2.5)
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It is an interesting question when one has equality in this inequality.
I call the measure canonical if one does have it. One of my few new
results was to show that if µD is the probability of distribution of a the
first component of a D-component vector uniformly distributed on the
unit sphere SD−1 in RD, then µD is canonical (it was clear from the
quote from my paper with Aizenman that Wells had proven this for
D = 2 in his preprint).

I also computed for 0 ≤ λ ≤ 1, T− for the probability measure
supported by the three points {0,±1} given by

dµλ = λ
2
(δ1 + δ−1) + (1− λ)δ0 (2.6)

and found that

T−(λ) =

{ √
λ, if λ ≤ 1

2√
1
2
, if λ ≥ 1

2

(2.7)

In particular , this measure is canonical if and only if λ ≤ 1
2
. This

shows some measures are canonical and others are not.

3. The Conjecture

Consider the measure dµ̃S discussed earlier - the scaled spin S Ising
model of 2S + 1 values equally spaced between −1 and 1. We have
just seen that for S = 1 (λ = 2

3
in the above example), one has that

T− =
√

1
2
<

√
2
3
=

(�
R x

2 dµ̃S=1(x)
)1/2

. So T− ̸= (⟨x2⟩µ)1/2 for spin 1

so that measure is not canonical!
But I quickly determined that one should expect equality in all

other cases. I did spin 3
2
by hand and used Mathematica to com-

pute ⟨(x2 − aS)
2n+1⟩S where aS =

(�
R x

2 dµ̃S(x)
)
for S = 2, 5

2
, 3 and

m = 1, 2, . . . , 10 and for S = 20 and m = 1, . . . , 5 and found them all
positive which leads to a natural conjecture

⟨(x2 − aS)
2n+1⟩S ≥ 0 (3.1)

As explained earlier, because Wells domination implies Ising domi-
nation, one has that for pair interactions

Tc(S) ≥ T−(S)
2Tc

(
1
2

)
(3.2)

As it turns out, there is a result of this genre in the literature. In 1969,
Griffiths wrote a famous paper [7] on obtaining spin S Ising spins by
ferromagnetically coupling 2S spin 1

2
spins together which lead to GKS

and Lee Yang for spin S Ising systems. This is usually presented in
terms of an elegant coupling discussed in the first part of the paper.
Less attention is paid to the second part where he shows instead there
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is such a coupling in which S of the spin 1
2
spins are frozen together

(for S half an odd integer, it’s S + 1
2
) which he noted implies

Tc(S) ≥ 1
4
Tc

(
1
2

)
(3.3)

The quantity aS =
(�

R x
2 dµ̃S(x)

)
of (3.1) is equal to 1

3
+ 1

3S
. If one

proves that this is T 2
− for S ̸= 1, one has for such S that

Tc(S) ≥
(
1

3
+

1

3S

)
Tc

(
1
2

)
(3.4)

while for S = 1 where we know that one has that T 2
− = 1

2

Tc(1) ≥
1

2
Tc

(
1
2

)
(3.5)

Not only is this an improvement of Griffiths by more than 4
3
but in

the result for S ̸= 1, the improved constant is optimal!! For one has
equality if Tc is replaced by its mean field values and, as noted by
Dyson, Lieb and Simon [5], mean field theory is exact in the nearest
neighbor infinite dimension limit.

Rescaling so the maximum spin value is S, the conjecture, (3.1), is
the assertion that for m = 1, 2, . . . and S = 3

2
, 2, 5

2
, 3, . . . , one has that

S∑
j=−S

(3j2 − S(S + 1))2m+1 ≥ 0 (3.6)

For S an integer, this is the usual kind of sum. For 2S an odd integer,
j takes the 2S + 1 values −S,−S + 1, . . . , S − 1, S, i.e. 2j is an odd
integer. Note, the constant S(S + 1) is such that the sum is zero if
m = 0

I found this conjecture fascinating and worked on it with no progress
for about 7 months. I even got three of my coauthors from other papers
to think about it with no luck.

Given that Lieb has a celebrated paper [11] on comparing Heisenberg
models (admittedly classical vs. quantum and pressures, not correla-
tions) and that I didn’t want to bury in a long book this material which
had already been buried for 45 years, it seemed natural to use this for
an article when I was asked to contribute to a Festschrift for Elliott’s
90th birthday. The paper was due on Jan 31, 2022 and on Friday, Jan
14, I had a first draft of the paper.

It seemed a shame not to make one more push to prove the conjecture
so I did the obvious thing. Desperate situations call for desperate
measures. At 11 AM on Friday, Jan 14, I sent an email entitled “A
challenge” stating the conjectured inequality (and with the draft to
explain its significance) to Terry Tao. When I logged on after Shabbat
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the next evening I had an email dated Saturday at 1:30 PM with a
proof of the conjecture!!!

But the scenario isn’t quite as you image it. At 1:30 PM on Friday,
Terry had emailed me back: “I have a postdoc who works on some other
inequalities vaguely of this type, I will forward this problem to him and
see if he is interested.” and it was the postdoc, José Madrid, who sent
the proof.

4. Majorization

José’s note had one wonderful idea (using Karamata’s inequality)
and 5 dense pages of calculation to implement it. We Zoomed several
times, first for me to offer him a coauthorship (Terry had suggested an
appendix) and to discuss simplifying the implementation. We discov-
ered what we thought was a new criteria for majorization that led to a
three line proof. OK, a proof with three long lines. We then discovered
that the proof was only really simple in case S was half an odd integer.
As I’ll explain, the integer case is harder but we found a proof in that
case that was only a little longer.

As indicated, the key notion is majorization, a set of ideas that go
back to Schur [16] in 1923 and Hardy-Littlewood-Pólya [8]. A standard
reference is Marshall-Olkin [14] which has been called a love poem
to majorization; other references are Hardy-Littlewood-Pólya [9] and
Simon [19, Chapters 14-15]. I suspect my coauthors hadn’t seen this
theory but I didn’t have this excuse. My convexity book has a whole
chapter on it!

If x ∈ Rn
+ (the set with x1, x2 . . . xn ≥ 0), we define, x∗, its de-

creasing rearrangement to be the point in Rn
+ whose coordinates are a

permutation of those of x with x∗1 ≥ x∗2 ≥ · · · ≥ x∗n. If x,y ∈ Rn
+ we

say that x majorizes y, written x ≻ y or y ≺ x if an only if

n∑
j=1

x∗j =
n∑

j=1

y∗j ; Sk(x) ≡
k∑

j=1

x∗j ≥
k∑

j=1

y∗j , k = 1, . . . , n− 1 (4.1)

which defines Sk(x). Given π ∈ Σn the group of permutations of
{1, . . . , n} and x ∈ Rn

+, one defines π∗(x) by

π∗(x)j = xπ−1(j) (4.2)

Majorization is the basis of a number of inequalities sometimes called
rearrangement inequalities. Basic to most of them is

Proposition 4.1. y ≺ x if and only if y is in the convex hull in Rn

of the (at most) n! points {π∗(x)}π∈Σn.
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This is proven by slicing Rn with specific hyperplanes; see Simon [18,
Theorem 1.9] or Simon [19, Theorem 15.5]). An immediate consequence
is

Theorem 4.2 (Karamata’s Inequality[10]). Let x,y ∈ Rn
+ with x ≻ y

and let φ be an arbitrary continuous convex function on [0,maxj(xj)].
Then

n∑
j=1

φ(xj) ≥
n∑

j=1

φ(yj) (4.3)

Even though this is widely referred to as Karamata’s inequality after
Karamata’s 1932 paper [10], it or theorems that imply it appear in
a 1923 paper of Schur [16] and a 1929 paper of Hardy-Littlewood-
Pólya [8]. That said, we note that HLP [8] doesn’t have a proof which
may not have appeared until their 1934 book [9] and that Karamata
proved a converse, namely, if x,y ∈ Rn

+ and the inequality holds for all
convex φ, then x ≻ y; see Simon [19, Theorem 15.5]).

The proof of Karamata’s theorem is simple. One notes the function
w 7→

∑n
j=1 φ(wj) is convex and permutation symmetric and then uses

Proposition 4.1.
Madrid and I found a simple criterion for majorization. Given the

vast literature on the subject, we suspected it was already known but
couldn’t find it before [13] was published although after I gave the talk
on this work, we were told that Astashkin et. al [2] had a contin-
uum analog a few months earlier (and it may well appear even earlier
somewhere!). Here is our criterion:

Proposition 4.3. Suppose that x,y ∈ Rn
+ with

∑n
j=1 xj =

∑n
j=1 yj

and that for some ℓ ∈ {2, . . . , n− 1}, one has that

j < ℓ⇒ x∗j > y∗j j ≥ ℓ⇒ x∗j ≤ y∗j (4.4)

Then x ≻ y.

Proof. Without loss, we can suppose that x = x∗, y = y∗. If k < ℓ, it is
immediate that

∑k
j=1 xj ≥

∑k
j=1 yj and similarly, it is immediate that

if k ≥ ℓ, then
∑n

j=k xj ≤
∑ℓ

j=k yj. Subtracting this from
∑n

j=1 xj =∑n
j=1 yj, we see that also for k ≥ ℓ, one has that

∑k
j=1 xj ≥

∑k
j=1 yj.

□

With this result in hand, we can turn to the proof of (3.6) at least
when S is half an odd integer. Let us begin by explaining the difference
between this case and the case of S integral. The point is that as j
runs through allowed values, there are degeneracies because (−j)2 = j2.
When 2S is odd, the total number of points is even, j = 0 is not allowed
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and every value occurs with multiplicity 2 so all values with the same
weight. When S is integral, 0 is an allowed value of j2 which has half
the weight of every other allowed value of j2 and this complicates the
analysis. Here is the 2S odd result and its proof:

Theorem 4.4 (Madrid, Simon and Wells [13]). Fix an integer N ≥
1, a function, ψ on [0, 1], which is non-negative, continuous, strictly
monotone increasing and convex and a function, Φ, on [−∥ψ∥∞, ∥ψ∥∞]
which is continuous, odd and whose restriction to [0, ∥ψ∥] is convex. Let

ψ = (N + 1)−1

N∑
j=0

ψ
(

j
N

)
(4.5)

Then
N∑
j=1

Φ
(
ψ
(

j
N

)
− ψ

)
≥ 0 (4.6)

Remark. By translation and scaling, this result can easily be general-
ized. For example, while stated for N+1 equally spaced points between
0 and 1, we will apply it to N + 1 half odd integers stating at 1

2
, i.e.

1
2
, 3
2
, . . . , N + 1

2
. The map k 7→ (k − 1

2
)/N maps those N + 1 half odd

integers into the points of the theorem. Taking into account that the
sum in (3.6) is twice the sum from 1

2
to S, we see that because j2 maps

to a non-negative, continuous, strictly monotone increasing and convex
function under k 7→ (k − 1

2
)/N and u 7→ u2m+1 is continuous, odd and

whose restriction to [0,∞) is convex, that we have the Corollary below.

Corollary 4.5 (Madrid, Simon and Wells [13]). (3.6) holds for for
m = 1, 2, . . . and S = 1

2
, 3
2
, 5
2
, 7
2
. . . .

Remark. (3.6) continues to hold if u2m+1 is replaced by any function
which is continuous, odd and whose restriction to [0,∞) is convex and
if j2 is replaced by any even, non-negative, continuous, function whose
restriction to [0,∞) is strictly monotone increasing and convex.

We need two preliminaries for the proof of Theorem 4.4:

Lemma 4.6. Let ψ be a convex function on [0, 1] and suppose that

0 ≤ b̃ ≡ 2c− b < ã ≡ 2c− a ≤ c ≤ a < b ≤ 1 (4.7)

Then
1
2
(ψ(b) + ψ(b̃)) ≥ 1

2
(ψ(a) + ψ(ã)) ≥ ψ(c) (4.8)

Moreover, the first inequality is strict unless ψ′(s) is constant on (ã, a).
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Proof. If one takes a = c and then replaces b by a, the first inequality
becomes the second so it suffices to prove the first one. Without loss
(by translation and scaling) we can take c = 1

2
, b = 1 so that b̃ = 0 and

ã = 1 − a. By the fundamental theorem of calculus (a general convex
function is not C1 but it is differentiable with the possible exception
of a countable set and the fundamental theorem of calculus holds; see
Simon [19, Theorem 1.28])

1
2
(ψ(1) + ψ(0))− 1

2
(ψ(a) + ψ(ã)) = 1

2

� 1

a

[ψ′(s)− ψ′(1− s)] ds (4.9)

By convexity, the integrand is non-negative so we have proven (4.8).
Moreover if ψ′(s) is not constant on (1 − a, a), then the integral is
strictly positive. □

Proposition 4.7. Let ψ, ψ and N be as in Theorem 4.4. Then

n ≡ #{j | ψ
(

j
N

)
≤ ψ} ≥ (N + 1)/2 (4.10)

and
ψ
(
1
2

)
≤ ψ ≤ 1

2
(ψ(0) + ψ(1)) (4.11)

Moreover, the inequalities in (4.11) are strict if N ≥ 2 and ψ is not an
affine function on [0, 1] (i.e. ψ′ is not constant).

Proof. For any j = 0, 1, . . . , N , (4.8) implies that

ψ
(
1
2

)
≤ 1

2

(
ψ
(

j
N

)
+ ψ

(
1− j

N

))
≤ 1

2
(ψ(0) + ψ(1)) (4.12)

Averaging over j yields (4.11). If ψ is not affine on [0, 1], then the
second inequality is strict for 1 ≤ j ≤ N − 1 so the second inequality
in (4.11) is strict. Since ψ

(
1
2

)
< 1

2
(ψ(0) + ψ(1)) if ψ is not affine, we

see that in the case the first inequality is always strict.
Since ψ is strictly monotone, the first inequality in (4.11) implies

the unique x ∈ [0, 1] with ψ(x) = ψ has x ≥ 1
2
. This implies that

n = #{j | j
N

≤ x} ≥ #{j | j
N

≤ 1
2
} ≥ (N + 1)/2. □

Proof of Theorem 4.4. Let q = N + 1− n ≤ n by (4.9). Define

yj = ψ − ψ
(
j−1
N

)
j = 1, . . . , n (4.13)

xj =

{
ψ
(
N+1−j

N

)
− ψ if j = 1, . . . , q

0, if j ≥ q
(4.14)

Since ψ is monotone and n is defined by (4.10), we have that x,y ∈
Rn

+,≥ = {x ∈ Rn
+ | x1 ≥ . . . ,≥ xn}. By the definition of ψ, we have

that
n∑

j=1

xj =
n∑

j=1

yj (4.15)
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If N = 1 or ψ is affine on [0, 1], it is easy to see that xj = yj for
all j, so, since Φ is odd, we have that (4.1) holds. Thus henceforth we
will suppose that N ≥ 2 and ψ is not an affine function on [0, 1], so, in
particular, the inequalities in (4.11) are strict.

Note next that because ψ is assumed convex, we have that

m < p⇒ ψ
(
m+1
N

)
− ψ

(
m
N

)
≤ ψ

(
p+1
N

)
− ψ

(
p
N

)
(4.16)

By the strict form of (4.11), x1 > y1. Because of (4.15), there must
be a first ℓ so that xℓ ≤ yℓ. We claim that if ℓ < n, then xℓ+1 ≤ yℓ+1.
If ℓ+1 > q, then xℓ+1 = 0 and the required inequality is immediate. If
ℓ + 1 ≤ q, then (4.16) implies that xℓ − xℓ+1 ≥ yℓ − yℓ+1. Subtracting
this from xℓ ≤ yℓ proves that xℓ+1 ≤ yℓ+1. Repeating this argument,
proves that for all j ≥ ℓ we have that xj ≤ yj. Thus by Proposition
4.3, x ≻ y.

By Karamata’s inequality, (4.3), we conclude that
∑n

j=1 Φ(xj) −
Φ(yj) ≥ 0. Since Φ is odd and Φ(0) = 0, this is equivalent to (4.6). □

Example 4.8. To understand why we need the extra condition to han-
dle the case when S is integral, consider dµ̃S for S = 6 scaled to have
spacing 1, i.e. 13 pure points with weight 1/13 at 0,±1,±2,±3,±4,±5,
±6. The average of the square is 14. The values of j2 are j2 =
0, 1, 1, 4, 4, 9, 9, 16, 16, 25, 25, 36, 36 so n = 7 values are less than 14
and one sees that (ignore w for now)

x = 22, 22, 11, 11, 2, 2, 0

y = 14, 13, 13, 10, 10, 5, 5

w = 22, 22, 0, 11, 11, 2, 2 (4.17)

One can verify that x ≻ y by hand (and, below, we will prove the
result for all S ≥ 2) but one can’t use Proposition 4.3 as we did in our
proof of Theorem 4.4 for xj − yj shifts signs three times instead of one
time. The problem is that the components of x and y are paired but
shifted.

Look at w which we get by moving the 0 from position 7 to position
3. One can handle the first three partial sums by noting that 22+22 ≥
14 + 13 + 13 and the remaining partial sums by noting that there is
only one sign change after the third place and use Proposition 4.3 to
prove the partial sums of w dominate those of y and note it is trivial
that partial sums of x dominate those of w. The key is that by moving
the 0, the pairs are no longer shifted.

We will need an extra condition that implies as in this example, the
partial sum of the first two xj’s dominates the partial sum of the first
three yk’s. The general theorem analogous to Theorem 4.4 is
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Theorem 4.9 (Madrid, Simon and Wells [13]). Fix an integer N ≥ 2
and an even, continuous, convex function, ψ on [−1, 1] and a function,
Φ, on [−∥ψ∥∞, ∥ψ∥∞] which is continuous, odd and whose restriction
to [0, ∥ψ∥] is convex. Let ψ be given by

ψ = (2N + 1)−1

N∑
j=−N

ψ
(

j
N

)
(4.18)

Suppose that

2ψ(1) + ψ(0) + 2ψ
(

1
N

)
≥ 5ψ (4.19)

If N is odd, suppose that

ψ
(
1
2
+ 1

2N

)
≤ ψ (4.20)

Then
N∑

j=−N

Φ
(
ψ
(

j
N

)
− ψ

)
≥ 0 (4.21)

Remarks. 1. The condition (4.19) is exactly the condition that the
partial sum of the first 2 xj’s dominates the partial sum of the first
three yk’s.

2. It might be true that this theorem holds without the need for the
condition (4.19) but it holds in the case we need so MSW didn’t try
hard to eliminate it. The example above shows why a naive extension
of the proof of Theorem 4.4 doesn’t work and led to the extra condition.
We do note that (4.19) is a restriction. If we normalize ψ by ψ(0) =
0, ψ(1) = 1, then in the limit as N → ∞, (4.19) becomes� 1

0

ψ(x) dx ≤ 2
5

(4.22)

which for ψ(x) = |x|p requires p ≥ 3
2
while convexity only requires

p ≥ 1.
3. On the other hand, (4.20) is quite natural independent of our

method of proof; see Madrid, Simon and Wells [13].

The reader can check Madrid, Simon and Wells [13] for the proof but
we note it combines the ideas of the proof of Theorem 4.4 and Example
4.8. We should give the details of checking that the Theorem proves
(3.6) for S = 2, 3, 4, . . . . One needs to check (4.18) and (4.20), the
latter for S(= N) odd and S ≥ 3. These are

2S2 + 2 ≥ 5
3
S(S + 1); S = 2, 3, 4, . . . (4.23)

S2(1
2
+ 1

2S
)2 ≤ 1

3
S(S + 1); S = 3, 5, 7, . . . (4.24)
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(4.23) is equivalent to 0 ≤ S2−5S+6 = (S−2)(S−3) which holds for
all integral S. (4.24) is equivalent to 0 ≤ S2 − 2S − 3 = (S − 3)(S +1)
which holds for all S ≥ 3.

5. The End of the Story

In our first Zoom call, José also suggested it would be good to try
again to locate Daniel Wells. I wasn’t starting at ground zero. While I
got nothing from Indiana University, I talked about this material dur-
ing the conference in honor of my 75th birthday and Leonard Schulman,
a computer scientist at Caltech (and son of a student of Arthur Wight-
man), heard my talk and did some Google searching. He found a short
story available via Kindle on Amazon whose About the Author read

Daniel R Wells was born in Sterling, Illinois on March 15, 1945. He
attended the local parochial schools and graduated from high school in
1963. In October of that year he enlisted in the United States Navy
and served for four years. After the Navy, he started college in 1968,
studying mathematics, eventually earning a PhD from Indiana Univer-
sity in 1977. He taught mathematics for two years at Texas A&M and
then returned to school at the University of Illinois to study computer
science. He achieved a PhD in 1982 and worked for various companies
as a software engineer until he retired in 2004.

I wasn’t clever enough to pull on the right threads of this fabric.
Since I had friends at Texas A&M, I consulted them to see if they
could find any record. Nope. I tried to leave a “review” of his book
saying I wanted to contact the author about his thesis but Amazon
said it wasn’t a review and wouldn’t post it. I bought his Kindle book
hoping it might provide more information but it didn’t. What I should
have done is contact U of I computer science where he got his second
PhD. and where he has continued to do some teaching.

Spurred by José, I posted a message on Facebook where I have a
group of friends mainly mathematicians and theoretical physicists. The
message gave some background and asked if anyone had any idea how
to follow up. Joshua Paik, a math grad student at Penn State told me
he regarded himself as an internet sleuth. The next morning I had a
link in a private message from Mr. Paik to a Find a Person internet
site with the right name, the right age who lived in the town where
the Amazon profile said Wells was born. Shortly after that, Mr. Paik
sent me what he though might be Wells’ email address. I contacted
the email address asking if the recipient was a Daniel Wells who got a
math PhD in Indiana then sent him the current draft and asked him
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to be a coauthor - after all, 2.5 out of 6 sections were from his thesis!
He agreed, so in less than a week, I picked up two coauthors.

The next week, José and I zoomed with Daniel and I got some more
background. Wells had gone to Texas A&M for a postdoc, written up
his thesis with the addition of the rotor-Ising comparison theorem and
sent the preprint that Aizenman and I referred to off to a journal where
it should have been accepted. But it was rejected. At this point, his
thesis advisor should have stepped in and explained the facts of life:
just as there are bad papers, there are bad referees and one should send
the paper off to another journal. But alas, Slim Sherman, his advisor,
had passed away shortly before he took his oral exam and wasn’t there
to advise him. This was in the old days when postdocs didn’t have
formal advisors! Wells was so discouraged, he totally left mathematics
even though he’d written a very good thesis. Sometimes the system
doesn’t work.

The moral is that young workers in particular need someone to say
to them: Jerk, submit it to another journal. Your reaction might be
that I’m the wrong one to say that since surely I’ve never had any of
my papers rejected. But I’ve had many papers rejected. I thought
I’d close with two amusing stories of rejections so that you might even
respond to rejection with some humor.

One involves my paper with Elliott Lieb [12] whose main result was
that Thomas-Fermi Theory was exact in a certain limit of large Zatoms
and molecules. It was significant enough that on its 35th anniversary,
some quantum chemists had a conference marking the occasion! This
announcement was originally rejected by Physical Review Letters with
a report that paraphrased began This paper is one of the worst papers
I have ever seen. It is a sequence of unproven assertions(true; it was
an announcement after all) many of which are obviously wrong. For ex-
ample, the author assert that the Thomas-Fermi density is C∞ which
would make it 0, 1 or ∞ depending on the value of C. The referee
was clearly unfamiliar with modern mathematical notation and incom-
petent to evaluate a paper in mathematical physics. We complained
and asked for a second referee who accepted it. (General, I do not
recommend resubmitting to the same journal).

The other involves my paper with Christiansen and Zinchenko [4]
which settled a 40 year old conjecture of Widom [24] which was re-
garded as a major open question in the asymptotics of extremal poly-
nomials. I thought it was good enough that we should submit it to
one of the top three math journals but for various reasons, one of my
coauthors wanted it to go to a journal just below those three. We got
a quick rejection that paraphrased said It is nice to have a 40 year old
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conjecture resolved but this paper should be rejected because the proof is
too easy so it isn’t up to the high standard of < journalname >. I was
scandalized by this report so we submitted it after all to a top three
journal where it was accepted!
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