
UNITARIES PERMUTING TWO ORTHOGONAL
PROJECTIONS

BARRY SIMON1,2

Abstract. Let P and Q be two orthogonal projections on a sep-
arable Hilbert space, H. Wang, Du and Dou proved that there
exists a unitary, U , with UPU−1 = Q, UQU−1 = P if and only
if dim(kerP ∩ ker(1 − Q)) = dim(kerQ ∩ ker(1 − P )) (both may
be infinite). We provide a new proof using the supersymmetric
machinery of Avron, Seiler and Simon.

Let P and Q be two orthogonal projections on a separable Hilbert
space, H. It is a basic result in eigenvalue perturbations theory that
when

‖P −Q‖ < 1 (1)

there exists a unitary U so that

UP = QU (2)

It is even known that there exist unitaries, U , so that

UPU−1 = Q, UQU−1 = P (3)

The simpler question involving (2) goes back to Sz-Nagy [13] and
was further studied by Kato [9] who found a cleaner formula for U
than Sz-Nagy, namely Kato used

U = [QP + (1−Q)(1− P )]
[
1− (P −Q)2

]−1/2
(4)

Using Nagy’s formula, Wolf [15] had extended this to arbitrary pairs
of projections on a Banach space (requiring only that U is invertible
rather than unitary) so long as

‖P −Q‖‖P‖2 < 1 ‖P −Q‖‖Q‖2 < 1 (5)

For non–orthogonal projections and projections on a Banach space, in
general, ‖P‖ ≥ 1 with equality in the Hilbert space case only if P is
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orthogonal so (5) is strictly stronger than (1). One advantage of Kato’s
form (4), is that in the Banach space case where the square root can
be defined by a power series, it only requires (1).

For the applications they had in mind, it is critical not only that U
exist but that on the set of pairs that (1) holds, U is analytic in P and
Q. For they considered an analytic family, A(z), and λ0 an isolated
eigenvalue of A(0) of finite algebraic multiplicity. Then one can define

P (z) =
1

2πi

∮
|λ−λ0|=r

(λ− A(z))−1dλ

for fixed small r and |z| small. For |z| very small, ‖P (z)− P (0)‖ < 1.
If U(z) is given by (4) with Q = P (z), then U(z)A(z)U(z)−1 leaves
ranP (0) invariant and the study of eigenvalues of A(z) near λ0 is re-
duced to the finite dimensional problem U(z)A(z)U(z)−1 � ranP (0).
See the books of Kato [10], Baumgärtel [3] or Simon [12] for this sub-
ject.

There is a rich structure of pairs of orthogonal projections when (1)
might fail using two approaches. One goes back to Krein et al. [11],
Diximier [6], Davis [5] and Halmos [7]. Let

KP,Q = ranP ∩ kerQ (6)

The four mutually orthogonal spaces KP,Q, KP,1−Q, K1−P,Q,
K1−P,1−Q are invariant for P and Q and their mutual orthogonal com-
plement has a kind of 2× 2 matrix structure. Böttcher-Spitkovsky [4]
have a comprehensive review of this approach. Following them, we’ll
call this the Halmos approach since his paper had the clearest version
of it.

A second approach, introduced by Avron–Seiler–Simon [2],uses the
operators

A = P −Q, B = 1− P −Q (7)

which, by simple calculations, obey

A2 +B2 = 1, AB +BA = 0, [P,A] = [Q,A] = [P,B] = [Q,B] = 0
(8)

The last equations (at least for A) go back to the 1940’s and were re-
alized by Dixmier, Kadison and Mackey. The definition of B and first
equation in (8) were noted by Kato [9] who found the middle equation
in 1971 but never published it. Because (8) involves a vanishing anti-
commutator, we call the use of the operators in (7) the supersymmetric
approach. One consequence of (8) is that it implies that if P − Q is
trace class, then its trace is an integer–indeed, as we’ll discuss below,
it is the index of a certain Fredholm operator.
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The two approaches are related as shown by Amerein–Sinha [1] (see
also Takesaki [14, pp 306-308] and Halpern [8]). In [16], Wang, Du and
Dou proved the following lovely theorem

Theorem 1. Let P and Q be two orthogonal projections on a separable
Hilbert space, H. Then there exists a unitary obeying (3) if and only if

dim(KP,Q) = dim(K1−P,1−Q) (9)

The literature on pairs of projections is so large that it is possible this
was also proven elsewhere. Their proof uses the Halmos representation.
Our goal here is to provide a supersymmetric proof which seems to us
simpler and more algebraic (although we understand that simplicity is
in the eye of the beholder). Our proof will also have a simple explicit
form for U . Before turning to the proof, we want to note two corollaries
of Theorem 1.

One notes first that since ranR = ker(1 − R) for any projection R
and P,Q ≥ 0, we have that

KP,Q = {ϕ |Aϕ = ϕ}, K1−P,1−Q = {ϕ |Aϕ = −ϕ}

Thus (1)⇒ dimKP,Q = K1−P,1−Q = 0, so Theorem 1 implies

Corollary 2. (1)⇒ the existence of U obeying (3).

The second corollary concerns the case where P −Q is compact. In
that case K = QP � ranP as a map of ranP to ranQ is Fredholm and
KP,Q = kerK while K1−P,1−Q = ranK⊥ so (9) is equivalent to saying
that the index of K is 0 so we get

Corollary 3. If P − Q is compact, then there exists a U obeying (3)
if and only if Index = 0.

Avron el al [2] essentially had these two corollaries many years before
[16] and this note points out that while [2] didn’t consider the general
case of Theorem 1, there is a small addition to their argument that
proves the general result.

Lemma 4. To prove Theorem 1, it suffices to prove it in the case where
KP,Q = K1−P,1−Q = {0}.

Proof. Let H1 = KP,Q ⊕ K1−P,1−Q and H2 = H⊥1 . Note that KP,Q is
orthogonal to K1−P,1−Q since ranP is orthogonal to kerP . P and Q
leave H1 invariant and so H2.

If there is U obeying (3), then U is a unitary map of KP,Q to K1−P,1−Q
so their dimensions are equal and (9) holds. On the other hand, if (9)
holds, there is a unitary map V on H1 that maps KP,Q to K1−P,1−Q and



4 B. SIMON

vice versa. Clearly V P � H1V
−1 = Q � H1 and V Q � H1V

−1 = P � H1

since P � KP,Q = 1, P � K1−P,1−Q, Q � KP,Q = 0, Q � K1−P,1−Q = 1.
P2 = P � H2, Q2 = Q � H2 obey KP2,Q2 = K1−P2,1−Q2 = {0}. Thus

the special case of the theorem implies there is a unitary W : H2 → H2

with WP2W
−1 = Q2,WQ2W

−1 = P2. U = V ⊕W solves (3) �

Proof of Theorem 1. By the lemma we can suppose that A doesn’t have
eigenvalues ±1, so B2 = 1 − A2 has kerB2 = 0. Thus kerB = 0. It
follows that

s− lim
ε↓0

B(|B|+ ε)−1 = sgn(B) ≡ U (10)

where

sgn(x) =

 1, if x > 0
0, if x = 0
−1, if x < 0

(11)

so that sgn(B) is unitary since kerB = 0.
Since

BA = −AB (12)

we see that
B2A = AB2 (13)

so by properties of the square root ([12, Thm. 2.4.4])

(|B|+ ε)A = A(|B|+ ε) (14)

Thus (12) implies that

(|B|+ ε)−1BA = −AB(|B|+ ε)−1 (15)

By (10), we see that
UAU−1 = −A (16)

Since U is a function of B

UB = BU ⇒ UBU−1 = B (17)

We have that

P = 1
2
(A−B + 1), Q = 1

2
(−A−B + 1) (18)

so, by (16) and (17), we have (3). �

To understand the difference between (4) and (5), we note that
in case H = C2 and P,Q are two one-dimensional projections with
Tr(PQ) = cos2 θ (so θ is the angle between ranP and ranQ), the U
of (5) is rotation by angle θ while the U of (4) is reflection in the
perpendicular bisector.

One interesting open question is whether there are extension of The-
orem 1 (with U unitary replaced by U invertible) to non-self-adjoint
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Hilbert space projections and to general pairs of projections on a Ba-
nach space.
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