UNITARIES PERMUTING TWO ORTHOGONAL PROJECTIONS

BARRY SIMON^{1,2}

ABSTRACT. Let P and Q be two orthogonal projections on a separable Hilbert space, \mathcal{H} . Wang, Du and Dou proved that there exists a unitary, U, with $UPU^{-1} = Q$, $UQU^{-1} = P$ if and only if dim(ker $P \cap \text{ker}(1 - Q)$) = dim(ker $Q \cap \text{ker}(1 - P)$) (both may be infinite). We provide a new proof using the supersymmetric machinery of Avron, Seiler and Simon.

Let P and Q be two orthogonal projections on a separable Hilbert space, \mathcal{H} . It is a basic result in eigenvalue perturbations theory that when

$$\|P - Q\| < 1 \tag{1}$$

there exists a unitary U so that

$$UP = QU \tag{2}$$

It is even known that there exist unitaries, U, so that

$$UPU^{-1} = Q, \quad UQU^{-1} = P$$
 (3)

The simpler question involving (2) goes back to Sz-Nagy [13] and was further studied by Kato [9] who found a cleaner formula for Uthan Sz-Nagy, namely Kato used

$$U = [QP + (1 - Q)(1 - P)] \left[1 - (P - Q)^2\right]^{-1/2}$$
(4)

Using Nagy's formula, Wolf [15] had extended this to arbitrary pairs of projections on a Banach space (requiring only that U is invertible rather than unitary) so long as

$$||P - Q|| ||P||^2 < 1 \qquad ||P - Q|| ||Q||^2 < 1$$
(5)

For non–orthogonal projections and projections on a Banach space, in general, $||P|| \ge 1$ with equality in the Hilbert space case only if P is

Date: March 15, 2017.

²⁰¹⁰ Mathematics Subject Classification. 47A05, 47A46, 47A53.

Key words and phrases. Pairs of Projections, Index.

¹ Departments of Mathematics and Physics, Mathematics 253-37, California Institute of Technology, Pasadena, CA 91125. E-mail: bsimon@caltech.edu.

 $^{^2}$ Research supported in part by NSF grant DMS-1265592 and in part by Israeli BSF Grant No. 2010348.

B. SIMON

orthogonal so (5) is strictly stronger than (1). One advantage of Kato's form (4), is that in the Banach space case where the square root can be defined by a power series, it only requires (1).

For the applications they had in mind, it is critical not only that U exist but that on the set of pairs that (1) holds, U is analytic in P and Q. For they considered an analytic family, A(z), and λ_0 an isolated eigenvalue of A(0) of finite algebraic multiplicity. Then one can define

$$P(z) = \frac{1}{2\pi i} \oint_{|\lambda - \lambda_0| = r} (\lambda - A(z))^{-1} d\lambda$$

for fixed small r and |z| small. For |z| very small, ||P(z) - P(0)|| < 1. If U(z) is given by (4) with Q = P(z), then $U(z)A(z)U(z)^{-1}$ leaves ranP(0) invariant and the study of eigenvalues of A(z) near λ_0 is reduced to the finite dimensional problem $U(z)A(z)U(z)^{-1} \upharpoonright \operatorname{ran} P(0)$. See the books of Kato [10], Baumgärtel [3] or Simon [12] for this subject.

There is a rich structure of pairs of orthogonal projections when (1) might fail using two approaches. One goes back to Krein et al. [11], Diximier [6], Davis [5] and Halmos [7]. Let

$$\mathcal{K}_{P,Q} = \operatorname{ran}P \cap \ker Q \tag{6}$$

The four mutually orthogonal spaces $\mathcal{K}_{P,Q}$, $\mathcal{K}_{P,1-Q}$, $\mathcal{K}_{1-P,Q}$,

 $\mathcal{K}_{1-P,1-Q}$ are invariant for P and Q and their mutual orthogonal complement has a kind of 2×2 matrix structure. Böttcher-Spitkovsky [4] have a comprehensive review of this approach. Following them, we'll call this the Halmos approach since his paper had the clearest version of it.

A second approach, introduced by Avron–Seiler–Simon [2], uses the operators

$$A = P - Q, \qquad B = 1 - P - Q \tag{7}$$

which, by simple calculations, obey

$$A^{2} + B^{2} = 1$$
, $AB + BA = 0$, $[P, A] = [Q, A] = [P, B] = [Q, B] = 0$
(8)

The last equations (at least for A) go back to the 1940's and were realized by Dixmier, Kadison and Mackey. The definition of B and first equation in (8) were noted by Kato [9] who found the middle equation in 1971 but never published it. Because (8) involves a vanishing anticommutator, we call the use of the operators in (7) the supersymmetric approach. One consequence of (8) is that it implies that if P - Q is trace class, then its trace is an integer-indeed, as we'll discuss below, it is the index of a certain Fredholm operator. The two approaches are related as shown by Amerein–Sinha [1] (see also Takesaki [14, pp 306-308] and Halpern [8]). In [16], Wang, Du and Dou proved the following lovely theorem

Theorem 1. Let P and Q be two orthogonal projections on a separable Hilbert space, \mathcal{H} . Then there exists a unitary obeying (3) if and only if

$$\dim(\mathcal{K}_{P,Q}) = \dim(\mathcal{K}_{1-P,1-Q}) \tag{9}$$

The literature on pairs of projections is so large that it is possible this was also proven elsewhere. Their proof uses the Halmos representation. Our goal here is to provide a supersymmetric proof which seems to us simpler and more algebraic (although we understand that simplicity is in the eye of the beholder). Our proof will also have a simple explicit form for U. Before turning to the proof, we want to note two corollaries of Theorem 1.

One notes first that since $\operatorname{ran} R = \ker(1 - R)$ for any projection R and $P, Q \ge 0$, we have that

$$\mathcal{K}_{P,Q} = \{\varphi \,|\, A\varphi = \varphi\}, \quad \mathcal{K}_{1-P,1-Q} = \{\varphi \,|\, A\varphi = -\varphi\}$$

Thus (1) $\Rightarrow \dim \mathcal{K}_{P,Q} = \mathcal{K}_{1-P,1-Q} = 0$, so Theorem 1 implies

Corollary 2. (1) \Rightarrow the existence of U obeying (3).

The second corollary concerns the case where P - Q is compact. In that case $K = QP \upharpoonright \operatorname{ran} P$ as a map of ran P to ran Q is Fredholm and $\mathcal{K}_{P,Q} = \ker K$ while $\mathcal{K}_{1-P,1-Q} = \operatorname{ran} K^{\perp}$ so (9) is equivalent to saying that the index of K is 0 so we get

Corollary 3. If P - Q is compact, then there exists a U obeying (3) if and only if Index = 0.

Avron el al [2] essentially had these two corollaries many years before [16] and this note points out that while [2] didn't consider the general case of Theorem 1, there is a small addition to their argument that proves the general result.

Lemma 4. To prove Theorem 1, it suffices to prove it in the case where $\mathcal{K}_{P,Q} = \mathcal{K}_{1-P,1-Q} = \{0\}.$

Proof. Let $\mathcal{H}_1 = \mathcal{K}_{P,Q} \oplus \mathcal{K}_{1-P,1-Q}$ and $\mathcal{H}_2 = \mathcal{H}_1^{\perp}$. Note that $\mathcal{K}_{P,Q}$ is orthogonal to $\mathcal{K}_{1-P,1-Q}$ since ran P is orthogonal to ker P. P and Q leave \mathcal{H}_1 invariant and so \mathcal{H}_2 .

If there is U obeying (3), then U is a unitary map of $\mathcal{K}_{P,Q}$ to $\mathcal{K}_{1-P,1-Q}$ so their dimensions are equal and (9) holds. On the other hand, if (9) holds, there is a unitary map V on \mathcal{H}_1 that maps $\mathcal{K}_{P,Q}$ to $\mathcal{K}_{1-P,1-Q}$ and B. SIMON

vice versa. Clearly $VP \upharpoonright \mathcal{H}_1 V^{-1} = Q \upharpoonright \mathcal{H}_1$ and $VQ \upharpoonright \mathcal{H}_1 V^{-1} = P \upharpoonright \mathcal{H}_1$ since $P \upharpoonright \mathcal{K}_{P,Q} = \mathbf{1}, P \upharpoonright \mathcal{K}_{1-P,1-Q}, Q \upharpoonright \mathcal{K}_{P,Q} = 0, Q \upharpoonright \mathcal{K}_{1-P,1-Q} = \mathbf{1}.$

 $P_2 = P \upharpoonright \mathcal{H}_2, Q_2 = Q \upharpoonright \mathcal{H}_2 \text{ obey } \mathcal{K}_{P_2,Q_2} = \mathcal{K}_{1-P_2,1-Q_2} = \{0\}.$ Thus the special case of the theorem implies there is a unitary $W : \mathcal{H}_2 \to \mathcal{H}_2$ with $WP_2W^{-1} = Q_2, WQ_2W^{-1} = P_2.$ $U = V \oplus W$ solves (3)

Proof of Theorem 1. By the lemma we can suppose that A doesn't have eigenvalues ± 1 , so $B^2 = 1 - A^2$ has ker $B^2 = 0$. Thus ker B = 0. It follows that

$$s - \lim_{\epsilon \downarrow 0} B(|B| + \epsilon)^{-1} = \operatorname{sgn}(B) \equiv U$$
(10)

where

$$\operatorname{sgn}(x) = \begin{cases} 1, & \text{if } x > 0\\ 0, & \text{if } x = 0\\ -1, & \text{if } x < 0 \end{cases}$$
(11)

so that sgn(B) is unitary since ker B = 0.

Since

$$BA = -AB \tag{12}$$

we see that

$$B^2 A = A B^2 \tag{13}$$

so by properties of the square root ([12, Thm. 2.4.4])

$$(|B| + \epsilon)A = A(|B| + \epsilon) \tag{14}$$

Thus (12) implies that

$$(|B| + \epsilon)^{-1}BA = -AB(|B| + \epsilon)^{-1}$$
 (15)

By (10), we see that

$$UAU^{-1} = -A \tag{16}$$

Since U is a function of B

$$UB = BU \Rightarrow UBU^{-1} = B \tag{17}$$

We have that

$$P = \frac{1}{2}(A - B + \mathbf{1}), \qquad Q = \frac{1}{2}(-A - B + \mathbf{1})$$
(18)

so, by (16) and (17), we have (3).

To understand the difference between (4) and (5), we note that in case $\mathcal{H} = \mathbb{C}^2$ and P, Q are two one-dimensional projections with $\operatorname{Tr}(PQ) = \cos^2 \theta$ (so θ is the angle between ran P and ran Q), the Uof (5) is rotation by angle θ while the U of (4) is reflection in the perpendicular bisector.

One interesting open question is whether there are extension of Theorem 1 (with U unitary replaced by U invertible) to non-self-adjoint

4

Hilbert space projections and to general pairs of projections on a Banach space.

References

- W. Amrein, and K. Sinha, On pairs of projections in a Hilbert space, Linear Algebra Appl. 208/209 (1994), 425–435.
- [2] J. Avron, R. Seiler, and B.Simon, The index of a pair of projections, J. Funct. Anal. 120 (1994), 220–237.
- [3] H. Baumgärtel, Analytic Perturbation Theory for Matrices and Operators, Birkhauser, Boston, 1985
- [4] A. Böttcher, I. Spitkovsky, A gentle guide to the basics of two projections theory, Linear Algebra Appl. 432 (2010), 1412–1459.
- [5] C. Davis, Separation of two linear subspaces, Acta Sci. Math. (Szeged) 16 (1958), 172–187.
- [6] J. Dixmier, Position relative de deux varits linaires fermes dans un espace de Hilbert, Revue Sci. 86 (1948), 387–399.
- [7] P. Halmos, Two subspaces, Trans. Amer. Math. Soc. 144 (1969), 381–389.
- [8] H. Halpern, MathSciNet review of [2]; MR1262254 (1995)
- [9] T. Kato, Notes on projections and perturbation theory, Technical Report No. 9, Univ. Calif., Berkley, 1955.
- [10] T. Kato, Perturbation Theory for linear Operators, 2nd edition, Grundlehren der Mathematischen Wissenschaften, 132, Springer-Verlag, Berlin-New York, 1976.
- [11] M. Krein, M. Krasnoselski, and D. Milman, On the defect numbers of operators in Banach spaces and on some geometric questions, Trudy Inst. Mat. Akad. Nauk Ukrain. SSR 11 (1948), 97–112.
- [12] B. Simon, A Comprehensive Course in Analysis, Part 4, Operator Theory, American Mathematical Society, Providence, R.I., 2015.
- [13] B. Sz.-Nagy, B., Perturbations des transformations autoadjointes dans l'espace de Hilbert, Commentarii Math.Helv. 19 (1947), 347–366.
- [14] M. Takesaki, Theory of Operator Algebras I, Springer-Verlag, New York, 1979
- [15] F. Wolf, Analytic perturbation of operators in Banach spaces, Math. Ann. 124 (1952), 317–333.
- [16] Y. Wang, H. Du, and Y. Dou, On the index of Fredholm pairs of idempotents, Acta Math. Sin. (Engl. Ser.) 25 (2009), 679–686.