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Abstract

We consider a gas of fermions at zero temperature and low density, interacting
via a microscopic two body potential which admits a bound state. The particles are
confined to a domain with Dirichlet (i.e. zero) boundary conditions. Starting from
the microscopic BCS theory, we derive an effective macroscopic Gross-Pitaevskii (GP)
theory describing the condensate of fermion pairs. The GP theory also has Dirichlet
boundary conditions.

Along the way, we prove that the GP energy, defined with Dirichlet boundary
conditions on a bounded Lipschitz domain, is continuous under interior and exterior
approximations of that domain.
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1 Introduction

We consider a gas of fermions at zero temperature in d = 1, 2, 3 dimensions and at
chemical potential µ < 0. The particles are confined to an open and bounded domain
Ω ⊆ Rd with Dirichlet (i.e. zero) boundary conditions. They interact via a microscopic
local two body potential V which admits a two body bound state. Additionally, the
particles are subjected to a weak external field W , which varies on a macroscopic length
scale.

At low particle density, this leads to tightly bound fermion pairs. The pairs will
approximately look like bosons to one another and, since we are at zero temperature,
they will form a Bose-Einstein condensate (BEC). It was realized in the 1980s [26, 31]
that BCS theory, initially used to describe Cooper pair formation in superconductors
on much larger (but still microscopic) length scales [3], also applies in this situation.
Moreover, the macroscopic variations of the condensate density are given in terms
of the nonlinear Gross-Pitaevskii (GP) theory [11, 32, 33]. An effective GP theory
was recently derived mathematically starting from the microscopic BCS theory, see
[4, 22] for the stationary case and [21] for the time-dependent case. This is in the
spirit of Gorkov’s paper [19] on how Ginzburg-Landau theory arises from BCS theory
for superconductors at positive temperature. The latter problem has been intensely
studied mathematically in recent years [14, 15, 16, 17, 23].

The papers mentioned above all work under the assumption that the system has no
boundary (either by working on the torus or on the whole space). In the present paper,
we start from low-density BCS theory with Dirichlet boundary conditions and we show
that the effective macroscopic GP theory also has Dirichlet boundary conditions.

Our result is also new in the linear setting. The formal statement and its compar-
atively short proof can be found in Appendix E and we hope that this part may serve
to illustrate the ideas to a wider audience. In a nutshell, in the linear case we consider
the two body Schrödinger operator

Hh :=
h2

2
(−∆Ω,x +W (x)−∆Ω,y +W (y)) + V

(
x− y
h

)
,

acting on L2(Ω× Ω), where −∆Ω is the Dirichlet Laplacian. Hh describes the energy
of a fermion pair confined to Ω. While the center of mass variable x+y

2 and the relative
variable x − y do not decouple as usual due to the boundary conditions, we show that
the ground state energy of Hh can be computed in a decoupled manner when h → 0.
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Namely, one can separately minimize (a) in the relative variable without boundary
conditions and (b) in the center of mass variable with Dirichlet boundary conditions
and combine the results to obtain the leading and subleading terms in the asymptotics
ground state energy of Hh as h ↓ 0. For the details, we refer to Theorem E.1.

At positive temperature, de Gennes [9] predicted that BCS theory with Dirichlet
boundary conditions should instead lead to a Ginzburg-Landau theory with Neumann
boundary conditions. We believe that the discrepancy with our result here is due to
the fact that we study the system in the low density limit.

1.1 BCS theory with a boundary

Let Ω ⊂ Rd, d = 1, 2, 3 be open, further assumptions on Ω are described below. In
the BCS model, one restricts to BCS states (also called “quasi-free” states), which are
fully described by an operator

Γ =

(
γ α
α 1− γ

)
, 0 ≤ Γ ≤ 1 (1.1)

acting on L2(Ω) ⊕ L2(Ω). Physically, γ is the one body density matrix and α is the
fermion pairing function, see also Remark 1.1 (ii). The condition 0 ≤ Γ ≤ 1 implies
that 0 ≤ γ ≤ 1, α = α∗ and 0 ≤ αα ≤ γ − γ2.

We let h > 0 denote the (small) ratio between the microscopic and macroscopic
length scales. The energy of unpaired electrons at chemical potential µ < 0 is described
by the one body Hamiltonian

h = −h2∆Ω + h2W − µ, W : Ω→ R.

Here, −∆Ω is the Dirichlet Laplacian on Ω. By definition, it is the self-adjoint operator
which by the KLMN theorem corresponds to the quadratic form∫

Ω
|∇f(x)|2dx, f ∈ H1

0 (Ω).

In macroscopic units, the BCS energy of a BCS state Γ is given by

EBCSµ (Γ) = Tr [hγ] +

∫∫
Ω2

V

(
x− y
h

)
|α(x, y)|2dxdy. (1.2)

Remark 1.1. (i) The formulation of the BCS model that we use is due to [2, 10]. A
heuristic derivation from the quantum many body Hamiltonian can be found in
the appendix to [20].

(ii) The matrix elements of a BCS state Γ have the following physical significance.
If we write 〈·〉 for the expectation value of an observable in the system state

and γ(x, y), α(x, y) for the operator kernels of γ, α, then γ(x, y) = 〈a†xay〉 is the
one-particle density matrix and α(x, y) = 〈axay〉 is the fermion pairing function.

(Here a†x, ax denote the fermion creation and annihilation operators as usual.)

We will abuse notation and denote the kernel functions of γ and α by γ and α as
well.
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(iii) We ignore spin variables. Implicitly, the pairing function α(x, y) (which is sym-
metric since α∗ = α) is to be tensored with a spin singlet, yielding an antisym-
metric two body wave function, as is required for fermions.

(iv) For simplicity, we do not include an external magnetic field in the model. There
is no apparent obstruction to applying the methods with a sufficiently regular
and weak external magnetic field as in [14, 16, 22].

Throughout, we make

Assumption 1.2 (Regularity of V and W ). V : Rd → R is a locally integrable function
that is infinitesimally form-bounded with respect to −∆ (the ordinary Laplacian) and
V is reflection-symmetric, i.e. V (x) = V (−x). Moreover, −∆ + V admits a ground
state of negative energy −Eb.

We also assume that W ∈ LpW (Ω) with 2 ≤ pW ≤ ∞ if d = 1, 2 < pW ≤ ∞ if
d = 2 and 3 ≤ pW ≤ ∞ if d = 3.

Remark 1.3. (i) The assumption that V admits a two-particle bound state is critical
for the fermion pairs to condense. Without it, the pairs would prefer to drift far
apart to be energy-minimizing. (Strictly speaking, each fermion pair is described
by the operator −2∆+2V and has the ground state energy −2Eb. We have made
the factor two disappear for notational convenience, observe also the lack of a
symmetrization factor 1/2 in front of the V term in (1.2).)

(ii) The integrability assumption on W is such that Wψ ∈ L2(Ω) for every ψ ∈ H1
0 (Ω)

and the numerical value of pW is derived from the critical Sobolev exponent.

Note that the assumption implies that W is infinitesimally form-bounded with
respect to −∆. However, the assumption is stronger than infinitesimal form-
boundedness (which would e.g. be guaranteed by |W |1/2ψ ∈ L2(Ω) for every
ψ ∈ H1

0 (Ω)) and the two places where we use this additional strength are (a)
for the semiclassical expansion (Lemma 3.2) and (b) for Davies’ approximation
result (Lemma 7.2).

Assumption 1.4 (Regularity of Ω). The open set Ω ⊆ Rd is a bounded Lipschitz
domain.

We recall that a set Ω is a Lipschitz domain if its boundary can be locally repre-
sented as the graph of a Lipschitz continuous function. The formal definition is given
in Appendix D.

Definition 1.5 (Admissible states). We say that a BCS state Γ of the form (1.1) is
admissible, if Tr

[
γ1/2(1−∆Ω)γ1/2

]
<∞.

An admissible state Γ has the integral kernel α ∈ H1
0 (Ω2) thanks to the operator

inequality αα ≤ γ and α∗ = α (we skip the proof, see the last step in the proof of
Proposition 4.2 for a closely related argument). We note

Proposition 1.6. EBCSµ is bounded from below on the set of admissible states Γ.
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In principle, this is a standard argument based on αα ≤ γ and our assumption that
V is infinitesimally form-bounded with respect to −∆. However, a little care has to be
taken regarding the boundary conditions; we leave the proof to the interested reader
because the required ideas appear throughout the paper.

In this paper, we shall study the minimization problem

EBCSµ := inf
Γ admissible

EBCSµ (Γ). (1.3)

Note that EBCSµ > −∞ by Proposition 1.6. We are especially interested in the occur-

rence of EBCSµ < 0 and in that case we say that the system exhibits fermion pairing.
Here is the reasoning behind this definition: We will consider chemical potentials

µ = −Eb + Dh2 with D ∈ R so that h ≥ 0 for h small enough, see Proposition 5.3.
Then EBCSµ < 0 implies that any minimizer Γ must satisfy α 6= 0, i.e. it must have a
non-trival fermion pairing function α.

Main results. We now discuss our main results in words, they are stated precisely
in Section 1.3 below.

By the monotonicity of µ 7→ EBCSµ for every fixed h > 0, there exists a unique
critical chemical potential µc(h) such that we have fermion pairing iff µ > µc(h). The
first natural question is then whether one can compute µc(h). In our first main
result, Theorem 1.7, we show that

µc(h) = −Eb + h2Dc +O(h2+ν), as h ↓ 0.

That is, to lowest order in h, µc(h) is just one half of the binding energy of a fermion
pair. The subleading correction term Dc ∈ R is the ground state energy of an explicit
Dirichlet eigenvalue problem on Ω (the linearization of the GP theory below).

Physically, the choice of µ ≈ µc(h) corresponds to small density; this is explained
after Proposition 1.12. Therefore, we expect that for µ > µc(h) the fermion pairs look
like bosons to each other and (since we are at zero temperature) the pairs will form a
Bose-Einstein condensate, which will then be describable by a Gross-Pitaevskii (GP)
theory.

Accordingly, in our second main result, Theorem 1.10, we derive an effective,
macroscopic GP theory of fermion pairs from the BCS model for all µ = −Eb + Dh2

with D ∈ R. The resulting GP theory also has Dirichlet boundary conditions.
Theorems 1.7 and 1.10 show that the boundary conditions make a significant dif-

ference on the (macroscopic!) GP scale, a physically non-trivial fact. The results hold
for the rather general class of bounded Lipschitz domains.

Related works. The BCS model that we consider has received considerable inter-
est in recent years in mathematical physics. Most closely related to our paper are the
derivations of effective GP theories for periodic boundary conditions in [22] and for a
system in R3 at fixed particle number [4]. The time-dependent analogue of this deriva-
tion was performed in [21]. The related, and technically more challenging, case of BCS
theory close to the critical temperature for pair formation has also been considered: In
[13, 20], the critical temperature was described by a linear criterion. The analogue of
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Theorem 1.7 for the upper and lower critical temperatures was the content of [16]. In
[15, 17] and especially [14] effective macroscopic Ginzburg-Landau theories have been
derived.

We emphasize that all of these papers assume that the system has no boundary
(either by working on the torus or on the whole space) and the same holds true for
the resulting effective GP or GL theories. (We also mention that the derivation in
[4] depends on ‖W‖L∞(Rd) < ∞ and so one cannot obtain the Dirichlet boundary
conditions as the limiting case of a sufficiently deep potential well from [4].)

Our main contribution is thus to show the non trivial effect of boundary conditions
on the effective macroscopic GP theory. As we mentioned in the introduction, this is
in some contrast to de Gennes’ arguments [10] at positive temperature.

1.2 Main result 1: The critical chemical potential

Considering definitions (1.2) and (1.3) of the BCS energy, we see that the non-positive
function µ 7→ EBCSµ is monotone decreasing (and concave). This allows us to define
the critical chemical potential µc(h) by

µc(h) := inf
{
µ < 0 : EBCSµ < 0

}
(1.4)

In other words, the definition is such that fermion pairing occurs iff µ > µc(h). (Note
that µc(h) may be infinite at this stage.) This is analogous to the definition of the
upper and lower critical temperature in [16], but the explicit dependence of the BCS
energy on µ simplifies matters here.

Our first main result gives an asymptotic expansion of µc(h) in h up to second
order, where the subleading term Dc is given as an appropriate Dirichlet eigenvalue,
namely

Dc := inf specL2(Ω)

(
−1

4
∆Ω +W

)
The result is the analogue of the main result in [16] for the critical temperature.

Theorem 1.7 (Main result 1). We have

µc(h) = −Eb +Dch
2 +O(h2+ν), as h ↓ 0

The exponent of the error term is ν := min{d/2, cΩ − δ} where δ > 0 is arbitrarily
small and cΩ ∈ (0, 1] depends only on Ω, see Remark 1.8 (iii) below.

Remark 1.8. (i) It follows from the definition of Dc that the Dirichlet boundary
conditions have a non-trivial effect on the value of µc(h).

(ii) The critical value Dc is uniquely determined by EGPD = 0 for D ≤ Dc and
EGPD < 0 for D > Dc, where EGPD is defined in (1.6) and (1.7). For the proof, see
Lemma 2.5 in [16].

(iii) The constant cΩ in the definition of ν is the constant such that the Hardy inequal-
ity (7.2) holds on Ω. Under additional assumptions on Ω, quantitative information
on cΩ is known: If Ω is convex or if ∂Ω is given as the graph of a C2 function,
then cΩ = 1 which is optimal [5, 28, 29] and if Ω ⊂ R2 is simply connected, then
we can take cΩ = 1/2 [1].
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(iv) The asymptotic expansion of µc(h) to this order is the same as the expansion of
the ground state energy of the two body Schrödinger operator Hh, see Theorem
E.1. Intuitively, this is due to the fact that at µc(h) fermion pairing just onsets,
so the order parameter is small and the nonlinear terms become negligible.

1.3 Main result 2: Effective GP theory

Definition 1.9. We write α∗ for the unique positive and L2-normalized ground state
of −∆ + V . By definition, it satisfies (−∆ + V )α∗ = −Ebα∗. Let

gBCS := (2π)−d
∫
Rd

(p2 + Eb)|α̂∗(p)|4dp. (1.5)

For any D ∈ R and ψ ∈ H1
0 (Ω), we define the Gross-Pitaevskii (GP) energy functional

by

EGPD (ψ) :=

∫
Ω

(
1

4
|∇ψ(X)|2 + (W (X)−D)|ψ(X)|2 + gBCS |ψ(X)|4

)
dX. (1.6)

We now state our second main result. It says that the GP theory EGPD arises from
EBCS−Eb+Dh2 as the scale parameter h goes to zero.

Theorem 1.10 (Main result 2). Let µ = −Eb +Dh2 for D ∈ R and define

EGPD := inf
ψ∈H1

0 (Ω)
EGPD (ψ). (1.7)

(i) As h ↓ 0,
EBCSµ = h4−dEGPD +O(h4−d+ν), (1.8)

where ν is as in Theorem 1.7.

(ii) Let Ω be convex. Suppose that Γ is a BCS state such that

EBCSµ (Γ) ≤ EBCSµ + εh4−d

for some small ε > 0. Then, its upper right entry α in the sense of (1.1) can be
decomposed as

α(x, y) = h1−dψ

(
x+ y

2

)
α∗

(
x− y
h

)
+ ξ

(
x+ y

2
, x− y

)
(1.9)

with ψ ∈ H1
0 (Ω) satisfying EGPD (ψ) ≤ EGPD + ε+O(hν) and ξ ∈ H1

0 (Ω×Rd) such
that

‖ξ‖2L2(Ω×Rd) + h2‖∇ξ‖2L2(Ω×Rd) ≤ O(h4−d).

Remark 1.11. The interpretation of Theorem 1.10 (ii) is that GP theory also describes
the approximate minimizers of BCS theory. If Ω is not convex, one can still get a
weaker version in which ψ and the Dirichlet energy live on a slightly enlarged domain,
see Theorem 2.2 (LB).
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We close the presentation by explaining why the choice of µ = −Eb + Dh2 corre-
sponds to a low density limit.

Proposition 1.12 (Convergence of the one body density). Let Γ be a BCS state
satisfying EBCS−Eb+Dh2(Γ) ≤ EBCS−Eb+Dh2 + o(h4−d) (e.g. Γ is an approximate minimizer as
in Theorem 1.10 (ii)) and let ργ denote its one body density matrix. Then we have

hd−2ργ ⇀ |ψ∗|2, in Lp
′
W (Ω) (1.10)

where ψ∗ is a minimizer of EGPD (minimizers exist and are unique up to a complex
phase, see Proposition 2.6). p′W is the Hölder dual of pW .

The proof is in Appendix B. This is a classical argument which is based on Theorem
1.10 and the fact that the one body density ργ and the external field W are dual
variables [18, 27].

Note that we can test (1.10) against 1Ω to obtain the expected particle number

N :=

∫
Ω
ργdx = h2−d

∫
Ω
|ψ∗|2dx+ o(h2−d),

compare (1.14) in [22]. The expected particle density in microscopic units is given by
hdN = h2‖ψ∗‖2L2(Ω) + o(h2) → 0. We see that our scaling limit indeed corresponds to

low density. (We point out that the physical model is somewhat pathological in d = 1
because even N will go to zero as h→ 0. Since N is only the expected particle number,
the model still makes sense in principle, but it is of course debatable that statistical
mechanics still applies in this case.)

1.4 Outline of the paper

The proof of the main results is based on two distinct key results.

• In key result 1 (Theorem 2.2), we bound the BCS energy over Ω in terms of
GP energies on a slightly smaller domain than Ω (upper bound) and on a slightly
larger domain than Ω (lower bound). If Ω is convex, the lower bound simplifies to
the GP energy on Ω itself. The general strategy here is as in [14, 21, 22], though
some technical difficulties arise from the Dirichlet boundary conditions, see (i)
and (ii) below. This part only requires Ω to have finite Lebesgue measure.

• In key result 2 (Theorem 2.3), we show that the GP energy is continuous under
approximations of the domain Ω, if Ω is a bounded Lipschitz domain. The idea
is to use Hardy inequalities to control the boundary decay of GP minimizers
using that these lie in the operator domain of the Dirichlet Laplacian. This
approach is due to Davies [7, 8] who treated the linear case of Dirichlet eigenvalues.
(Davies does not treat continuity under exterior approximations because a Hardy
inequality is not sufficient for this to hold, see the example in Remark 2.5)

We point out that key result 1 concerns the many body system. Key result 2, by
contrast, is a continuity result for a certain class of nonlinear functionals on Rd and is
based on ideas from spectral theory and geometry.
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In Section 2, we present the two key results and derive the two main results from
them.

In Section 3, we present the semiclassical expansion (Lemma 3.2). This is an
important tool in the proof of all parts of Theorem 2.2 (key result 1). The version here
is very close to the one in [4], though we generalize it somewhat as described in (iii)
below. (In [4], an idea from [21] was used to simplify the semiclassics significantly in
the zero temperature case as compared to [14, 22].)

In Section 4, we prove the upper bound part of Theorem 2.2. We construct a trial
state following [4, 21], with an appropriate cutoff to ensure that it satisfies the Dirichlet
boundary conditions. The semiclassical expansion then yields an upper bound by a
GP energy in a slightly smaller region than Ω. One finishes the proof by applying the
continuity of the GP energy under domain approximations (key result 2).

In Sections 5-6, we prove the lower bound part of Theorem 2.2. The overall
strategy is as in [4, 14]: One first proves an a priori decomposition result yielding (1.9)
for the off diagonal entry α of any approximate BCS minimizer Γ (with H1 control on
the involved functions). This is Theorem 5.1 and it shows that the GP order parameter
is naturally associated with the center of mass variable x+y

2 (living on the macroscopic
scale). Then, one can use the semiclassical expansion on the main part of α to finish
the proof.

While the overall strategy is as in [4, 14], there are some additional technical diffi-
culties, mainly due to the boundary conditions:

(i) The boundary conditions prevent the variables in the center of mass frame from
decoupling as usual. This poses a problem, because the GP energy/order param-
eter should only depend on the center of mass variable. The solution we have
found to this is to forget the boundary conditions in the relative coordinate al-
together. (Note that this gives a lower bound, since Dirichlet energies decrease
under an increase of the underlying function spaces.) In this way, we decouple the
variables in the center of mass frame. Moreover, one has not lost much, thanks to
the exponential decay of the Schrödinger eigenfunction α∗ governing the relative
coordinate via (1.9).

(ii) The center of mass variable x+y
2 naturally takes values in the set

Ω̃ :=
Ω + Ω

2
.

After some steps in the lower bound, we are led to a GP energy on Ω̃. Note that
when Ω is convex, Ω̃ = Ω and so one is essentially done at this stage. If Ω is
not convex, however, some additional work is required. The idea is to use the
exponential decay of α∗ again, the details are in Section 6.3.

(iii) We observe that the arguments from [4] can be extended to dimensions d = 1, 2
and to external potentials which satisfy W ∈ LpW (Ω). We do not see, however,
that the arguments can be extended to the case W = ∞ on a set of positive
measure (i.e. the Dirichlet boundary conditions).

In Section 7, we prove key result 2, Theorem 2.3. The crucial input are Davies’
ideas [7, 8] of deriving continuity of the Dirichlet energy under domain approximations
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from the Hardy inequality, see Lemma 7.2. Along the way, we need Theorem 7.3 which
says that the Hardy inequality holds along a suitable sequence of exterior approxima-
tions Ω` to Ω, with uniform dependence of the Hardy constants on `, and may be of
independent interest.

Theorem 7.3 is proved in Appendix D by extending Necas’ proof [30] of the Hardy
inequality on any bounded Lipschitz domain. The appendix also contains the proofs
of some technical results used in the main text, as well as a presentation of the linear
version of our main results, the asymptotics of the ground state energy of the two body
Schrödinger operator Hh mentioned in the introduction (see Appendix E).

Remark 1.13 (Notation). We write C,C ′, . . . for positive, finite constants whose value
may change from line to line. We typically do not track their dependence on parameters
which are assumed to be fixed throughout, such as the dimension d and the potentials
V and W . The dependence on D will be explicit only where relevant.

We will denote EBCSµ ≡ EBCS , EGPD ≡ EGP , etc.

2 The two key results

2.1 Key result 1: Bounds on the BCS energy

We bound the BCS energy on Ω in terms of GP energies on interior approximations of
Ω for an upper bound (“UB”) and on exterior approximations of Ω for a lower bound
(“LB”). To state the result, we need to define the GP energy on a general domain
U ⊆ Rd.

Definition 2.1 (GP energy on domains). For a finite-measure domain U ⊆ Rd and
any ψ ∈ H1

0 (U), we define the GP energy by

EGPU (ψ) :=

∫
U

(
1

4
|∇ψ(X)|2 + (W (X)−D)|ψ(X)|2 + gBCS |ψ(X)|4

)
dX, (2.1)

with gBCS as in (1.5). Here we extended W : Ω→ R by zero to get a map on Rd.

Note that EGPU implicitly depends on D. We can now state

Theorem 2.2 (Key result 1). Let Ω ⊂ Rd be an open set of finite Lebesgue measure.
For ` > 0, define the interior and exterior approximations of Ω

Ω−` := {X ∈ Ω : dist(X,Ωc) > `} , (2.2)

Ω+
` :=

{
X ∈ Rd : dist(X,Ω) < `

}
. (2.3)

Let `(h) := h log(h−q) with q > 0 sufficiently large but fixed. Then:

(UB) For every function ψ ∈ H1
0 (Ω−`(h)), there exists an admissible BCS state Γψ such

that

EBCS(Γψ) = h4−dEGP
Ω−
`(h)

(ψ) +O(h5−d)(‖ψ‖2H1(Rd) + ‖ψ‖4H1(Rd)). (2.4)

with D = h−2(µ+ Eb).
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(LB) Let µ ≤ −Eb +O(h2) and let Γ be an admissible BCS state satisfying EBCS(Γ) ≤
CΓh

4−d. Then, there exist ψ ∈ H1
0 (Ω+

`(h)) such that

EBCS(Γ) ≥ h4−dEGP
Ω+
`(h)

(ψ) +O(h4−d+ν′), (2.5)

where ν ′ = min{d/2, 1}. Moreover, there exists ξ ∈ H1
0 (Ω̃× Rd), Ω̃ := Ω+Ω

2 such
that α can be decomposed as in (1.9) and we have the bounds

‖∇ψ‖L2(Ω+
`(h)

) ≤ C‖ψ‖L2(Ω+
`(h)

) ≤ O(1),

‖ξ‖2
L2(Ω̃×Rd)

+ h2‖∇ξ‖2
L2(Ω̃×Rd)

≤ O(h4−d)(‖ψ‖2
L2(Ω̃)

+ CΓ)
(2.6)

(LBC) If Ω is convex, then one can take `(h) = 0 everywhere in (LB). In particular,
there exists ψ ∈ H1

0 (Ω) such that

EBCS(Γ) ≥ h4−dEGPΩ (ψ) +O(h4−d+ν′). (2.7)

2.2 Key result 2: Continuity of the GP energy under do-
main approximations

On any bounded Lipschitz domain, we have continuity of the GP energy under do-
main approximations. The continuity is derived from the Hardy inequality (7.2) in an
approach due to Davies [7, 8], see also [12]. The details are in Section 7. Define

EGPU := min
ψ∈H1

0 (U)
EGP (U).

Theorem 2.3. Assume that Ω is a bounded Lipschitz domain. For ` > 0, define Ω±`
as in Theorem 2.2. Then, there exists a constant cΩ ∈ (0, 1] such that

|EGP
Ω±`
− EGPΩ | ≤ O(`cΩ). (2.8)

Moreover, the statement holds irrespectively of the value of the parameters gBCS and
D in (2.1). In particular it holds for gBCS = D = 0 and then it shows that

|D±c (`)−Dc| ≤ O(`cΩ), D±c (`) := inf specL2(Ω)

(
−1

4
∆Ω±`

+W

)
. (2.9)

Remark 2.4. (i) The constant cΩ is the same as in Theorem 1.7; see Remark 1.11 for
quantitative results on cΩ if more information on Ω is known.

(ii) The implicit constant in (2.8) depends on D and consequently the same is true
for the implicit constant in (1.8). It will be important in the proof of Theorem
1.7 that the D-dependence has disappeared in (2.9).

We close with a cautionary example, which shows that the assumption that Ω is a
Lipschitz domain is rather sharp for getting a two-sided continuity result such as (2.8).
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Remark 2.5 (Exterior approximation is delicate). Consider the slit domain Ω = [−1, 1]2\
((−1, 0]×{0}). The slit will disappear for any sequence of exterior approximations and
this will lead to an order one decrease of the GP energy. Therefore, the GP energy on
Ω is not continuous under exterior approximation. (However, it is continuous under
interior approximation: As discussed in Section 7.1, this follows from the validity of
the Hardy inequality (7.2) on Ω, and since Ω ⊂ R2 is simply connected, it satisfies the
Hardy inequality with cΩ = 1/2 [1].)

2.3 On GP minimizers

We collect some standard results about GP minimizers for later use: They exist (though
they may be identically zero) and their −∆U operator norm is bounded by their H1

0

norm (because they satisfy the Euler-Lagrange equation).

Proposition 2.6. Let U ⊂ Rd be an open set of finite Lebesgue measure.

(i) For any ψ ∈ H1
0 (U), we have the coercivity

EGPU (ψ) ≥ C1‖ψ‖2H1
0 (U) − (C2 +D)2, (2.10)

where the constants C1, C2 > 0 are independent of U and D. In particular,
EGPU := infψ∈H1

0 (U) EGPU (ψ) > −∞.

(ii) There exists a minimizer for EGPU and it is unique up to multiplication by a
complex phase. Moreover, minimizing sequences are precompact in H1

0 (U).

(iii) There exists C > 0, independent of U and D, such that the minimizer ψ∗ satisfies

‖∆Uψ∗‖L2(U) ≤ C(1 + |D|)(‖ψ∗‖H1
0 (U) + ‖ψ∗‖3H1

0 (U)). (2.11)

For completeness, the standard proof of these results is included in Appendix A.

2.4 Proof of the main results from the key results

In this section, we assume that the two key results (Theorems 2.2 and 2.3) hold.

2.4.1 Proof of main result 1, Theorem 1.7

Upper bound. We will show that there exists a constant C0 > 0 such that for all
µ = −Eb+Dh2 with D ≥ Dc+C0h

ν , there exists an admissible BCS state Γ such that

EBCS(Γ) < 0. (2.12)

By Definition (1.4), this implies the claim µc(h) ≤ −Eb +Dch
2 + C0h

2+ν .
We let ` ≡ `(h) = h log(h−q) with q > 0 large enough and we recall definitions (2.2)

and (2.9) of Ω−` and D−c (`). Following [16] p.209, we choose ψ = θψ`, where θ > 0 and
ψ` ∈ H1

0 (Ω−` ) is the eigenfunction

(−∆Ω−`
+W )ψ` = D−c (`)ψ`.
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Our Assumption 1.2 on W implies that ψ` ∈ dom(∆Ω−`
). Optimizing over θ yields

EGP
Ω−`

(ψ) = −C(D −D−c (`))2, θ = C ′
√
D −D−c (`). (2.13)

Hence, any relevant norm of ψ = θψ` is proportional to
√
D −D−c (`). Since ψ ∈

H1
0 (Ω−`(h)), we can apply Theorem 2.2 (UB) to get an admissible BCS state Γψ such

that

hd−4EBCS(Γψ) =EGP
Ω−`

(ψ) +O(hν)(‖ψ‖2H1(Rd) + ‖ψ‖4H1(Rd))

=− C(D −D−c (`))2 +O(hν)(θ2‖ψ`‖2H1(Rd) + θ4‖ψ`‖4H1(Rd)).

We have the a priori bound ‖ψ`‖H1(Rd) ≤ O(1). Indeed, the infinitesimal-form bound-
edness of W with respect to −∆Ω−`

implies

‖ψ`‖H1(Rd) − C ≤ D−c (`) ≤ D−c (`0),

where `0 > 0 is fixed. In the second step, we used the fact that Dirichlet energies
increase when the underlying domain decreases.

By our choice of D and the last part of Theorem 2.3, there exists C1 > 0 such that

D > Dc + C0h
ν ≥ D−c (`) + (C0 − C1)hν

and so, for C0 > C1,

hd−4EBCS(Γψ) = −C(C0 − C1)2h2ν +O(h2ν)(C0 − C1).

Clearly, this can be made negative by choosing C0 > 0 large enough. This proves (2.12)
and hence the claimed upper bound on µc(h).

Lower bound (convex case). Let µ = −Eb +Dh2 with D < Dc−C0h
ν with C0

to be determined. Let Γ be a BCS state satisfying EBCS(Γ) ≤ 0. We will show that
Γ ≡ 0 and this will prove the claim µc(h) ≥ −Eb + h2Dc − C0h

2+ν .
Assumption 1.2 on W implies that it is infinitesimally form-bounded with respect

to −∆Ω on H1
0 (Ω) and from this one derives that h ≥ 0 for sufficiently small h, see

Proposition 5.3. Therefore, the zero state is the unique minimizer of the first term
tr [hγ] in EBCS and it suffices to show that α ≡ 0 to get Γ = 0.

We apply Theorem 2.2 (LBC) with CΓ = 0 and obtain ψ ∈ H1
0 (Ω) such that

0 ≥ hd−4EBCS(Γ) ≥ EGPΩ (ψ) +O(hν)‖ψ‖2H1
0 (Ω).

We drop the (non-negative) quartic term in EGPΩ for a lower bound and use the definition
of Dc to get

EGPΩ (ψ) ≥ (Dc −D)‖ψ‖2L2(Ω)

The analogue of the first relation in (2.6) in the convex case is ‖ψ‖2
H1

0 (Ω)
≤ C‖ψ‖2L2(Ω).

It gives
0 ≥ (C(Dc −D) +O(hν))‖ψ‖2H1

0 (Ω). (2.14)

Recall that Dc − D > C0h
ν . For C0 large enough, this implies that ψ ≡ 0. Since

CΓ = 0, the analogue of the second bound in (2.6) in the convex case yields ξ ≡ 0 and
so α ≡ 0 as claimed.
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Lower bound (non convex case). We write ` ≡ `(h) throughout. We apply
Theorem 2.2 (LB) and argue as in the convex case to find

0 ≥ hd−4EBCS(Γ) ≥ (D+
c (`)−D +O(hν))‖ψ‖2L2(Ω).

Now, the last part of Theorem 2.3 gives D+
c (`)−D +O(hν) = Dc −D +O(hν). This

can be made positive by choosing C0 large enough, which implies ψ = 0 and so ξ = 0
by (2.6). This completes the proof of Theorem 1.7.

2.4.2 Proof of main result 2, Theorem 1.10

We let µ = −Eb + Dh2 with D ∈ R fixed and we let `(h) = h log(h−q), with q ≥ 1
large but fixed.

Upper bound. By Proposition 2.6, the GP energy EGP
Ω−
`(h)

has a unique minimizer,

call it ψ− ∈ H1
0 (Ω−`(h)). We apply Theorem 2.2 (UB) with ψ = ψ− to obtain an

admissible BCS state Γψ− such that

EBCS ≤ EBCS(Γψ−) =h4−dEGP
Ω−
`(h)

(ψ−) +O(h5−d)(‖ψ−‖2H1(Rd) + ‖ψ−‖4H1(Rd))

≤h4−dEGP
Ω−
`(h)

+O(h5−d)(1 + EGP
Ω−
`(h)

)2.

In the second step, we used the fact that ψ− is a minimizer and the coercivity (2.10).
Now we apply Theorem 2.3. Since `(h) = O(h1−δ) for every δ > 0, we get

EBCS ≤ h4−dEGPΩ +O(h4−d+ν),

where ν is as in Theorem 1.7.

Lower bound. Thanks to the upper bound right above, there exists C > 0 such
that for all ε > 0 we can find an approximate minimizer Γ such that

EBCS(Γ) ≤ h4−d(EGPΩ + εC).

In particular, EBCS(Γ) ≤ CΓh
4−d and so Γ satisfies the assumption in Theorem 2.2

(LB) and (LBC).
If Ω is convex, the claim follows directly from Theorem 2.2 (LBC).
If Ω is a non convex bounded Lipschitz domain, Theorem 2.2 (LB) yields ψ ∈

H1
0 (Ω+

`(h)) such that

EBCS(Γ) ≥ h4−dEGP
Ω+
`(h)

(ψ) +O(h4−d+ν′) ≥ h4−dEGP
Ω+
`(h)

+O(h4−d+ν′).

The lower bound now follows from Theorem 2.3. This finishes the proof of Theorem
1.10.
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3 Semiclassical expansion

We state an important tool for the proof of Theorem 2.2, the semiclassical expansion.
The version here is essentially the one from [4].

Though not strictly necessary for the result, it will be convenient for us to assume
the following decay condition

Definition 3.1. We say that a function a ∈ L2(Rd) decays exponentially in the L2

sense with the rate ρ, if ∫
Rd
e2ρ|s||a(s)|2ds <∞. (3.1)

Recall that α∗ denotes the unique ground state of −∆ + V . It is well known that
weak assumptions on the potential V imply the exponential decay of α∗ in an L2 sense.
The fact that infinitesimal form-boundedness of V is sufficient is essentially contained
in [34] but was known to the experts even earlier. That is, there exists ρ∗ > 0 such
that ∫

Rd
e2ρ∗|s||α∗(s)|2ds <∞. (3.2)

In particular, we can apply the following lemma with a = α∗ later on.

Lemma 3.2 (Semiclassics). For ψ, a ∈ H1(Rd), we set

aψ(x, y) := h−dψ

(
x+ y

2

)
a

(
x− y
h

)
, x, y ∈ Rd. (3.3)

Suppose that a(x) = a(−x) and that a decays exponentially in the L2 sense of Definition
3.1.

Then:

(i)

Tr
[
(−h2∆− µ)aψaψ

]
+

∫∫
Rd×Rd

V

(
x− y
h

)
|aψ(x, y)|2dxdy

=h−d‖ψ‖2L2(Rd)〈a |−∆ + Eb + V | a〉

+ ‖a‖2L2(Rd)

(
h2−d

4
‖∇ψ‖2L2(Rd) + h−d(−Eb − µ)‖ψ‖2L2(Rd)

)
.

(ii) There exists a constant C > 0 such that∣∣∣∣Tr [Waψaψ]− h−d‖a‖2L2(Rd)

∫
Rd
W (X)|ψ(X)|2dX

∣∣∣∣
≤Ch1−d‖a‖2L2(Rd)‖W‖LpW (Ω)‖ψ‖2H1(Rd).

(iii) Let

gBCS(a) : = (2π)−d
∫
Rd

(p2 + Eb)|â(p)|4dp,

g0(a) : = (2π)−d
∫
Rd
|â(p)|4dp

(3.4)
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Then, as h ↓ 0,

Tr
[
(−h2∆ + Eb + h2W )aψaψaψaψ

]
= h−dgBCS(a)‖ψ‖4L4(Rd) +O(h1−d)‖ψ‖4H1(Rd),

Tr [aψaψaψaψ] = h−dg0(a)‖ψ‖4L4(Rd) +O(h1−d)‖ψ‖4H1(Rd)

Lemma 3.2 was proved in in [4] for d = 3, a = hα∗, W ∈ L∞(R3) and at fixed
particle number. We sketch the proof in Appendix C to show that it generalizes to the
present version.

Remark 3.3. (i) We can apply the expansion in our situation because we can isomet-
rically embed H1

0 (U) ⊂ H1(Rd) by extending functions by zero.

(ii) To see that gBCS(a), g0(a) <∞, observe that the decay assumption (3.1) implies
a ∈ L1(Rd) ∩H1(Rd) and so â is bounded.

4 Proof of Theorem 2.2 (UB)

The idea of the proof is to construct an appropriate trial state and then to use the
semiclassical expansion from Lemma 3.2.

4.1 The trial state

The trial state Γψ is defined as in [4], following an idea of [21], see (4.2) below. However,
we multiply α∗ by an appropriate cutoff function χ, in order to satisfy the Dirichlet
boundary conditions in the relative variable.

Definition 4.1 (Trial state). Let χ ∈ C∞c (Rd) be a symmetric cutoff function, i.e.
χ(r) = χ(−r), 0 ≤ χ ≤ 1 and χ ≡ 1 on B1 and suppχ ⊂ B3/2. Let `(h) = hφ(h) with
limh→0 φ(h) =∞ and define

a(r) := χ

(
r

φ(h)

)
hα∗(r). (4.1)

For any ψ ∈ H1(Rd), we define aψ by (3.3) and

γψ := aψaψ + (1 + h1/2)aψaψaψaψ, Γψ :=

(
γψ aψ
aψ 1− γψ

)
. (4.2)

Proposition 4.2. Let ψ ∈ H1
0 (Ω). For all sufficiently small h, Γψ is an admissible

BCS state.

Proof. 0 ≤ Γψ ≤ 1 holds by a short computation, see [4]. We show that aψ ∈ H1
0 (Ω2).

First, we observe that supp aψ ⊆ Ω2. To see this, we note that suppψ ⊆ Ω−`(h) and

supp a ⊆ suppχ(·/φ(h)) ⊆ B3φ(h)/2 and therefore

supp aψ ⊆
{

(x, y) ∈ Rd × Rd :
x+ y

2
∈ Ω−`(h),

x− y
2
∈ B3`(h)/4

}
,
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where we also used hφ(h) = `(h). By construction, dist(x+y
2 ,Ωc) ≥ `(h) and by

expressing

(x, y) =

(
x+ y

2
+
x− y

2
,
x+ y

2
− x− y

2

)
,

we obtain that, indeed, supp aψ ⊆ Ω2.
It remains to show that, after extending ψ and a by zero to Rd, we have aψ ∈

H1(Rd × Rd). By using a(r) = a(−r) to symmetrize the derivatives and changing to
center-of-mass coordinates (5.3), we indeed get an upper bound on ‖aψ‖H1(Rd×Rd) in
terms of the (finite) quantities ‖ψ‖H1(Rd) and ‖a‖H1(Rd). We leave the details to the
reader, as similar computations appear several times in the lower bound, see e.g. the
proof of Lemma 5.2.

This proves aψ ∈ H1
0 (Ω2). To see that γ is an H1

0 -density matrix, we note that
γψ ≤ 3aψaψ since aψaψ ≤ γψ ≤ 1. We can then bound√

1−∆Ωγψ
√

1−∆Ω ≤ 3
√

1−∆Ωaψaψ
√

1−∆Ω = 3
√

1−∆Ωaψ

(√
1−∆Ωaψ

)∗
by a product of two Hilbert Schmidt operators and therefore it is trace class.

4.2 Controlling the effect of the cutoff

When we apply the semiclassical expansion in Lemma 3.2, we want to remove the effect
of the cutoff, i.e. we want to replace a by α∗, up to higher order corrections. We will
get this from the estimates in Proposition 4.3 below, which follow essentially from the
exponential decay (3.2) of α∗.

We recall definition (3.4) of gBCS(a) and g0(a).

Proposition 4.3. Then,

‖a‖2L2(Rd) = h2
(
‖α∗‖2L2(Rd) +O(e−2ρ∗φ(h))

)
≡ h2

(
1 +O(e−2ρ∗φ(h))

)
, (4.3)

gBCS(a) = h4
(
gBCS(α∗) +O(e−ρ∗φ(h))

)
≡ h4

(
gBCS +O(e−ρ∗φ(h)/2)

)
(4.4)

g0(a) = h4
(
g0(α∗) +O(e−ρ∗φ(h)/2)

)
(4.5)

〈a |−∆ + Eb + V | a〉 = h2O(e−2ρ∗φ(h)) (4.6)

Proof. For (4.3), we observe

‖hα∗‖2L2(Rd) − ‖a‖
2
L2(Rd) =h2

∫
Rd
|α∗(r)|2

(
1− χ

(
r

φ(h)

)2
)

dr

≤h2

∫
Bc
φ(h)

|α∗(r)|2dr ≤ Ch2e−2ρ∗φ(h).

In the last step, we used the fact that α∗ satisfies the decay assumption (3.2).
To get (4.4), we first write

|hα̂∗|4 − |â|4 =
(
|hα̂∗|2 + |â|2

)
(|hα̂∗|+ |â|) (|hα̂∗| − |â|) . (4.7)
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The smallness comes from the last term. Indeed, the decay assumption (3.2) gives

sup
p∈Rd

||hα̂∗(p)| − |â(p)|| ≤ sup
p∈Rd

|hα̂∗(p)− â(p)| ≤ ‖hα∗ − a‖L1(Rd)

≤h
∫
Bc
φ(h)

|α∗(r)|dr = h

∫
Bc
φ(h)

|α∗(r)|eρ∗re−ρ∗rdr ≤ Che−ρ∗φ(h)/2.

Note also that (3.2) implies ‖α̂∗‖L∞(Rd) ≤ ‖α∗‖L1(Rd) ≤ C and consequently ‖â‖L∞(Rd) ≤
Ch. Applying these estimates to (4.7), we get

|hα̂∗|4 − |â|4 ≤ Ch2e−ρ∗φ(h)/2
(
|hα̂∗|2 + |â|2

)
.

Recalling the definition (3.4), this implies

|gBCS(a)− gBCS(hα∗)| ≤Ch2e−ρ∗φ(h)/2

∫
Rd

(p2 + Eb)
(
|hα̂∗|2 + |â|2

)
dp

≤Ch2e−ρ∗φ(h)/2
(
h2‖α∗‖2H1(Rd) + ‖a‖2H1(Rd)

)
.

To conclude the claim (4.4), it remains to see that ‖a‖2
H1(Rd)

≤ Ch2 as h ↓ 0. For the

L2 part of the H1 norm this follows from χ2 ≤ 1. For the derivative term, we denote
χh ≡ χ(·/φ(h)) and use the Leibniz rule to get

‖∇a‖2L2(Rd) ≤ 2h2
(
‖χh∇α∗‖2L2(Rd) + ‖α∗∇χh‖2L2(Rd)

)
.

For the first term, we use χ2 ≤ 1 to get ‖χh∇α∗‖2L2(Rd)
≤ ‖χh∇α∗‖2L2(Rd)

≤ C. The

second term is in fact much smaller:

‖α∗∇χh‖2L2(Rd) ≤ Ce
−2ρ∗φ(h). (4.8)

Indeed, by Hölder’s inequality and (3.2) we have

‖α∗∇χh‖2L2(Rd) =‖α∗∇χh‖2L2(B2φ(h)\Bφ(h))
≤ e−2ρ∗φ(h)‖∇χh‖2L∞(Rd)

=e−2ρ∗φ(h)φ(h)−2‖∇χ‖2L∞(Rd) ≤ Ce
−2ρ∗φ(h).

In the last step we used φ(h) → ∞ as h → 0. This proves (4.8) and completes the
proof of (4.4). The argument for (4.5) is even simpler.

Finally, we come to (4.6). Since (−∆ + Eb + V )α∗ = 0,

〈a |−∆ + Eb + V | a〉 = h〈a |[−∆, χh]|α∗〉 = h2‖α∗∇χh‖2L2(Rd).

Therefore, (4.6) follows from (4.8) and Proposition 4.3 is proved.

4.3 Conclusion

Given ψ ∈ H1
0 (Ω−`(h)), we extend it by zero to a function in H1(Rd). Then, we define

Γψ as in Proposition 4.2. We have

EBCS(Γψ) =Tr [haψaψ] +

∫∫
Rd×Rd

V

(
x− y
h

)
|aψ(x, y)|2dxdy

+ (1 + h1/2)Tr [haψaψaψaψ] .
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We apply the semiclassical expansion in Lemma 3.2 (note that the assumptions are
satisfied by a, since it is as regular as α∗ and of compact support). We find, using
D = h−2(µ+ Eb),

EBCS(Γψ)

=h−d‖ψ‖2L2(Rd)〈a |−∆ + Eb + V | a〉+ ‖a‖2L2(Rd)

(
h2−d

4
‖∇ψ‖2L2(Rd) − h

2−dD‖ψ‖2L2(Rd)

)
+ h2−d‖a‖2L2(Rd)

∫
Rd
W (X)|ψ(X)|2dX + h−dgBCS(a)‖ψ‖4L4(Rd)

+O(h5−d)(‖ψ‖2H1(Rd) + ‖ψ‖4H1(Rd))

The main term in this expression is h4−d times the GP energy defined in (2.1), up to
errors which are controlled by Proposition 4.3 and the choice φ(h) = log(h−q) with q
sufficiently large compared to 1/ρ∗. We find

EBCS(Γψ) = EGPRd (ψ) + (O(h5−d)− Ch6−dD)(‖ψ‖2H1(Rd) + ‖ψ‖4H1(Rd)).

Of course, EGPRd (ψ) = EGP
Ω−
`(h)

(ψ), since in fact ψ ∈ H1
0 (Ω−`(h)). This proves Theorem 2.2

(UB).

5 Proof of Theorem 2.2 (LB): Decomposition

We prove Theorem 2.2 (LB) and (LBC) together. (The situation will drastically sim-
plify for convex Ω in due course.)

In this first part of the proof, we consider any BCS state Γ satisfying EBCS(Γ) ≤
CΓh

4−d (we think of Γ as an approximate BCS minimizer) and we show that its off-
diagonal element α can be decomposed as in (1.9), with good a priori H1 control on
all the functions involved.

Theorem 5.1 (Decomposition and a priori bounds). Define

Ω̃ :=
Ω + Ω

2
.

Suppose that µ ≤ −Eb + O(h2) and that Γ is an admissible BCS state satisfying
EBCS(Γ) ≤ CΓh

4−d. Then, there exist ψ ∈ H1
0 (Ω̃) and ξ ∈ H1

0 (Ω̃×Rd) such that α, the
upper right entry of Γ, can be decomposed as in (1.9). Moreover, we have the bounds

‖∇ψ‖L2(Ω̃) ≤ C‖ψ‖L2(Ω̃) ≤ O(1),

‖ξ‖2
L2(Ω̃×Rd)

+ h2‖∇ξ‖2
L2(Ω̃×Rd)

≤ O(h4−d)(‖ψ‖2
L2(Ω̃)

+ CΓ).
(5.1)

The key input to the proof is the spectral gap of the operator −∆ + V above its
ground state energy −Eb.
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5.1 Center of mass coordinates

Lemma 5.2. Suppose that µ ≤ −Eb+O(h2). Let Γ be an admissible BCS state. Define
the fiber

D :=
{

(X, r) ∈ Ω̃× Rd : X +
r

2
, X − r

2
∈ Ω

}
.

Set α̃(X, r) := α(X + r/2, X − r/2) so that α̃ ∈ H1
0 (D). Then, for sufficiently small

h > 0, we have

EBCS(Γ) ≥
∫∫
D

α̃(X, r)

(
− h2

4
∆X − h2∆r + h2W (X + r/2)− µ

+ V (r/h)

)
α̃(X, r)drdX +

Eb
2

Tr [αααα] .

We separate the following statement from the proof for later use

Proposition 5.3. For h small enough, h ≥ Eb/2 > 0.

Proof. By Assumption 1.2 W is infinitesimally form-bounded with respect to −∆Ω.
Hence, |W | ≤ −1

2∆ +C and h ≥ −h2

2 ∆−µ−h2C hold in the sense of quadratic forms

on H1
0 (Ω). Since µ ≤ −Eb +O(h2), this implies that h ≥ Eb

2 for small enough h.

We come to the

Proof of Lemma 5.2. The key input is that for any BCS state, we have the relations
αα ≤ γ − γ2 ≤ γ and we use the to pass from γ to α in the term tr [hγ].

EBCS(Γ) ≥ Tr [hαα] +

∫∫
Ω2

V

(
x− y
h

)
|α(x, y)|2dxdy + Tr

[
hγ2
]
. (5.2)

We estimate the last term further. By Proposition 5.3, αα ≤ γ and the fact that
A 7→ Tr

[
A2
]

is operator monotone, we have

Tr
[
hγ2
]
≥ Eb

2
Tr
[
γ2
]
≥ Eb

2
Tr [αααα] .

We now rewrite the first two terms in (5.2) in center of mass coordinates. Using
α(x, y) = α(y, x) (Γ is Hermitian), we can write out the first term as

Tr [hαα] =

∫∫
Ω2

α(x, y)

(
−h2∆x + h2W (x)− µ+ V

(
x− y
h

))
α(x, y)dxdy

=

∫∫
Ω2

α(x, y)

(
−h

2

2
∆x −

h2

2
∆y + h2W (x)− µ+ V

(
x− y
h

))
α(x, y)dxdy.

Now we change to center-of-mass coordinates

X =
x+ y

2
, r = x− y, α̃(X, r) := α(X + r/2, X − r/2). (5.3)

Since the Jacobian is equal to one and ∆x+ ∆y = 1
2∆X + 2∆r, Lemma 5.2 follows.
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5.2 Definition of the order parameter ψ

An important idea is that from now on we isometrically embed H1
0 (D) ⊂ H1

0 (Ω̃× Rd)
by extending functions by zero. Note that all local norms are left invariant by the
extension, in particular ‖α̃‖L2(D) = ‖α̃‖L2(Ω̃×Rd).

We define the order parameter ψ and establish some of its basic properties.

Proposition 5.4. Let α̃ ∈ H1
0 (D) ⊂ H1

0 (Ω̃ × Rd). For a fixed X ∈ Ω̃, we define the
fiber

DX :=
{
r ∈ Rd : (X, r) ∈ D

}
=
{
r ∈ Rd : X +

r

2
, X − r

2
∈ Ω

}
Let

ψ(X) :=h−1

∫
DX

α∗(r/h)α̃(X, r)dr, for all X ∈ Ω̃, (5.4)

α̃ψ(X, r) :=h1−dψ(X)α∗(r/h), for a.e. X ∈ Ω̃, r ∈ Rd, (5.5)

ξ(X, r) := α̃(X, r)− α̃ψ(X, r), for a.e. X ∈ Ω̃, r ∈ Rd. (5.6)

Then:

(i) ψ ∈ H1
0 (Ω̃) and ξ ∈ H1

0 (Ω̃× Rd).

(ii) We have the norm identities

‖α̃‖2L2(D) = h2−d‖ψ‖2
L2(Ω̃)

+ ‖ξ‖2
L2(Ω̃×Rd)

,

‖∇X α̃‖2L2(D) = h2−d‖∇ψ‖2
L2(Ω̃)

+ ‖∇Xξ‖2L2(Ω̃×Rd)
.

(5.7)

Proof. From the definition of the weak derivative, we get that ψ ∈ H1
0 (Ω̃) with

∇ψ(X) = h−1

∫
DX

α∗(r/h)∇X α̃(X, r)dr. (5.8)

Since α∗ ∈ H1(Rd) and H1
0 (Ω̃ × Rd) is a vector space, we also get ξ ∈ H1

0 (Ω̃ × Rd).
This proves claim (i). For claim (ii), we observe the orthogonality relation∫

Rd
α∗(r/h)ξ(X, r)dr = 0, (5.9)

which holds for a.e. X ∈ Ω̃. Thus, by expanding the square that one gets from (5.6)
and using ‖α∗(·/h)‖2

L2(Rd)
= hd,

‖α̃‖2L2(D) = ‖α̃‖2
L2(Ω̃×Rd)

= h2−d‖ψ‖2
L2(Ω̃)

+ ‖ξ‖2
L2(Ω̃×Rd)

.

This is the first identity in (5.7). The second one follows by an analogous argument
using (5.8).
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5.3 Bound on the W term

Lemma 5.5. Let α̃ ∈ H1
0 (D) ⊂ H1

0 (Ω̃×Rd). For every ε > 0, there exists Cε > 0 such
that ∫

Ω̃

∫
Rd
|W (X + r/2)||α̃ψ(X, r)|2drdX ≤ h4−d

(
ε‖∇ψ‖2

L2(Ω̃)
+ Cε‖ψ‖2L2(Ω̃)

)
∫

Ω̃

∫
Rd
|W (X + r/2)||ξ(X, r)|2drdX ≤ h2

(
ε‖∇ξ‖2

L2(Ω̃×Rd)
+ Cε‖ξ‖2L2(Ω̃×Rd)

)
.

holds for sufficiently small h.

Proof. Recall that α̃ = α̃ψ + ξ, see (5.6). In the following, we freely identify functions
with their extensions by zero to all of Rd, respectively to all of Rd × Rd. By the
semiclassical expansion in Lemma 3.2(ii),∫

Ω̃

∫
Rd
|W (X + r/2)||α̃ψ(X, r)|2drdX

≤h2−d
∫
Rd
|W (X)||ψ(X)|2dX + Ch3−d‖W‖LpW (Rd)‖ψ‖2H1(Rd)

=h2−d
∫

Ω
|W (X)||ψ(X)|2dX + Ch3−d‖W‖LpW (Ω)‖ψ‖2H1

0 (Ω̃)
.

In the second step, we used our knowledge of where the functions are actually sup-
ported. Recall that W is infinitesimally form-bounded with respect to −∆. Hence, for
every ε > 0, there exists Cε > 0 such that∫

Ω
|W (X)||ψ(X)|2dX ≤ ε‖∇ψ‖2L2(Ω) + Cε‖ψ‖2L2(Ω)

This proves the first claimed bound.
By Hölder’s inequality (on the space Ω̃×Rd with Lebesgue measure) and the Sobolev

interpolation inequality (on Rd × Rd), we get that for every ε > 0, there exists Cε > 0
such that ∫

Ω̃

∫
Rd
|W (X + r/2)||ξ(X, r)|2drdX

≤2d/2|Ω̃|1/2‖W‖L2(Ω)‖ξ‖2L4(Ω̃×Rd)
= 2d/2|Ω̃|1/2‖W‖L2(Ω)‖ξ‖2L4(Rd×Rd)

≤2d/2|Ω̃|1/2‖W‖L2(Ω)

(
ε‖∇ξ‖2

L2(Ω̃×Rd)
+ Cε‖ξ‖2L2(Ω̃×Rd)

)
Since pW ≥ 2 in all dimensions, this finishes the proof of Lemma 5.5.

5.4 Proof of Theorem 5.1

The auxiliary results proved so far combine to give the following H1 type lower bound
on EBCS . From it, the a priori bounds stated in Theorem 5.1 will readily follow.

22



Lemma 5.6. Assume that µ ≤ −Eb + O(h2). Let α̃ ∈ H1
0 (D) ⊂ H1

0 (Ω̃ × Rd) be
decomposed as α̃ = α̃ψ + ξ as in Proposition 5.4. Then, there exist constants c1, c2 > 0
such that

EBCS(Γ) ≥c1h
2
(
h2−d‖∇ψ‖2

L2(Ω̃)
+ ‖∇ξ‖2

L2(Ω̃×Rd)

)
+ c1‖ξ‖2L2(Ω̃×Rd)

− (µ+ Eb + c2h
2)‖α̃‖2

L2(Ω̃×Rd)
+
Eb
2

Tr [αααα] .

holds for all sufficiently small h.

Proof. Given the bounds from Lemma 5.5 on the W term, one can follow the proof of
Lemma 3 in [4]. The key ingredient is the spectral gap of the operator −∆ + V above
its ground state (and the standard fact that the gap can be used to obtain H1 control
on the error term).

Proof of Theorem 5.1. Let µ ≤ −Eb + O(h2) and let Γ be a BCS state satisfying
EBCS(Γ) ≤ CΓh

4−d. By Lemma 5.6 and µ ≤ −Eb +O(h2), we have

O(h2)‖α̃‖2
L2(Ω̃×Rd)

+ CΓh
4−d ≥h2

(
h2−d‖∇ψ‖2

L2(Ω̃)
+ ‖∇ξ‖2

L2(Ω̃×Rd)

)
+ ‖ξ‖2

L2(Ω̃×Rd)
+ Tr [αααα]

(5.10)

We will eventually use all the terms in this equation. But first we note that (5.10)
gives

‖ξ‖2
L2(Ω̃×Rd)

≤ O(h2)‖α̃‖2
L2(Ω̃×Rd)

+ CΓh
4−d. (5.11)

From the first identity in (5.7), we get

‖α‖2L2(Ω2) ≤ h
2−d‖ψ‖2

L2(Ω̃)
+O(h2)‖α‖2L2(Ω2) + CΓh

4−d

and so, for all sufficiently small h,

‖α‖2L2(Ω2) ≤ Ch
2−d‖ψ‖2

L2(Ω̃)
+ CΓh

4−d. (5.12)

Applying (5.12) to (5.10) and dropping some non-negative terms, we conclude

‖∇ψ‖2
L2(Ω̃)

≤ C(‖ψ‖2
L2(Ω̃)

+ CΓ), (5.13)

‖ξ‖2
L2(Ω̃×Rd)

+ h2‖∇ξ‖2
L2(Ω̃×Rd)

≤ O(h4−d)
(
‖ψ‖2

L2(Ω̃)
+ CΓ

)
. (5.14)

Thus, to prove (5.1), it remains to show

Lemma 5.7. ‖ψ‖L2(Ω̃) ≤ O(1).

Remark 5.8. At this stage, [4] prove Lemma 5.7 (in three dimensions) by using ‖ψ‖2L2 ≤
h‖α‖2L2 = hTr [αα] ≤ hTr [γ] and the fact that they work at fixed particle number
Tr [γ] = N/h. Since we do not have this assumption, we use the semiclassical expansion
of the quartic term Tr [αααα]. Here, as in the proof of Lemma 6.1 and in [4], one uses
that in the Schatten norm estimate ‖ξ‖S4 ≤ ‖ξ‖S2 , the right hand side is still of higher
order in h for dimensions d ≤ 3.
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Proof of Lemma 5.7. We retain only the trace on the right-hand side of (5.10),

Ch2‖α‖2L2(Ω2) + CΓh
4−d = Ch2‖α̃‖2

L2(Ω̃×Rd)
≥ Tr [αααα] . (5.15)

For the following argument, we extend all the relevant kernels to functions on Rd×Rd.
In this way, we can identify Tr [αααα] ≡ ‖α‖4S4 , where ‖ · ‖Sp denotes the Schatten
trace norm of an operator on L2(Rd). Equation (5.6) may be rewritten as

α = αψ + ξ̃, αψ(x, y) = h1−dψ

(
x+ y

2

)
α∗

(
x− y
h

)
,

ξ̃(x, y) = ξ

(
x+ y

2
, x− y

)
.

(5.16)

Here and in the following, the kernel functions αψ, ξ̃ are understood to be functions
on Rd × Rd (obtained by extension by zero). The Schatten norms satisfy the triangle
inequality and are monotone decreasing in p. Also, the ‖ · ‖S2 norm of any operator
agrees with the ‖ · ‖L2(Rd×Rd) norm of its kernel. From these facts, we obtain

‖α‖S4 ≥ ‖αψ‖S4 − ‖ξ̃‖S4 ≥ ‖αψ‖S4 − ‖ξ̃‖S2 = ‖αψ‖S4 − ‖ξ̃‖L2(Rd×Rd)

= ‖αψ‖S4 − ‖ξ‖L2(Ω̃×Rd) ≥ ‖αψ‖S4 +O(h)‖α‖L2(Ω2) +O(h2−d/2).

In the last step, we used (5.11). From this, (5.15) and (5.12), we get

‖αψ‖4S4 ≤ C
(
‖α‖4S4 + h4‖α‖4L2(Ω2) +O(h8−2d)

)
≤ C

(
h2‖α‖2L2(Ω2) + h4‖α‖4L2(Ω2) +O(h4−d)

)
≤ C

(
h4−d‖ψ‖2

L2(Ω̃)
+ h8−2d‖ψ‖4

L2(Ω̃)
+O(h4−d)

)
.

(5.17)

Along the way, we used 8 − 2d > 4 − d for d = 1, 2, 3. After extension by zero,
ψ ∈ H1(Rd) and we apply Lemma 3.2 (iv) to get

‖αψ‖4S4 = h4−dg0(α∗)‖ψ‖4L4(Ω̃)
+O(h5−d)‖ψ‖4

H1
0 (Ω̃)

.

Then, by (5.13) and Hölder’s inequality, ‖αψ‖4S4 ≥ Ch4−d‖ψ‖4
L2(Ω̃)

. Combining this

estimate with (5.17) and using 8− 2d > 4− d, we get

‖ψ‖4
L2(Ω̃)

≤ C‖ψ‖2
L2(Ω̃)

+O(1)

This proves ‖ψ‖L2(Ω̃) ≤ O(1) and hence Lemma 5.7 and Theorem 5.1.

6 Proof of Theorem 2.2 (LB): Semiclassics

6.1 From a priori bounds to GP theory

We begin by deriving a lower bound in terms of GP energy on Ω̃, by assuming a
decomposition with a priori bounds as in Theorem 5.1 and applying the semiclassical
expansion from Lemma 3.2.

Accordingly, in this section, ψ and ξ are general functions, not necessarily the ones
defined previously in Proposition 2.6 (they will be the same for convex domains).
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Lemma 6.1. Let µ ≤ −Eb+O(h2) and define ν ′ := min{d/2, 1}. Let Γ be a BCS state
such that α can be decomposed as in (1.9) for some ψ ∈ H1

0 (Ω̃) and ξ ∈ H1
0 (Ω̃ × Rd).

Moreover, suppose that ‖ψ‖H1
0 (Ω̃) ≤ O(1) and ξ satisfies the bound in (5.1). Then, wee

have
EBCS(Γ) ≥ h4−dEGP

Ω̃
(ψ) +O(h4−d+ν′)‖ψ‖2

H1
0 (Ω̃)

, (6.1)

for some C > 0. Here EGP
Ω̃

is defined with the parameter D := h−2(µ+ Eb).

6.1.1 Proof of Lemma 6.1

It will be convenient to define the auxiliary energy functional

ELB(α) :=Tr
[
(−h2∆Ω + h2W − µ)αα

]
+

∫∫
Ω×Ω

V

(
x− y
h

)
|α(x, y)|2dxdy + Tr [hαααα] .

We first note that this auxiliary functional provides a lower bound to the BCS energy.
The basic idea is to replace γ by expressions in α using αα ≤ γ as in the proof of
Lemma 5.2. However some additional difficulty is present here because the last term
in ELB(α) still features h and so we need the stronger operator inequality (6.2) below.

Proposition 6.2. For sufficiently small h, we have EBCS(Γ) ≥ ELB(α), where α
denotes the off-diagonal element of the BCS state Γ.

Proof of Proposition. The claim will follow from the operator inequality

γ ≥ αα+ αααα. (6.2)

To prove (6.2), we start by observing that 1− γ ≤ (1 + γ)−1 by the spectral theorem.
Consequently

0 ≤ Γ =

(
γ α
α 1− γ

)
≤
(
γ α
α (1 + γ)−1

)
.

The Schur complement formula implies

γ ≥ α(1 + γ)α.

Using γ ≥ αα, we find
γ ≥ α(1 + γ)α ≥ αα+ αααα

which proves (6.2). To conclude, let h be sufficiently small such that h ≥ 0, see
Proposition 5.3. Then (6.2) yields

Tr [hγ] ≥ Tr [hαα] + Tr [hαααα]

and this proves Proposition 6.2.

The following key lemma says that we can apply the semiclassical expansion to the
auxiliary energy functional with the desired result.
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Lemma 6.3. Under the assumptions of Lemma 6.1, we use the splitting α = αψ + ξ̃
from (5.16). Then

ELB(α) ≥ ELB(αψ) +O(h4−d+ν′)‖ψ‖2
H1

0 (Ω̃)
.

Before we prove this lemma, we note that it directly implies Lemma 6.1. Indeed,
it gives

EBCS(Γ) ≥ ELB(α) ≥ ELB(αψ) +O(h4−d+ν′)‖ψ‖2
H1

0 (Ω̃)
.

We extend ψ ∈ H1
0 (Ω̃) by zero to get an element of H1(Rd), which we also denote by ψ.

Then, all the terms in ELB(αψ) were computed in the semiclassical expansion in Lemma
3.2. On the result of the expansion, we use the eigenvalue equation (−∆+V +Eb)α∗ = 0
and recall gBCS(α∗) = gBCS from (1.5). This yields EGPRd (ψ) plus the error terms.
These are as claimed, because ‖ψ‖H1(Rd) ≤ O(1) and µ ≤ −Eb+O(h2) by assumption.

Finally, ψ ∈ H1
0 (Ω̃) implies EGPRd (ψ) = EGP

Ω̃
(ψ).

It remains to give the

Proof of Lemma 6.3. We treat the terms in ELB in four separate parts. First, by
changing to center-of-mass coordinates (5.3), compare the proof of Lemma 3 in [4],

Tr
[
(−h2∆Ω + Eb)αα

]
+

∫∫
Rd×Rd

V

(
x− y
h

)
|α(x, y)|2dxdy

≥Tr
[
(−h2∆Ω + Eb)αψαψ

]
+

∫∫
Rd×Rd

V

(
x− y
h

)
|αψ(x, y)|2dxdy.

(6.3)

Second, from µ ≤ −Eb +O(h2), (5.12) and (5.1), we get

− (µ+ Eb)Tr [αα] ≥ −(µ+ Eb)Tr [αψαψ] +O(h6−d)‖ψ‖2
L2(Ω̃)

. (6.4)

Next, by Cauchy-Schwarz, Lemma 5.5 and (5.1):

Tr [Wαα] ≥Tr [Wαψαψ]− C
(
‖ξ‖2

L2(Ω̃×Rd)
+ h2‖∇ξ‖2

L2(Ω̃×Rd)

)
− C

(
‖ξ‖2

L2(Ω̃×Rd)
+ h2‖∇ξ‖2

L2(Ω̃×Rd)

)1/2
h1− d

2 ‖ψ‖H1
0 (Ω̃)

≥Tr [Wαψαψ] +O(h3−d).

Using h = −h2∆Ω + h2W − µ, the claim will then follow from

Tr [hαααα] ≥ Tr [hαψαψαψαψ] +O(h4−d+ν′). (6.5)

This can be obtained by expanding the quartic and using the a priori bounds (5.1), see
the proof of (7.12) in [4]. Here, we only explain how to treat the W terms. Consider

e.g. Tr
[
Wαψααξ̃

]
. By cyclicity of the trace, Hölder’s inequality for Schatten norms

and form-boundedness,

Tr
[
Wαψααξ̃

]
≤‖α‖2S6‖

√
|W |αψ‖S6‖

√
|W |sgn(W )ξ̃‖S2

=‖α‖2S6‖αψ|W |αψ‖
1/2
S3 ‖ξ̃|W |ξ̃‖

1/2
S1

≤2‖α‖2S6

(
‖∇αψ‖S6‖∇ξ̃‖S2 + C‖αψ‖S6‖ξ̃‖S2

) (6.6)
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In the last step, we used the fact that form-boundedness can be stated as an operator
inequality. When we multiply through by h2, the last quantity is of the same form as
the first term in (7.16) of [4]. Using the same arguments as there with the a priori
bounds (5.1) proves that it is O(h4−d+ν′). (We mention (a) that ‖α‖S6 is estimated
via ‖α‖S6 ≤ ‖αψ‖S6 + ‖ξ̃‖S2 , which is implicit in [4] and (b) that the proof of Lemma
1 in [4] generalizes to d = 1, 2 and gives ‖αψ‖S6 ≤ O(h1−d/6).)

The same idea applies to all the other W dependent terms in the expansion of the
quartic. This proves Lemma 6.3 and consequently Lemma 6.1.

6.2 Proof of Theorem 2.2 (LBC)

Let Ω be convex and let Γ be an approximate BCS minimizer, i.e. EBCS(Γ) ≤ CΓh
4−d.

We apply Theorem 5.1 and then Lemma 6.1. Since Ω = Ω̃ by convexity, this finishes
the proof.

6.3 Proof of Theorem 2.2 (LB)

Let Ω be a non-convex bounded Lipschitz domain. The order parameter ψ defined in
Proposition 5.4 now lives on Ω̃ = Ω+Ω

2 , which may be a much larger set than Ω.

6.3.1 Decay of the order parameter

We first show that ψ in fact decays exponentially away from Ω. This follows easily
from its definition (5.4) and the exponential decay of α∗, see (3.2).

Proposition 6.4. There exists a constant C0 > 0 such that for every ` > 0 and almost
every X ∈ Ω̃ with dist(X,Ω) ≥ `, we have

|ψ(X)| ≤ C0h
d/2−1e−ρ∗

2`
h ‖α̃(X, ·)‖L2(DX) (6.7)

|∇ψ(X)| ≤ C0h
d/2−1e−ρ∗

2`
h ‖∇X α̃(X, ·)‖L2(DX). (6.8)

Proof. Let ` > 0 and X ∈ Ω̃ with dist(X,Ω) ≥ `. The key observation is that the
triangle inequality implies

DX ⊆
{
r ∈ Rd : |r| > 2`

}
,

where DX was defined in Proposition 5.4. Therefore, by Cauchy-Schwarz and (3.2)

|ψ(X)| ≤ h−1

∫
DX
|α∗(r/h)||α̃(X, r)|dr

= h−1

∫
DX

e−ρ∗
r
h eρ∗

r
h |α∗(r/h)||α̃(X, r)|dr

≤ C0h
d/2−1e−ρ∗

2`
h ‖α̃(X, ·)‖L2(DX).

This proves (6.7). Starting from (5.8), the same argument gives (6.8).

27



6.3.2 Conclusion by a cutoff argument

With Proposition 6.4 at our hand, we just have to cut off part of ψ that lives sufficiently
far away from Ω. We first apply Theorem 5.1 to get the decomposition and the a priori
bounds stated there. Then, we define

ψ1(X) : = η `(h)
4
,Ω+
`(h)

(X)ψ(X),

ξ1(X, r) : = ξ(X, r) + (ψ(X)− ψ1(X))α∗(r/h).

Here Ω+
` was defined in (2.3), the cutoff function η`,U was defined in (7.3) and `(h) =

h log(h−q). Note that we also have (1.9) with ψ, ξ replaced by ψ1, ξ1.
Note that ψ1 ∈ H1

0 (Ω+
`(h)) and consequently

EGP
Ω̃

(ψ1) = EGP
Ω+
`(h)

(ψ1).

Thanks to this, the claim will follow from Lemma 6.1 applied with the choices ψ =
ψ1, ξ = ξ1. It remains to show that its assumptions are satisfied, namely that
‖ψ1‖H1

0 (Ω+
`(h)

) ≤ O(1) and ξ1 satisfies (5.1).

For this part, we denote η ≡ η c0`(h)
4

,Ω+
`(h)

and ` ≡ `(h) for short. We first prove that

‖ψ1‖H1
0 (Ω+

` ) ≤ O(1). Using η ≤ 1 and Cauchy-Schwarz, we get

‖ψ1‖2H1
0 (Ω+

` )
≤ 2‖ψ‖2

H1
0 (Ω+

` )
+ 2

∫
Ω+
` (h)
|∇η|2|ψ|2dX = O(1) + 2

∫
Ω+
`

|∇η|2|ψ|2dX. (6.9)

The term with |∇η| may look troubling since we can only control |∇η| ≤ `−2 on
supp ∇η. The key insight is that this potential blow up in h is sufficiently dampened
on supp ∇η by the exponential decay of |ψ| established by Proposition 6.4. Namely,
we will prove

Lemma 6.5. supp ∇η(p) ⊂ (Ω+
`/2)c

We postpone the proof of this geometrical lemma for now. Assuming it holds, it is
straightforward to use the decay estimates from Proposition 6.4 to conclude from (6.9)
that ‖ψ1‖H1

0 (Ω+
` ) ≤ O(1), by choosing q large enough (with respect to 1/ρ∗).

Next, we show that ξ1 satisfies (5.1). From Theorem 5.1, we already know that ξ
satisfies (5.1). When integrating the other term in the definition of ξ1, we change to
center of mass coordinates and write ψ − ψ1 = ψ(1 − η). Since ∇(1 − η) and ∇η are
supported on the same set, one can use the argument from above again on the center
of mass integration (i.e. a combination of Lemma 6.5 and Proposition 6.4). We leave
the details to the reader.

To finish the proof of Theorem 2.2 (LB), it remains to give the

Proof of Lemma 6.5. Let p ∈ Rd be a point such that ∇η(p) 6= 0. Then, by definition
(7.3) of η,

dist(p, (Ω+
` )c) < `/2.
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Let q` ∈ (Ω+
` )c be a point such that dist(p, (Ω+

` )c) = |p− q`| and let q ∈ Ω be a point
such that dist(p,Ω) = |p − q| (such points exists by a compactness argument). By
definition (2.3) of Ω+

` and the triangle inequality,

` ≤ dist(Ω, (Ω+
` )c) ≤ |q − q`| ≤ |q − p|+ |p− q`| < |q − p|+ `/2.

Therefore, dist(p,Ω) = |q− p| > `/2 and so p ∈ (Ω+
`/2)c. Since p was an arbitrary point

with ∇η(p) 6= 0 and (Ω+
`/2)c is closed, Lemma 6.5 is proved.

7 Proof of the continuity of the GP energy (The-

orem 2.3)

7.1 Davies’ use of Hardy inequalities

This section serves as a preparation to prove the second key result Theorem 2.3.
The central idea that we discuss here is Lemma 7.2. It is based on the insight of

Davies [7, 8] that continuity of the Dirichlet energy under interior approximations of
a domain U follows from good control on the boundary decay of functions that lie in
the operator domain of ∆U , under the sole assumption that the domain U satisfies a
Hardy inequality (7.2).

Importantly, GP minimizers for EGPU are in dom(∆U ) thanks to the Euler Lagrange
equation, see Proposition 2.6, and this is how one derives the continuity of the GP
energy (Theorem 2.3) from Lemma 7.2.

As its input, the lemma requires the validity of the

Definition 7.1 (Hardy inequality). Let U ⊆ Rd and denote

dU (x) := dist(x, U c). (7.1)

We say that U satisfies a Hardy inequality, if there exist cU ∈ (0, 1] and λ ∈ R such
that ∫

U
dU (x)−2|ϕ(x)|2dx ≤ 4

c2
U

‖∇ϕ‖2L2(U) + λ‖ϕ‖2L2(U), ∀ϕ ∈ C∞c (U). (7.2)

We shall refer to cU and λ as the “Hardy constants”.

We can now state

Lemma 7.2. For any 0 < ` < 1, we define the function η`,U : Rd → [0,∞) by

η`,U (x) :=


0, if 0 ≤ dU (x) ≤ `
dU (x)−`

` , if ` ≤ dU (x) ≤ 2`

1, otherwise.

(7.3)

Suppose that U satisfies the Hardy inequality (7.2) for some cU ∈ (0, 1] and some
λ ∈ R. Then, there exists a constant c > 0 depending only on cU and λ such that

EGPU (η`,Uϕ)− EGPU (ϕ) ≤ c`cU
(
‖ϕ‖H1

0 (U)‖∆Uϕ‖L2(U) + ‖ϕ‖2H1
0 (U)

)
, ∀ϕ ∈ dom(∆U ).

Moreover, the same bound holds for the quantity ‖η`,Uϕ‖2H1
0 (U)
− ‖ϕ‖2

H1
0 (U)

.
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We remark that η`,U is a Lipschitz continuous function with a Lipschitz constant
that is independent of U (this is because dU has the Lipschitz constant one for all U).

Proof. We write η ≡ η`,U . First, we note that the nonlinear term drops out because
|ηϕ|4 − |ϕ|4 = (η4 − 1)|ϕ|4 ≤ 0 thanks to 0 ≤ η ≤ 1. For the gradient term, we note
that the Hardy inequality (7.2) is the main assumption in [7, 8]. Thus, by Lemma 11
in [8], there exists a c > 0 (depending only on the Hardy constants cU and λ) such that∫

U
(|∇(ηϕ)|2 − |∇ϕ|2)dx ≤ c`cU ‖∆Uϕ‖L2(U)‖∇ϕ‖L2(U), ∀ϕ ∈ dom(−∆U ).

Since η ≤ 1, this already implies the last sentence in Lemma 7.2. Using Cauchy-
Schwarz, Assumption 1.2 on W and Theorem 4 in [8], we get∫

U
(W +D)(η2 − 1)|ϕ|2dx ≤

∫
U

(|W |+ |D|)(1− η2)|ϕ|2dx

≤
(
‖Wϕ‖L2(Ω) + |D|‖ϕ‖L2(Ω)

)(∫
U∩{dU≤2`}

|ϕ|2dx

)1/2

≤c
(
‖W‖LpW (Ω) + |D|

)
‖ϕ‖H1

0 (U)`
1+cU/2

(
‖∆Uϕ‖L2(U)‖∇ϕ‖L2(U)

)1/2
for another constant c depending only on cU and λ. We estimate the last term via
2
√
ab ≤ a+ b. Then we use that `1+cU/2 ≤ `cU holds for all cU ∈ (0, 1] and 0 < ` < 1.

This proves 7.2.

With Lemma 7.2 at our disposal, we need conditions on U such that it satisfies the
Hardy inequality (7.2).

In a fundamental paper, Necas [30] proved that any bounded Lipschitz domain Ω
satisfies a Hardy inequality for some cΩ ∈ (0, 1] and some λ ∈ R. Hence, we can apply
Lemma 7.2 with U = Ω and this is already sufficient to obtain continuity of the GP
energy under interior approximation, i.e. Theorem 2.3 with Ω−` . Hence, Necas’ result
is already sufficient to derive

(i) the upper bounds in the two main results, Theorems 1.7 and 1.10.

(ii) the complete Theorem 1.10 for bounded and convex domains Ω. Indeed, Theorem
2.2 (LBC) gives the lower bound and the upper bound holds because any convex
domains satisfies a Hardy inequality [28, 29]. (In fact, the Hardy constants can
be taken as c = 4 and λ = 0.)

The continuity of the GP energy under exterior approximation (and therefore our
proof of the lower bounds in the main results) relies on the following new theorem. It
is is an extension of Necas’ argument [30]. The proof is deferred to Appendix D.

Theorem 7.3. Let Ω be a bounded Lipschitz domain. There exist cΩ ∈ (0, 1], λ ∈ R
and `0 > 0, as well as a sequence of exterior approximations {Ω`}0<`<`0 such that the
Hardy inequality (7.2) holds with U = Ω` for all ` < `0.

Moreover, the sequence of approximations {Ω`}` satisfies the following properties.

(i) There exists a constant c0 > 1 such that Ω+
` ⊂ Ω` ⊂ Ω+

c0`
.
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(ii) There exists a constant a > 0 such that{
q ∈ Rd : dist(q, (Ω`)

c) > a`
}
⊂ Ω. (7.4)

We emphasize that the Lipschitz character of Ω is important for the sequence of ap-
proximations {Ω`}` to exist. Concretely, properties (i) and (ii) cannot both hold for ex-
terior approximations of the slit domain example presented in Remark 2.5 (while there
do exist approximations that all satisfy the Hardy inequality with the `-independent
constant cΩ = 1/2).

7.2 Proof of Theorem 2.3

We begin by observing that Ω−` ⊂ Ω ⊂ Ω+
` trivially gives

EGP
Ω+
`

≤ EGPΩ ≤ EGP
Ω−`

.

Theorem 2.3 says that the reverse bounds hold as well, up to the claimed error terms.
The basic idea is to take a minimizer on the larger domain and to cut it off near the
boundary, where the energy cost of the cutoff is controlled by Lemma 7.2.

7.2.1 Interior approximation

The situation is easier for interior approximation, since then we consider GP minimizers
and the Hardy inequality on the fixed domain Ω. We want to apply Lemma 7.2 and
we gather prerequisites.

First, by Proposition 2.6, there exists a unique non-negative minimizer for EGPΩ ,
call it ψ, and it satisfies

‖∆Uψ‖L2(U) ≤ C(1 + |D|)(‖ψ‖H1
0 (U) + ‖ψ‖3H1

0 (U)) (7.5)

Second, since Ω is a bounded Lipschitz domain, there exist cΩ ∈ (0, 1] and λ ∈ R such
that the Hardy inequality (7.2) holds on U = Ω [30]. Now we apply Lemma 7.2 with
the domain U = Ω and the cutoff function η2`,Ω. We get

EGPΩ (η2`,Ωψ) ≤EGPΩ (ψ) +O(`2/c)(‖ψ‖H1
0 (Ω)‖∆Ωψ‖L2(Ω) + ‖ψ‖2H1

0 (Ω))

≤EGPΩ (ψ) +O(`2/c)

In the second step, we used (7.5) and the fact that all norms of ψ are independent of `.
The definitions of η2`,Ω and Ω−` are such that supp η2`,Ω ⊂ Ω−` . Since η2`,Ω is Lipschitz
continuous, this implies η2`,Ωψ ∈ H1

0 (Ω−` ) and therefore

EGPΩ (η2`,Ωψ) = EGP
Ω−`

(η2`,Ωψ) ≥ EGP
Ω−`

. (7.6)

This proves the claimed continuity under interior approximation.
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7.2.2 Exterior approximation

The idea is similar as before, but additional ` dependencies complicate the argument
somewhat. We let {Ω`}0<`<`0 be the sequence of exterior approximations given by
Theorem 7.3. That is, Ω+

` ⊂ Ω` and the Hardy inequality (7.2) holds on all U = Ω`

with Hardy constants that are uniformly bounded in `.
By Proposition 2.6, there exists a unique non-negative minimizer for EGPΩ`

, call it
ψ`, and it satisfies the analogue of (7.5) with a C that is independent of `.

Recall definition (7.3) of the cutoff function ηa`,Ω` . Here we choose a > 0 such that
property (ii) in Theorem 7.3 holds which is equivalent to

supp ηa`,Ω` ⊂ Ω. (7.7)

Now we apply Lemma 7.2. We note that the constant c appearing in it depends only
on the Hardy constants (and these are uniformly bounded in `). Therefore, using the
analogue of (7.5), we get

EGPΩ`
(ηa`,Ω`ψ`) ≤ E

GP
Ω`

(ψ`) +O(`2/c)O(‖ψ`‖2H1
0 (Ω`)

+ ‖ψ`‖4H1
0 (Ω`)

). (7.8)

Regarding the error term, we note

Lemma 7.4. ‖ψ`‖H1
0 (Ω`)

≤ O(1).

Proof of Lemma 7.4. We use that the GP energy can only increase under a decrease
of the underlying domain to get

EGPΩ`
(ψ`) = EGPΩ`

≤ EGPΩ (7.9)

The claim now follows from the coercivity (2.10), since the constants C1, C2, D there
do not depend on the underlying domain and hence not on `.

By (7.7) and the fact that ηa`,Ω` is a Lipschitz function, we get ηa`,Ω`ψ` ∈ H1
0 (Ω).

Returning to (7.8), we can conclude the proof as in (7.6), which yields Theorem 2.3.
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A On GP minimizers

We prove Proposition 2.6.
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Proof of (i). The coercivity (2.10) is a straightforward consequence form-boundedness
of W and the elementary bound

|ψ|4 − (C +D)|ψ|2 ≥ −(C2 +D)2.

The constants C1, C2 only depend on W and since W is supported in the fixed domain
Ω, they are independent of U . Clearly (2.10) implies EGPU > −∞.

Proof of (ii). Let {ψn} be a minimizing sequence for EGPU . By the coercivity
(2.10), the sequence is bounded in H1

0 (U) and hence weakly H1
0 (U)-precompact. Let

ψ∗ ∈ H1
0 (U) denote one of its weak limit points. After extending all functions by zero

to get functions on Rd, we obtain weak convergence in H1(Rd). Therefore, by Rellich’s
theorem, ψn → ψ∗ in all Lp(U) spaces with p < pS(d) the critical Sobolev exponent in
dimension d (e.g. pS(3) = 6). Letting p′ denote the Hölder dual of p, we get∫
U
W (|ψn|2 − |ψ∗|2)dx ≤

(
‖Wψn‖Lp′ (U) + ‖Wψ∗‖Lp′ (U)

)
‖|ψn| − |ψ∗|‖Lp(U)

≤C‖W‖L2(U)(‖∇ψn‖H1
0 (U) + ‖∇ψ∗‖H1

0 (U))‖ψ − ψ∗‖Lp(U) → 0.

The last estimate holds by Assumption 1.2 for all p < pS(d) sufficiently close to pS(d).
The same argument gives the continuity of the D term in EGPU .

Let # ∈ {n, ∗}. We write EGPU (ψ#) = A# +B#, where A# = ‖∇ψ#‖2L2(U) and B#

contains the remaining terms. Then, the above shows that Bn → B∗. Moreover, by
weak convergence is H1

0 (U), lim inf An ≥ A∗, so EGPU = lim(An+Bn) ≥ A∗+B∗. Since
A∗ + B∗ ≥ EGPU by definition of EGPU , we conclude that ψ∗ is a minimizer and that
An → A∗. Thus, ‖ψn‖H1

0 (U) → ‖ψ∗‖H1
0 (U) and therefore ψn → ψ∗ strongly in H1

0 (U).

To prove the uniqueness statement we first note that ‖∇|ψ|‖L2(U) ≤ ‖∇ψ‖L2(U).
Moreover, since ρ 7→ ‖∇√ρ‖2L2(U) is convex and ρ 7→ ‖ρ‖2L2(U) is strictly convex, we

see that EGPD (ψ) is a strictly convex functional of |ψ|2, and therefore has a unique
minimizer.

Proof for (iii). We compute the Euler Lagrange equation for the GP energy and
find

−1

4
∆Uψ∗ + (W −D)ψ∗ + 2gBCS |ψ∗|2ψ∗ = 0.

This equation holds in the dual of H1
0 (U), that is, when tested against H1

0 (U) functions.
By our Assumption 1.2 on W and Sobolev’s inequality, ∆Uψ∗ is in fact an L2(U)
function and we have the bound

‖∆Uψ∗‖L2(U) =‖4(W −D)ψ∗ + 8gBCS |ψ∗|2ψ∗‖L2(U)

≤C(1 + |D|)(‖ψ∗‖H1
0 (U) + ‖ψ∗‖3H1

0 (U)).

This finishes the proof of Proposition 2.6.

B Convergence of the one body density

Proof of Proposition 1.12. We fix a real valued w ∈ LpW (Ω) and t ∈ R and define
Wt := W + tw. We denote the BCS/GP energies which are defined with Wt by
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EBCSt , EBCSt , EGPt , etc. On the one hand, our assumption on Γ gives

EBCS − EBCSt ≥ EBCSt (Γ)− EBCSt (Γ) + o(h4−d) = th2Tr [γw] + o(h4−d).

On the other hand, Theorem 1.10 yields

EBCS − EBCSt = h4−d(EGP − EGPt ) +O(h4−d+ν)

where the implicit constant depends on w. We denote the unique non-negative min-
imizer of EGPt by ψt (see Proposition 2.6). Multiplying through by hd−4 and taking
h→ 0, we find

lim sup
h→0

thd−2Tr [γw] ≤ EGP − EGPt ≤ EGP (ψt)− EGPt (ψt) = t

∫
Ω
w|ψt|2dx. (B.1)

We claim that ψt → ψ0 ≡ ψ∗ in H1
0 (Ω). This will imply the main claim (1.10). To see

this, one divides (B.1) by t, distinguishing the cases t > 0 and t < 0, and sends t→ 0.
Then one uses Rellich’s theorem to get |ψt|2 → |ψ0|2 in Lp

′
W (Ω).

Hence, it remains to prove that ψt → ψ∗ in H1
0 (Ω). This is a simple compactness

argument. We denote ηt := ψt − ψ∗. The coercivity (2.10) and the triangle inequality
imply that ‖ηt‖H1

0 (Ω) remains bounded as t→ 0. We have

0 ≤EGP (ψt)− EGP (ψ∗) = EGPt (ψt)− EGPt (ψ∗)− t
∫

Ω
w(2Re(ηt)ψ∗ + |ηt|2)dx

≤− t
∫

Ω
w(2Re(ηt)ψ∗ + |ηt|2)dx

The right hand side vanishes as t → 0, since ‖ηt‖H1
0 (Ω) remains bounded as t → 0.

Therefore, ψt is a sequence of approximate minimizers of EGP . Proposition 2.6 (ii)
then implies that ψt → ψ∗ in H1

0 (Ω).

C On the semiclassical expansion

We sketch the proof of Lemma 3.2, especially where it departs from similar results in
[4]. All norms and all integrals are taken over Rd, unless noted otherwise.

Proof of Lemma 3.2. Proof of (i). This follows directly from changing to the center-
of-mass coordinates (5.3), compare the proof of Lemma 5.2.

Proof of (ii). We write out the trace with operator kernels, change to center-of-mass
coordinates (5.3) and apply the fundamental theorem of calculus to get

Tr [Waψaψ] =h−d
∫∫

W (X)|a(r)|2
∣∣∣∣ψ(X − hr

2

)∣∣∣∣2 dXdr

=h−d
∫
W (X)|ψ(X)|2dX − h−dη

with

η = Re

∫∫
W (X)|a(r)|2

(∫ 1

0
ψ

(
X − shr

2

)〈
hr,∇ψ

(
X − shr

2

)〉
ds

)
dXdr. (C.1)

34



By Hölder’s and Sobolev’s inequalities, |η| ≤ h‖W‖LpW (Ω)‖
√
| · |a‖2L2‖ψ‖2H1 . This is

O(h), since ‖
√
| · |a‖2L2 <∞ by our assumptions on a.

Proof of (iii). The argument in Lemma 1 in [4] generalizes because the critical
Sobolev exponent is always greater or equal to six in d = 1, 2, 3 and so all the error
terms can be bounded in terms of ‖ψ‖H1(Rd). We mention that the idea of the proof
is to write the trace in terms of operator kernels and to change to the four body
center-of-mass coordinates

X =
x1 + x2 + x3 + x4

4
, rk = xk+1 − xk, k = 1, 2, 3.

Then, one rescales the relative coordinates rk by h (since they appear as a(rk/h)) and
expands in h.

When proving the first equation in (iii), the W term requires a different argument.
Namely, as in the proof of (6.5), one uses Hölder’s inequality for Schatten norms and
form-boundedness of W with respect to −∆ to get

|Tr [Wαψαψαψαψ] | ≤ C
(
‖∇αψ‖2S4 + ‖αψ‖2S4

)
‖∇αψ‖2S4 .

Afterwards, one multiplies by h2 and uses the bounds from Corollary 1 in [4]. This
gives the first equation in (iii). For the second equation in (iii), one replaces ‖V a‖L1

in the estimate of the error term A2 in [4] by ‖a‖L1 , which is also finite.

D On Lipschitz domains and Hardy inequalities

We first present the construction of a suitable sequence of exterior approximations
to a bounded Lipschitz domain. Then, we prove that this sequence satisfies Hardy
inequalities with uniformly bounded Hardy constants (Theorem 7.3).

The proof of Theorem 7.3 is an extension of Necas’ argument [30] for a fixed Lip-
schitz domain and draws on known results on the geometry of the sequence of the
exterior approximations [6, 25]. (We remark that we could alternatively work with
the naive enlargements Ω+

` (D.3), but this would require writing down a non trivial
amount of elementary geometry estimates.)

D.1 Definitions

We begin by recalling

Definition D.1 (Lipschitz domain). A set Ω ⊆ Rd is a bounded Lipschitz domain,
if its boundary ∂Ω can be covered by finitely many bounded and open coordinate
cylinders C1, . . . , CK ⊂ Rd such that for all 1 ≤ k ≤ K, there exist Rk, βk > 0 such that

∂Ω ∩ Ck ={(x, fk(x)) ∈ BRk × R},
Ω ∩ Ck = {(x, y) ∈ BRk × R : −βk < y < fk(x)} ,

Ωc ∩ Ck = {(x, y) ∈ BRk × R : fk(x) < y < βk} .

where fk : BRk → R is a uniformly Lipschitz continuous function on BRk ⊂ Rd−1, the
ball of radius Rk centered at the origin.
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The equalities above should be understood in the sense that there exists an isometric
bijection between the two sets (so the Cartesian coordinate frame defined through the
x ∈ BRk may be different for each k).

The exterior approximations Ω` are obtained by extending Ω in the direction of a
smooth transversal vector field, which any Lipschitz domain is known to host.

Proposition D.2 (Normal and transversal vector fields). Let Ω be a bounded Lipschitz
domain in the sense of Definition D.1. For every 1 ≤ k ≤ K, define the outward normal
vector field (to ∂Ω) in the coordinate cylinder Ck by

n(x) :=
(∇fk(x),−1)√
1 + |∇fk(x)|2

, (D.1)

for Lebesgue almost every x ∈ BRk and extend the definition to all x ∈ BRk by averaging
over a small ball as in (2.4) of [25].

Then, Ω hosts a smooth vector field v : Rd → Rd which is “transversal”, i.e. there
exists κ ∈ (0, 1) such that for all 1 ≤ k ≤ K,

v(x, fk(x)) · n(x) ≥ κ, |v(x, fk(x))| = 1, (D.2)

for almost every x ∈ BRk .

In the definition of n(x), we used the fact that the Lipschitz continuous function
fk is differentiable almost everywhere by Rademacher’s theorem.

The basic idea for Proposition D.2 is that in each coordinate cylinder Ck from
Definition D.1, one takes the constant vector field ed, i.e. the y direction, and then one
smoothly interpolates between different Ck via a partition of unity. For the details, see
e.g. pages 597-599 in [25] (and note that the surfaces measure, called σ there, and the
Lebesgue measure on BRk are mutually absolutely continuous).

We are now ready to give

Definition D.3 (Exterior approximations). Let Ω be a bounded Lipschitz domain and
let v be the transversal vector field from Proposition D.2. For every ` > 0, define its
enlargement by

Ω̂` := {p+ `v(p) : p ∈ Ω} . (D.3)

D.1.1 Bounds on Ω̂`

Each set Ω̂` has many nice properties if ` is small enough, see Proposition 4.19 in
[25] (though this is stated for the case ` < 0, analogous results hold for ` > 0, as is
also mentioned there). In particular, Ω̂` is also a bounded Lipschitz domain and there
exist coordinate cylinders in which both ∂Ω and ∂Ω̂` are represented as the graphs of
Lipschitz continuous functions, with Lipschitz constants that are uniformly bounded
in `. Moreover:

Proposition D.4. There exists a constant c0 > 0, such that for all ` > 0 small enough,

Ω+
c0`
⊂ Ω̂` ⊂ Ω+

` . (D.4)
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This lemma will give property (i) in Theorem 7.3, up to reparametrizing it as
Ω` := Ω̂`/c0 .

Proof. The second containment follows directly from Proposition 4.15 in [25].
For the first containment, we invoke Proposition 4.19 in [25]. It gives Ω ⊂ Ω̂` and

consequently
dist(Ω, Ω̂c

`) = dist(∂Ω, ∂̂Ω`). (D.5)

We will show that dist(∂Ω, ∂Ω̂`) ≥ c0`. By Proposition 4.19 (i) in [25],

∂Ω̂` = {p+ `v(p) : p ∈ ∂Ω} . (D.6)

Hence, by a compactness argument, there exist p, p′ ∈ ∂Ω such that

dist(∂Ω, ∂Ω̂`) = |p′ − (p+ `v(p))| = |V (p′, 0)− V (p, `)|,

where we introduced the map

V : ∂Ω× (−`0, `0)→ Rd

(p, s) 7→ p+ sv(p).
(D.7)

By (4.67) in [25], V is bi-Lipschitz if `0 > 0 is small enough. In particular, there exists
c0 > 0 such that

|V (p′, 0)− V (p, `)| ≥ c0|(p′, 0)− (p, `)| ≥ c0`.

This proves dist(∂Ω, ∂Ω̂`) ≥ c0`. The claim then follows from (D.5) and definition (2.3)
of Ω+

` .

D.1.2 Proof of Theorem 7.3

We apply Necas’ proof [30] to all Ω` simultaneously (with ` sufficiently small) and
observe that all the relevant constants can be bounded uniformly in `.

By Proposition 4.19 (ii) in [25], for `0 > 0 small enough, there exist coordinate
cylinders C1, . . . , CK that (a) cover ∂Ω` for all 0 ≤ ` < `0 and (b) characterize them as
the graph of Lipschitz functions fk,` in the ed direction, as described in Definition D.1.
Moreover, the Lipschitz constants of fk,` are uniformly bounded in `.

Let C0 ⊂ Ω be an open set such that dist(C0,Ω
c) > 0 and such that Ω ⊂

⋃K
k=0 Ck.

Let φ0, . . . , φK : Rd → Rd be a smooth partition of unity subordinate to this covering,
i.e.

supp φk ⊂ Ck,
K∑
k=0

φk = 1 on

K⋃
k=0

Ck.

The key observation is that, locally, the distance d` := dist(·, ∂Ω`) is comparable to
fk,` − y up to constants which depend on the Lipschitz constant of fk,` and are thus
uniformly bounded in `. Concretely, we have
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Lemma D.5. There exist constants a > 0 and 0 < b ≤ 1 such that for all 1 ≤ k ≤ K
and all 0 ≤ ` < `0, we have

min{a, b|fk(x)− y|} ≤ d`(x, y) ≤ |fk,`(x)− y| (D.8)

for all (x, y) ∈ suppφk.

Proof. Fix 1 ≤ k ≤ K. The second inequality is trivial because (x, fk,`(x)) ∈ ∂Ω`

implies
d`(x, y) ≤ |(x, y)− (x, fk,`(x))| = |fk,`(x)− y|.

For the proof of the first inequality in (D.8), we define

a := min
k=0,...,K

dist( supp φk, ∂Cck) > 0.

Since ∂Ω` is compact, d`(x, y) is achieved at some point p0 ∈ ∂Ω`. In case p0 6∈ Ck, we
can bound

d`(x, y) = |p0 − (x, y)| ≥ a,
and in case p0 ∈ Ck we can write it as p0 = (x0, fk,`(x0)) and proceed as follows. Recall
that every fk,` is Lipschitz continuous with a Lipschitz constant that is uniformly
bounded in `; call the bound L. Hence, for every τ ∈ (0, 1),

d`(x, y)2 =(x− x0)2 + (y − fk,`(x0))2

≥(x− x0)2 + (1− τ−1)(fk,`(x)− fk,`(x0))2 + (1− τ)(y − fk,`(x0))2

≥(1− L(τ−1 − 1))(x− x0)2 + (1− τ)(y − fk,`(x))2.

Now one chooses τ ∈ (0, 1) so that 1− L(τ−1 − 1) = 0. This yields the first inequality
in Lemma D.5 with an appropriate b > 0. We have thus proved Lemma D.5.

We resume the proof of Theorem 7.3. Take any ϕ ∈ C∞c (Ω`) and use the partition
of unity to write the left hand side of the Hardy inequality (7.2) as∫

Ω`

|ϕ(x)|2d`(x)−2dx =

K∑
k=0

∫
Ck∩Ω`

φk(x)|ϕ(x)|2d`(x)−2dx

≤C‖ϕ‖2L2 +
K∑
k=1

∫
Ck∩Ω`0

φk(x)|ϕ(x)|2d`(x)−2dx.

where C = dist(C0,Ω
c)−2 <∞. We emphasize that we used Ω` ⊂ Ω`0 in the last inte-

gral. Now, we write each integral over Ck in boundary coordinates and apply Lemma
D.5. Importantly, the resulting expression is independent of ` (it only depends on `0).
Hence, one can conclude the proof, exactly as in [30], by Fubini and the one-dimensional
Hardy inequality [24]. This proves the first part of Theorem 7.3.

It remains to show properties (i) and (ii). (i) holds by Proposition D.4. For (ii), we
take any q ∈ Rd such that dist(q,Ωc

`) ≥ a`. In particular, q ∈ Ω`. Hence, if ` is small
enough, there exists p ∈ Ω such that

q = p+ `v(p).
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Recall that the vector field v : Rd → Rd is differentiable. We introduce the finite and
` independent constants

C0 := ‖v‖L∞(Ω`0 ), C1 := ‖∇v‖L∞(Ω`0 ).

Using the characterization (D.6) and q ∈ Ω`, we have

a` ≤dist(q,Ωc
`) = min

p′∈∂Ω
|p+ `v(p)− p′ − `v(p′)|

≤(1 + C1`) min
p′∈∂Ω

|p− p′| = (1 + C1`)dist(p,Ωc).

We can choose ` small enough so that C1` ≤ 1 (this uses that C1 can only decrease if
`0 decreases). We get

dist(q,Ωc) = inf
p′∈Ωc

|p+ `v(p)− p′| ≥ inf
p′∈Ωc

|p− p′| − C0`

=dist(p,Ωc)− C0` ≥ `(a/2− C0).

By choosing a > 0 large enough, we get that q ∈ Ω as claimed. This finishes the proof
of Theorem 7.3.

E The linear case: Ground state energy of a

two body operator

In this section, we discuss a linear version of our main result. It gives an asymptotic
expansion of the ground state energy of the two body operator (E.1), describing a
fermion pair which is confined to Ω

While in principle the center of mass and relative coordinate are coupled due to the
boundary conditions, the result shows that they contribute to the ground state energy
of Hh on different scales in h (and therefore in a decoupled manner).

Theorem E.1. Let Ω ⊂ Rd be a bounded Lipschitz domain. Given functions V : Rd →
R and W : Ω→ R satisfying Assumption 1.2, we define the two body operator

Hh :=
h2

2
(−∆Ω,x +W (x)−∆Ω,y +W (y)) + V

(
x− y
h

)
(E.1)

with form domain H1
0 (Ω× Ω). Then, as h ↓ 0,

inf specL2(Ω×Ω)Hh = −Eb + h2Dc +O(h2+ν), (E.2)

where ν > 0 is as in Theorem 1.10 (i) and

−Eb = inf specL2(Rd)(−∆ + V ), Dc = inf specL2(Ω)

(
−1

4
∆Ω +W

)
.
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Figure 1: When Ω = [0, 1], the region Ω2 has a diamond shape when depicted in the center
of mass coordinates (X, r). To prove the upper bound in Theorem E.1, one uses a trial state,
see (E.3), which is mostly (up to exponentially small errors in the r direction) supported on
the small dashed rectangular region I, where `(h) = h log(h−q) with q > 0 large but fixed.
When Ω = [0, 1], the Dirichlet eigenfunctions are explicit sine functions and so one does not
need to invoke Theorem 2.3 to get the upper bound. For the lower bound, one drops the
Dirichlet condition in the relative variable, i.e. one extends the problem from the diamond
to the strip II = [0, 1] × R. This decouples the X and r variables and directly yields the
lower bound.

This could be proved by following the line of argumentation in the main text and
ignoring the nonlinear terms throughout. However, the proof of the lower bound is
considerably simpler in the linear case, because a monotonicity argument eliminates
the need for a priori bounds. To not obscure the key ideas, we give the proof in the
special case when W ≡ 0 and Ω is convex.

It is instructive to think of the even more special case when Ω is an interval, say
Ω = [0, 1]. This case is depicted in Figure 1 and the proof is sketched in the caption.

Proof. We denote the ground state energy of −1
4∆Ω−`

by D−c (`) (compare (2.9)), where

Ω−` is defined in (2.2).
Upper bound. We construct a trial state with the following functions: α∗, the

ground state satisfying (−∆ + V )α∗ = −Ebα∗, χ a cutoff function as described in
Definition 4.1, and ψ`(h), the normalized ground state of −∆Ω−

`(h)
for `(h) = h log(h−q)

and q > 0 large but fixed. In center of mass variables, X = x+y
2 , r = x − y, the trial
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state then reads

ψ`(h)(X)χ

(
r

`(h)

)
h1−dα∗

( r
h

)
. (E.3)

We apply Hh to this and use the fact that −1
2∆x− 1

2∆y = −1
4∆X−∆r. The exponential

decay of α∗ controls the localization error introduced by χ as in the proof of Proposition
4.3. Therefore the energy of the trial state is −Eb+h2D−c (`(h))+O(h2+ν). The second
(linear) part of Theorem 2.3 with W ≡ 0 says that D−c (`(h)) ≤ Dc +O(hν). Hence the
upper bound in (E.2) is proved.

Lower bound. The key idea is to drop the Dirichlet boundary condition in the
relative variable. The center of mass coordinates are originally defined on the domain

D :=
{

(X, r) ∈ Ω× Rd : X +
r

2
, X − r

2
∈ Ω

}
.

Observe that D ⊂ Ω× Rd. On the space L2(Ω× Rd), we define a new operator

H̃h = −h
2

4
∆Ω,X − h2∆r + V (r/h),

with form domain H1
0 (Ω × Rd). By domain monotonicity we have H̃h ≤ Hh in the

sense of quadratic forms, and therefore

inf specL2(Ω×Rd)H̃h ≤ inf specL2(Ω×Ω)Hh. (E.4)

Now inf specL2(Ω×Rd)H̃h can be computed exactly since the variables are decoupled.
The ground state is just

ψ0(X)h1−dα∗

( r
h

)
where ψ0 is the normalized ground state of −1

4∆Ω. The energy of this state is precisely
equal to −Eb + h2Dc. By (E.4), the lower bound follows.
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