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Abstract. We prove for a large class of operators, J , including
block Jacobi matrices, if σ(J) \ [α, β] is a finite set, each point of
which is an eigenvalue of finite multiplicity, then a finite coefficient
stripped, JN , has σ(JN ) ⊂ [α, β]. We use an abstract Dirichlet
decoupling.

1. Introduction

The work in this note is motivated by the following theorem:

Theorem 1.1. Let V ∈ L1
loc([0,∞)) be a limit point at infinity. Sup-

pose − d2

dx2 +V (x) with u(0) = 0 boundary conditions on L2((0,∞); dx)
has finitely many eigenvalues (and no other spectrum) in (−∞, 0).

Then there exists A > 0 so that for all a > A, − d2

dx2 + V (x), with

u(a) = 0 boundary conditions on L2((a,∞; dx)) is a nonnegative oper-

ator.

The proof is an immediate consequence of Sturm oscillation theory:
by hypothesis, the function with u(0) = 0, u′(0) = 1, −u′′+V u = 0 has
finitely many zeros. If A is the last zero, u ↾ [a,∞) solves −u′′+V u = 0
and has a definite sign on [a,∞). Thus, by Sturm comparison and
oscillation arguments, the operator on [a,∞) is nonnegative.

While it appears that this argument is well known to some experts,
I am aware of only two places that it appears explicitly in print: in
Nikishin’s lovely paper [2] and in my review article on Sturm oscillation
theory for the Sturm 200th Birthday Conference [5].

Going back to Bôcher [1] (and conjectured to be known to Sturm),
there are discrete analogs of Sturm oscillation theorems. One looks
at zeros of the linear interpolation of the solution of the difference
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equations. This allows one to prove an analog of Theorem 1.1 for
Jacobi matrices of the form

J =




b1 a1 0 · · ·
a1 b2 a2 · · ·
0 a2 b3 · · ·
...

...
...

. . .


 (1.1)

(Indeed, it was this case treated in [2] and [5]; Nikishin doesn’t use
the terminology “oscillation theorem” but he counts sign changes of
certain determinants.)

Theorem 1.2. Suppose J given by (1.1) has finitely many eigenvalues

outside [α, β]. Let Jn be the Jacobi matrix (1.1) with the top n rows

and left n columns removed. Then for some N and all n > N , σ(Jn) ⊂
[α, β].

The immediate motivation for this work is the question asked me by
Rostyslav Kozhan: Does an analog of Theorem 1.2 hold for block Jacobi
matrices, that is, objects like (1.1) but where for some ℓ, the bj and aj

are ℓ×ℓ matrices. Recently, Schulz-Baldes [3] has developed oscillation
theorems for some block Jacobi matrices, and it may be possible to use
his machinery to answer Kozhan’s query. But we decided to seek out
another and more direct approach. It has the advantage of working in
cases where an and bn are operators on an infinite-dimensional space
where it is unlikely an oscillation theorem exists. Here is our main
result:

Theorem 1.3. Let J be a bounded selfadjoint operator on a Hilbert

space H. Suppose {Pn}
∞

n=1, {Qn}
∞

n=1, {Rn}
∞

n=1 are families of orthogo-

nal projections that obey

PnQn = QnPn = PnRn = RnPn = QnRn = RnQn = 0 (1.2)

Pn +Qn +Rn = 1 (1.3)

s-lim
n→∞

Qn = s-lim
n→∞

Rn = 0 (1.4)

PnJQn = QnJPn = 0 (1.5)

Suppose the only spectrum J has in (−∞, 0) is finitely many eigenvalues

of finite multiplicity. Then for some N, QnJQn ≥ 0 for all n ≥ N .

In the block diagonal case, we have:

Corollary 1.4. Let H = ℓ2({1, 2, . . .},K), sequences with values in a

Hilbert space, K, with
∑

∞

n=1‖an‖
2 <∞. Let J be a matrix in H of the

form (1.1) with values bj, aj, bounded operators on K with supj(‖aj‖+



REMOVAL OF FINITE DISCRETE SPECTRUM 3

‖bj‖) <∞. Suppose the only spectrum of J in (−∞, 0) is finitely many

points, each an eigenvalue of finite multiplicity. Then for some N and

all n ≥ N , Jn ≥ 0, where Jn is J with the top n rows and left n columns

dropped.

Proof. Let Pn be the projection onto ℓ2({1, . . . , n− 1};K), Rn the pro-
jection onto ℓ2({n};K), and Qn the projection onto ℓ2({n + 1, n +
2, . . .};K). (1.2) and (1.3) are obvious. (1.4) is simple and (1.5) is
obvious. Thus, Jn = QnJQn ≥ 0 for all large n by the theorem. �

We prove Theorem 1.3 in Section 2 and a continuum analog in Sec-
tion 3.

We end this section with three remarks:
1. As noted in [5], theorems of the form (1.3) imply that if σess(J) =

[α, β], then for any ε > 0 and n large, σ(QnJQn) ⊂ [α− ε, β + ε].
This result is true under much weaker hypothesis (essentially, (1.5)
is not needed), but I believe the stronger result that is Theorem 1.3
requires some kind of decoupling.

2. In Corollary 1.4, one can take K = ℓ2(Zν−1) and so treat discrete
Schrödinger operators on Z

ν
+ = {(n1, . . . , nν) ∈ Z

ν | nν ≥ 1}.
3. If one uses Neumann boundary conditions (i.e., restriction of a

whole-line even operator to even functions), then weak coupling
negative bn’s produce a bound state (see, e.g., Simon [4]) and so
the analog of Corollary 1.4, or even Theorem 1.2, fails.

I would like to thank Alexander Aptekarev, David Damanik, Rowan
Killip, Rostyslav Kozhan, and Sasha Pushnitski for useful correspon-
dence and/or discussions.

2. The Discrete Case

In this section, we’ll prove Theorem 1.3. We begin with:

Lemma 2.1. Let Pn be a family of orthogonal projections on a Hilbert

space, H, with

s-lim
n→∞

Pn = 1 (2.1)

Let J be a bounded selfadjoint operator on H so that

dimP(−∞,0)(J) = ℓ <∞ (2.2)

where P(−∞,0)(·) is a spectral projection. Then for some N,

n > N ⇒ dimP(−∞,0)(PnJPn) = ℓ (2.3)

Proof. By a variational argument,

dimP(−∞,0)(PnJPn) ≤ ℓ (2.4)
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(essentially, if it were dimension ≥ ℓ+1, we could find ℓ+1 unit vector
in RanPn so that 〈ϕj, ϕm〉 = δjm and 〈ϕj, Jϕm〉 = ajδjm with aj < 0).

For any ϕ1, . . . , ϕℓ in RanPn, let ∆jk = 〈ϕj, ϕk〉 and Ajk = 〈ϕj, Jϕk〉.
If ∆ is invertible and ∆−1/2A∆−1/2 < 0, then (2.4) holds by the varia-
tional principle.

Let ψ1, . . . , ψℓ span RanP(−∞,0)(J) and be a set of orthonormal

eigenvectors for J . Let ϕ
(n)
j = Pnψj and ∆

(n)
jk = 〈ϕ

(n)
j , ϕ

(n)
k 〉, A

(n)
jk =

〈ϕ
(n)
j , Jϕ

(n)
k 〉. By (2.1), ∆

(n)
jk → 1, A

(n)
jk → αjδjk with αj < 0. It follows

for all large n that ∆(n) is invertible and (∆(n))−1/2A(n)(∆(n))−1/2 <

0. �

Proof of Theorem 1.3. Let Sn = Pn + Qn. Then, by a variational ar-
gument,

dimP(−∞,0)(SnJSn) ≤ dimP(−∞,0)(J) ≡ ℓ <∞ (2.5)

By (1.5), on RanSn = RanPn ⊕ RanQn, we have that

SnJSn = PnJPn ⊕QnJQn (2.6)

so

dimP(−∞,0)(SnJSn) = dimP(−∞,0)(PnJPn) + dimP(−∞,0)(QnJQn)
(2.7)

By the lemma for some N and n > N,

dimP(−∞,0)(PnJPn) = ℓ (2.8)

By (2.5), (2.7), and (2.8) for n > N,

dimP(−∞,0)(QnJQn) = 0

that is, QnJQn ≥ 0. �

3. The Continuum Case

Here we’ll state and prove the analog of Theorem 1.3 for ODEs.
For simplicity of exposition, we assume the potential is bounded, but
it is easy to extend to V ’s with ‖V (x)‖ in L1

loc with some kind of
selfadjointness criterion at ∞ or to positive V ’s using quadratic forms.

Theorem 3.1. Let K be a Hilbert space and V (x), x ∈ [0,∞), a weakly

measurable function on [0,∞) with values in the bounded operators on

K with supx∈[0,∞)‖V (x)‖ < ∞. Let Ha, a ≥ 0, be the operator on

Ha ≡ L2((a,∞),K; dx) of the form − d2

dx2 +V (x) with u(a) = 0 boundary

conditions. Suppose H ≡ Ha=0 has only finitely many eigenvalues in

(−∞, 0), each of finite multiplicity and no other spectrum there. Then

for some A ∈ [0,∞), Ha ≥ 0 for a ≥ A.
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Remark. By allowing V (x) to be a positive operator (to handle Lapla-
cian in the other directions), this theorem can be extended to treat
−∆ + V (x1, . . . , xν) on {x | xν > 0}.

Proof. For each a, by adding a Dirichlet boundary condition at a, we

can find H̃a on L2 on Ha=0 of the form Ka ⊕Ha on L2((0, a),K; dx)⊕
L2((a,∞),K; dx) and

H̃a ≥ Ha=0 (3.1)

As in the proof of Lemma 2.1,

dimP(−∞,0)(Ka) = dimP(−∞,0)(Ha=0)

for all a > A for some A.
For such a, by (3.1), dimP(−∞,0)(Ha) = 0. �
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