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JACOB S. CHRISTIANSEN1, BARRY SIMON2,3,
AND MAXIM ZINCHENKO2

Abstract. Let e ⊂ R be a finite union of disjoint closed intervals.
We study measures whose essential support is e and whose discrete
eigenvalues obey a 1/2-power condition. We show that a Szegő
condition is equivalent to

lim sup
a1 · · · an

cap(e)n
> 0

(this includes prior results of Widom and Peherstorfer–Yuditskii).
Using Remling’s extension of the Denisov–Rakhmanov theorem
and an analysis of Jost functions, we provide a new proof of Szegő
asymptotics, including L2 asymptotics on the spectrum. We use
heavily the covering map formalism of Sodin–Yuditskii as presented
in our first paper in this series.

1. Introduction

In this paper, we study Jacobi matrices, J , and asymptotics of the
associated orthogonal polynomials (OPRL), where σess(J) is a finite
gap set, e. By this we mean that e is a finite union of disjoint closed
intervals,

e =
ℓ+1⋃

j=1

[αj , βj] α1 < β1 < α2 < · · · < βℓ+1 (1.1)

ℓ counts the number of gaps, that is, bounded open intervals in R \ e.
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We recall that a Jacobi matrix is a tridiagonal matrix which we label

J =




b1 a1 0 · · ·
a1 b2 a2 · · ·
0 a2 b3 · · ·
...

...
...

. . .


 (1.2)

The Jacobi parameters {an, bn}∞n=1 have an > 0 and bn ∈ R. There is a
one-one correspondence between probability measures, dµ, of compact
support on R and bounded Jacobi matrices where dµ is the spectral
measure for J and the vector (1, 0, . . . )t. Moreover, dµ determines J
via recursion relations for the orthonormal polynomials, pn(x), which
are (a0 ≡ 0)

xpn(x) = an+1pn+1(x) + bn+1pn(x) + anpn−1(x) (1.3)

See [32, 9, 23, 26] for background on OPRL.
This paper is the second in a series—the first, [2], henceforth called

paper I, studied the isospectral torus, an ℓ-dimensional family of two-
sided almost periodic Jacobi matrices with essential spectrum, e, about
which we’ll say more later in this introduction. We note for now that
these matrices have periodic coefficients if and only if the harmonic
measure of the intervals [αj , βj] are all rational (i.e., if dρe is the po-
tential theoretic equilibrium measure for e, then each ρe([αj, βj ]) is
rational; for background on potential theory in spectral analysis, see
[29, 25]). We’ll call this the periodic case.

In the current paper, we want to study Szegő’s theorem for the gen-
eral finite gap case. Of course, the phrase “Szegő’s theorem” can be
ambiguous since Szegő was so prolific, but by this we mean a set of
results concerned with leading asymptotics in the theory of orthogonal
polynomials on the unit circle (OPUC). Even here, there is ambiguity
since some of the results can be interpreted in terms of Toeplitz deter-
minants and there are several related objects. Indeed, we’ll distinguish
between what we call Szegő’s theorem and Szegő asymptotics.

In the OPUC case, the recursion parameters {αn}∞n=0 lie in D = {z |
|z| < 1} and are called Verblunsky coefficients. We use ϕn(z) for the
orthonormal polynomials and write the measure dµ as

dµ(θ) = w(θ)
dθ

2π
+ dµs(θ) (1.4)

where dµs is dθ/2π-singular. One also defines ρn = (1 − |αn|2)1/2 (see
[32, 9, 23, 24, 22] for background on OPUC).
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Then what we’ll call Szegő’s theorem for OPUC says that

lim
N→∞

N∏

n=0

ρn = exp

(∫ 2π

0

log(w(θ))
dθ

2π

)
(1.5)

Notice that since ρn ≤ 1, the limit on the left always exists, although
it may be 0. By Jensen’s inequality, the integral on the right is non-
positive, but may diverge to −∞, in which case we interpret the expo-
nential as 0. It is easy to see that the left side is nonzero if and only if∑∞

n=0|αn|2 < ∞. Thus, (1.5) implies
∞∑

n=0

|αn|2 < ∞ ⇔
∫

log(w(θ))
dθ

2π
> −∞ (1.6)

By Szegő asymptotics, we mean the fact that when both conditions
in (1.6) hold, there is an explicit nonvanishing function, G, on C \D so
that for z in that set,

lim
n→∞

z−nϕn(z) = G(z) (1.7)

In terms of the conventional Szegő function,

D(z) = exp

(∫
eiθ + z

eiθ − z
log(w(θ))

dθ

2π

)
, z ∈ D (1.8)

we have G(z) = D(1/z̄)
−1

.
Analogs of Szegő’s theorem for OPRL, where e is a single interval

(typically e = [−1, 1] or [−2, 2]), were found initially by Szegő [31],
with important developments by Shohat [20] and Nevai [13]. These
works suppose no or finitely many eigenvalues outside e. The natural
condition on eigenvalues (see (1.10) and (1.13) below) was found by
Killip–Simon [11] and Peherstorfer–Yuditskii [15]. The best form of
Szegő’s theorem (with a Szegő condition; see below) is

Theorem 1.1 (Simon–Zlatoš). Let J be a Jacobi matrix with essential

spectrum [−2, 2], {an, bn}∞n=1 its Jacobi parameters, {xk} a listing of its

eigenvalues outside [−2, 2], and

dµ(x) = w(x) dx + dµs(x) (1.9)

its spectral measure. Define

E(J) =
∑

k

(|xk| − 2)1/2 (1.10)

and

An = a1 · · ·an Ā = lim sup An A= lim inf An (1.11)

Consider the three conditions:
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(i) Szegő condition
∫ 2

−2

log(w(x))(4 − |x|2)−1/2 dx > −∞ (1.12)

(ii) Blaschke condition

E(J) < ∞ (1.13)

(iii) Widom condition

0 < A ≤ Ā < ∞ (1.14)

Then any two of (i)–(iii) imply the third, and if they hold, the following

have limits as N → ∞:

AN ,
N∑

n=1

bn,
N∑

n=1

(an − 1) (1.15)

and
∞∑

n=1

|an − 1|2 + |bn|2 < ∞ (1.16)

Before leaving our summary of the case e = [−2, 2], we note that
Damanik–Simon [5] have proven Szegő asymptotics in some cases where
the Szegő condition fails. This will not concern us here, but will be
studied in the finite gap case in paper III [3].

In Section 4, we prove a precise analog of the statement “any two of
(i)–(iii) imply the third” for general finite gap sets, e. We note that for
the periodic case, this is a prior result of Damanik–Killip–Simon [4].
There are also prior results for the general finite gap case in Widom
[33], Aptekarev [1], and Peherstorfer–Yuditskii [16, 17]; see Section 4
for more details.

The limit results, (1.15) and (1.16), need modification, however.
First, even in the general one-interval case, one needs a1 · · ·an/Cn for
a suitable constant C. The theory of regular measures [29, 25] says
the right value of C must be cap(e), the logarithmic capacity of e—
a result that, in this context, goes back at least to Widom [33] who
also discovered that a1 · · ·an/ cap(e)n doesn’t have a limit but is only
asymptotically almost periodic.

These limit results are expressed most naturally in terms of the
isospectral torus associated to e. For any Jacobi matrix obeying the
analogs of (i)–(iii), there is an element {ãn, b̃n}∞n=1 of the isospectral
torus so that

lim
n→∞

|an − ãn| + |bn − b̃n| = 0 (1.17)

This result, which goes back to Aptekarev [1] and Peherstorfer–
Yuditskii [16, 17] using variational methods, will be proven
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with our techniques in Section 6, where we’ll also prove that
lim(a1 · · ·an/ã1 · · · ãn) exists and is nonzero. (In paper I, we proved
that in the isospectral torus, ã1 · · · ãn/ cap(e)n is almost periodic in n.)

An interesting open question concerns the analog of (1.16):

Open Question 1. Is
∑∞

n=1|an − ãn|2 + |bn − b̃n|2 < ∞ when the
analogs of (i)–(iii) hold?

In Section 7, we’ll prove an analog of Szegő asymptotics, namely,
away from the interval [α1, βℓ+1], the ratio pn(z)/p̃n(z) has a nonzero

limit where p̃n are the OPRL for {ãn, b̃n}∞n=1.
Let us next summarize some of the techniques we’ll use below, in

part to standardize some notation. Coefficient stripping plays an im-
portant role in the analysis: if J has Jacobi parameters {ak, bk}∞k=1,
then the n-times stripped Jacobi matrix, J (n), is the one with param-
eters {an+k, bn+k}∞k=1, that is, with

ak(J
(n)) = ak+n(J) bk(J

(n)) = bn+k(J) (1.18)

If the m-function of J is defined on C+ = {z | Im z > 0} by

m(z, J) = 〈δ1, (J − z)−1δ1〉 =

∫
dµ(x)

x − z
(1.19)

then we have the coefficient stripping relation that goes back to Jacobi
and Stieltjes,

m(z, J)−1 = −z + b1 − a2
1m(z, J (1)) (1.20)

We’ll make heavy use of the covering space formalism introduced in
spectral theory by Sodin–Yuditskii [28] and presented with our notation
in paper I. x(z) is the unique meromorphic map of D to C ∪ {∞} \ e

which is locally one-one with

x(z) =
x∞

z
+ O(1) (1.21)

near z = 0 and x∞ > 0.
There is a (Fuchsian) group, Γ, of Möbius transformations of D onto

itself so that

x(z) = x(w) ⇔ ∃γ ∈ Γ so that γ(z) = w (1.22)

A natural fundamental set, F , is defined as follows:

F int = {z | |z| < |γ(z)|, all γ 6= 1, γ ∈ Γ} (1.23)

∂F int∩D is then 2ℓ orthocircles, ℓ in each half-plane. F is F int union the
ℓ orthocircles in C+. x is then one-one and onto from F to C∪{∞}\e.

L, the set of limit points of Γ, is defined as {γ(0) | γ ∈ Γ} ∩ ∂D. x

can be meromorphically extended from D to all of C ∪ {∞} \ L, or
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alternatively, there is a map x♯ : C ∪ {∞} \ L to S, the two-sheeted

Riemann surface of [
∏ℓ+1

j=1(z − αj)(z − βj)]
1/2. All this is described in

more detail in paper I of this series.
That paper also discusses Blaschke products, B(z, w), of the

Blaschke factors at {γ(w)}γ∈Γ. B(z) ≡ B(z, 0) is related to the po-
tential theoretic Green’s function, Ge(x), for e by

|B(z)| = e−Ge(x(z)) (1.24)

which, in particular, implies that near z = 0,

B(z) =
cap(e)

x∞

z + O(z2) (1.25)

Finally, we use heavily the pullback of m to D via

M(z) = −m(x(z)) (1.26)

We end this introduction with a sketch of the contents of this paper.
Our approach to Szegő’s theorem is a synthesis of the covering map
method and the approach of Killip–Simon [11], Simon–Zlatoš [27], and
Simon [21] used for e = [−2, 2]. As such, step-by-step sum rules are
critical. These are found in Section 2. One disappointment is that we
have thus far not succeeded in finding an analog of what has come to be
called the Killip–Simon theorem (from [11]). This result gives necessary
and sufficient conditions for the case e = [−2, 2] that

∑∞
n=1(an − 1)2 +

b2
n < ∞.

Open Question 2. Is there a Killip–Simon theorem for the general
finite gap Jacobi matrix?

We note that Damanik–Killip–Simon [4] have found an analog for
the case where each band has harmonic measure exactly (ℓ + 1)−1.

Section 3 provides a technical interlude on eigenvalue limit theorems
needed in the later sections. Section 4 proves a Szegő-type theorem
for general finite gap e. Section 5 defines Jost functions and Jost solu-
tions. Section 6 proves the existence of the claimed {ãn, b̃n}∞n=1 in the
isospectral torus and asymptotics of Jost solutions. Section 7 proves
asymptotic formulae for the orthogonal polynomials away from the con-
vex hull of e (i.e., the interval [α1, βℓ+1]), and Section 8 L2 asymptotics
on e.

The idea that we use in Sections 6 and 7 of first proving Jost asymp-
totics and using that to get Szegő asymptotics is borrowed from an
analog for e = [−2, 2] of Damanik–Simon [5]. But Section 7 has a sim-
plification of their equivalence argument that is an improvement even
for e = [−2, 2]. Most of the results in Sections 6–8 are explicit or im-
plicit in Peherstorfer–Yuditskii [16, 17]. We claim two novelties here.
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First, the underlying mechanism of our proof of asymptotics is different
from their variational approach. Instead, we use a recent theorem of
Remling [18] about approach to the isospectral torus, together with an
analysis of automorphic characters of Jost functions. Second, by using
ideas in a different paper of Peherstorfer–Yuditskii [15], we can clarify
the L2-convergence result of Section 8.

We would like to thank F. Peherstorfer for the private communica-
tion [14]. J.S.C. would like to thank M. Flach and A. Lange for the
hospitality of Caltech where this work was completed.

2. Step-by-Step Sum Rules

As noted in the introduction, a key to the approach to Szegő-type
theorems for e = [−2, 2] that we’ll follow is step-by-step sum rules.
Our goal in this section is to prove those for a general finite gap e.
In Theorem 7.5 of paper I, we proved such results for measures in the
isospectral torus, and our discussion here will closely follow the proof
there. The major change is that there, with finitely many eigenvalues
in R \ e, we could use finite Blaschke products. Here, because we do
not wish to suppose a priori a 1/2-power condition on the eigenvalues,
we’ll need the alternating Blaschke products of Theorem 4.9 of paper
I. Here is the result:

Theorem 2.1 (Nonlocal step-by-step sum rule). Let J be a Jacobi

matrix with σess(J) = e. Let J (1) be the once-stripped Jacobi matrix

and let {pj}∞j=1 be the points in F that are mapped by the covering

map, x, to the eigenvalues of J and {zj}∞j=1 the corresponding points

for the eigenvalues of J (1). Let B∞ be the alternating Blaschke product

with poles at {γ(pj)}∞j=1;γ∈Γ and zeros at {γ(zj)}∞j=1;γ∈Γ. Let B(z) be the

Blaschke product with zeros at {γ(0)}γ∈Γ. Let M(z) be the m-function,

(1.26), for J , and M (1)(z) the one for J (1). Then

(a) limr↑1 M(reiθ) ≡ M(eiθ) and limr↑1 M (1)(reiθ) ≡ M (1)(eiθ) exist

for dθ/2π-a.e. θ.
(b) Up to sets of dθ/2π measure zero,

{θ | Im M(eiθ) 6= 0} = {θ | Im M (1)(eiθ) 6= 0} (2.1)

(c)

log

(
Im M(eiθ)

Im M (1)(eiθ)

)
∈

⋂

p<∞

Lp

(
∂D,

dθ

2π

)
(2.2)
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(d) We have

a1M(z) = B(z)B∞(z) exp

(∫
eiθ + z

eiθ − z
log

(
Im M(eiθ)

Im M (1)(eiθ)

)
dθ

4π

)
(2.3)

Remarks. 1. We’ve labeled the p’s and z’s to be infinite in number,
although there may be only finitely many. Moreover, we need to group
them into not one sequence but potentially 2ℓ+2 if each of the points in
{αj, βj}ℓ+1

j=1 is a limit point of eigenvalues in R\e. Once this is done, one
forms an alternating Blaschke product for each sequence (the p’s and
z’s in each sequence alternate along a boundary arc of F or on (0, 1) or
(−1, 0)), and then takes the product of these 2ℓ+2 alternating Blaschke
products.

2. Im M and Im M (1) have the same sign at each point of ∂D, positive
or negative, depending on whether x maps to an upper or lower lip of
e.

3. We’ve written (c) and (d) assuming that the set in (2.1) is all of
∂D (up to sets of Lebesgue measure zero). A more proper version is
that limr↑1|M(reiθ)|2 has a limit as r ↑ 1 which, when multiplied by
a2

1, is the ratio Im M/ ImM (1) at points in the set in (2.1). It is that
boundary value that enters in (2.2) and (2.3).

Proof. We follow the arguments used for Theorem 7.5 of paper I. For
z ∈ D, not a pole or zero of M, let

h(z) =
a1M(z)

B(z)B∞(z)
(2.4)

At the poles and zeros of M, h(z) has removable singularities and no
zero values, so h is nonvanishing and analytic in all of D.

All of M, B, and B∞ are positive on (0, ε) for ε small, so one can
choose a branch of log(h(z)) which has Im(log(h(z))) = 0 on (0, ε).
Since Im M > 0 on C+ ∩F and Im M < 0 on C−∩F , with this choice,

|arg(M(z))| ≤ π on F (2.5)

By eqn. (4.84) in Theorem 4.9 of paper I, there is a constant C so that

|arg(B∞(z)B(z))| ≤ C on F (2.6)

As in the proof of Theorem 7.5 of paper I, this plus the fact that
h(z) is character automorphic implies that

sup
0<r<1

∫
|Im(log(h(reiθ)))|p dθ

2π
< ∞ (2.7)
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Thus, by the M. Riesz theorem,

log(h) ∈
⋂

p<∞

Hp(D) (2.8)

This implies that log(h), and so M, has boundary values and

log|M(eiθ)| ∈
⋂

p<∞

Lp

(
∂D,

dθ

2π

)
(2.9)

Taking boundary values in (see (1.20))

M(z)−1 = x(z) − b1 − a2
1M

(1)(z) (2.10)

shows that (2.1) holds, and on the set where Im M 6= 0,

|a1M(eiθ)|2 =
Im M(eiθ)

Im M (1)(eiθ)
(2.11)

This and (2.9) imply (2.2), and (2.3) is just the Poisson representation
for log(h(z)). �

The main use we’ll make of (2.3) is to divide by B(z) and take z → 0
using (1.21) and (1.25). The result is:

Theorem 2.2 (Step-by-step C0 sum rule).

a1

cap(e)
= B∞(0) exp

(∫ 2π

0

log

(
Im M(eiθ)

Im M (1)(eiθ)

)
dθ

4π

)
(2.12)

3. Fun and Games with Eigenvalues

Sum rules include eigenvalue sums—it appears somewhat hidden in
(2.12) as B∞(0). Since, in exploiting sum rules, we’ll be looking at the
behavior of sums over families, often with infinitely many elements,
we’ll need control on such sums. This was true already in the single
interval case as studied by [11, 27], but there the main tool needed was
a simple variational principle. Eigenvalues above or below the essential
spectrum are given by a linear variational principle. This is not true for
eigenvalues in gaps, and so we’ll need some extra techniques, which we
put in the current section. We note that there are still limitations on
what can be done in gaps. For example, for perturbations of elements
of the finite gap isospectral torus, there is a 1/2 critical Lieb–Thirring
bound at the external edges [7] but not yet one known for internal gap
edges [10].

We begin with two results about the relation of eigenvalues of J and
J (n), the n-times stripped Jacobi matrix of (1.18).
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Theorem 3.1. Let J be a Jacobi matrix with σess(J) = e. Let c ∈
(βj, αj+1), one of the gaps of R \ e. Suppose f is defined, positive, and

monotone on (βj , c) with limx↓βj
f(x) = 0. Let c > x1(J) > x2(J) >

· · · > βj be the eigenvalues of J in (βj , c). Then the eigenvalues of J
and J (1) strictly interlace, that is, either

x1(J) > x1(J
(1)) > x2(J) > x2(J

(1)) > . . . (3.1)

or

x1(J
(1)) > x1(J) > x2(J

(1)) > x2(J) > . . . (3.2)

In particular,
∑∞

k=1[f(xk(J))−f(xk(J
(1)))] is always conditionally con-

vergent.

Remarks. 1. For simplicity of notation, we stated this and the fol-
lowing theorem for (βj , c), but a similar result holds for (c, αj+1) and
also for (−∞, α1) and (βℓ+1,∞).

2. By iteration, we also get convergence of
∑∞

k=1[f(xk(J)) −
f(xk(J

(n)))] for each n.

Proof. By the fact that xk(J) are the poles of m(z) in (βj , c) and

xk(J
(1)) the zeros, and since d

dz
m(z) =

∫ dµ(x)
(x−z)2

> 0 for z ∈ (βj , c),

we see the interlacing, which implies (3.1) (if m(c) ≤ 0) or (3.2) (if
m(c) > 0). The conditional convergence of the sum is standard for
alternating sums. �

Theorem 3.2. Under the hypotheses of Theorem 3.1, if

S ≡ sup
n

∣∣∣∣
∞∑

k=1

f(xk(J)) − f(xk(J
(n)))

∣∣∣∣ < ∞ (3.3)

then
∞∑

k=1

f(xk(J)) < ∞ (3.4)

Proof. We will need the fact proven below (in Theorem 3.4) that for
each j ∈ {1, . . . , ℓ} and ε > 0, there is an N so for n ≥ N , J (n) has
either 0 or 1 eigenvalue in (βj + ε, αj+1 − ε).

That means, by dropping at most one of xk(J
(n)), we can suppose

f(xk(J)) − f(xk(J
(n))) > 0, so we see for n ≥ N ,

∑

{k | βj+ε<xk(J)<c}

[f(xk(J)) − f(βj + ε)] ≤ f(c) + S (3.5)

So, for any ε0 and ε1 < ε0,∑

{k | βj+ε0<xk(J)<c}

[f(xk(J)) − f(βj + ε1)] ≤ f(c) + S (3.6)
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Taking ε1 ↓ 0 and then ε0 ↓ 0 yields (3.4). �

The following lemma is well known, used for example in Denisov [6]:

Lemma 3.3. Let A be a bounded operator with

γ = inf(σess(A)) (3.7)

Let Pn be a family of orthogonal projections with

s-lim Pn = 0 (3.8)

Then for any ε, we can find N so that for n ≥ N ,

σ(PnAPn ↾ ran(Pn)) ⊂ [γ − ε,∞) (3.9)

Proof. Since (3.7) holds, for any ε, we can write

A = Aε + Bε (3.10)

where Aε ≥ γ − ε/2 and Bε is finite rank, and so compact.
By (3.8), PnBεPn → 0 in ‖·‖, so we can find N so that, for n ≥ N ,

‖PnBεPn‖ ≤ ε/2. Then for each n ≥ N ,

PnAPn ≥ Pn

(
γ − ε

2
− ε

2

)
Pn ≥ (γ − ε)Pn (3.11)

proving (3.9). �

Theorem 3.4. Let J be a bounded Jacobi matrix with (α, β)∩σess(J) =
∅. Let J (n) be the n-times stripped Jacobi matrix. Then for any ε, we

can find N so that, for n ≥ N , J (n) has at most one eigenvalue in

(α + ε, β − ε).

Proof. Let Pn be the projection onto span{δj}∞j=n+1, so

J (n) = PnJPn ↾ ran(Pn) (3.12)

Let γ = 1
2
(α + β) and A = (J − γ)2, A(n) = PnAPn ↾ ran(Pn). By the

spectral mapping theorem,

inf(σess(A)) ≥ [1
2
(β − α)]2 (3.13)

so, by the lemma, for any ε′, there is N so for n ≥ N ,

inf σ(A(n)) ≥ [1
2
(β − α)]2 − ε′ = [1

2
(β − α) − ε]2 (3.14)

where ε′ is chosen so that (3.14) holds.
Since

A(n) − (J (n) − γ)2 = Pn(J − γ)(1 − Pn)(J − γ)Pn (3.15)

is rank one, (J (n) − γ)2 has at most one eigenvalue (which is simple)
below [1

2
(β − α) − ε]2, which proves the claimed result by the spectral

mapping theorem. �
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Next, we turn to estimating eigenvalue sums like

E(J) =
∑

x∈σ(J)\e

dist(x, e)1/2 (3.16)

with a goal of showing, for example, that if E(J) is finite, then so is
supn E(J (n)).

Definition. Let A be a bounded selfadjoint operator with (a, b) ∩
σess(A) = ∅. We set

Σ(a,b)(A) =
∑

x∈σ(A)∩(a,b)

dist(x, R \ (a, b))1/2 (3.17)

where the sum includes x as many times as the multiplicity of that
eigenvalue.

Theorem 3.5. Let A be a bounded selfadjoint operator with (a, b) ∩
σess(A) = ∅ and Σ(a,b)(A) < ∞. Then

(i) If B is another bounded selfadjoint operator with rank(B − A) =
r < ∞, then

Σ(a,b)(B) ≤ Σ(a,b)(A) + r

(
b − a

2

)1/2

(3.18)

(ii) If P is an orthogonal projection so that rank(PA(1−P )) = r < ∞
and B = PAP ↾ ran(P ), then (3.18) holds.

Proof. For simplicity of notation, we can suppose A has both a and b
as limit points of eigenvalues (from above and below, respectively). It
is easy to modify the arguments if there are only finitely many eigen-
values.

(i) By induction, it suffices to prove this for r = 1. Label the eigen-
values of A in (a, b), counting multiplicity, by

a < · · · ≤ x−2(A) ≤ x−1(A) < 1
2
(a + b) ≤ x0(A) ≤ x1(A) ≤ · · · < b

(3.19)
For A’s with a cyclic vector ϕ, and B = A + λ(ϕ, · )ϕ, it is well known
that eigenvalues of A and B strictly interlace. By writing A as a direct
sum of its restriction to the cyclic subspace for ϕ and the restriction
to the orthogonal complement, we can label all the eigenvalues of B in
such a way that

xk(A) ≤ xk+1(B) ≤ xk+1(A) (3.20)

With that labeling,
∞∑

k=1

dist(xk(B), R \ (a, b))1/2 ≤
∞∑

k=0

dist(xk(A), R \ (a, b))1/2 (3.21)
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∞∑

k=1

dist(x−k(B), R \ (a, b))1/2 ≤
∞∑

k=1

dist(x−k(A), R \ (a, b))1/2 (3.22)

so that

Σ(a,b)(B) ≤ dist(x0(B), R \ (a, b))1/2 + Σ(a,b)(A) (3.23)

which implies (3.18) for r = 1.

(ii) By scaling and adding a constant to A, we can suppose b = −a =
1. For C ≥ 0 with σess(C) ⊂ [1, ‖C‖], let

Σ̃(C) =
∑

x∈σ(C)∩[0,1)

(
1 −

√
x
)1/2

(3.24)

so that
Σ(−1,1)(A) = Σ̃(A2) (3.25)

By mimicking the proof of (i), we see

rank(D − C) = r, D ≥ 0 ⇒ Σ̃(D) ≤ Σ̃(C) + r (3.26)

Notice, next, that by the min-max principle, xk(PCP ↾ ran(P )) ≥
xk(C) so that

Σ̃(PCP ↾ ran(P )) ≤ Σ̃(C) (3.27)

Notice also that

PA2P − (PAP )2 = PA(1 − P )AP (3.28)

is at most rank r. Thus,

Σ(−1,1)(PAP ↾ ran(P )) = Σ̃((PAP ↾ ran(P ))2) (by (3.25))

≤ r + Σ̃(PA2P ↾ ran(P )) (by (3.26))

≤ r + Σ̃(A2) (by (3.27))

= r + Σ(−1,1)(A) (by (3.25))

�

We also want to know that one can make the eigenvalue sum small,
uniformly in B, by summing only over eigenvalues sufficiently near a
or b. Thus, we prove (for simplicity, we state the result for a; a similar
result holds for b):

Theorem 3.6. Let (a, b) ∩ σess(A) = ∅, Σ(a,b)(A) < ∞, and suppose

B is related to A as in either (i) or (ii) of Theorem 3.5. Then for any

δ < 1
4
(b − a),
∑

xk(B)∈(a,a+δ)

(xk(B)− a)1/2 ≤ rδ1/2 +
∑

xk(A)∈(a,a+2δ)

(xk(A)− a)1/2 (3.29)
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Proof. We have

LHS of (3.29) ≤ Σ(a,a+2δ)(B)

≤ Σ(a,a+2δ)(A) + rδ1/2 (by Theorem 3.5)

= RHS of (3.29) �

As a corollary, we have (since J (n) = PnJPn ↾ ran(Pn) with rank((1−
Pn)JPn) = 1):

Theorem 3.7. Let J be a Jacobi matrix with σess(J) = e. Given

(3.16), let E(J) be finite and let J (n) be the n-times stripped Jacobi

matrix. Then

(i)

E(J (n)) ≤ E(J) + ℓ max
j=1,...,ℓ

(
1
2
|αj+1 − βj |

)1/2
(3.30)

(ii) For any j ∈ {1, . . . , ℓ + 1} and ε > 0, there is a δ > 0 so that for

all n,
∑

xk(J(n))∈(βj ,βj+δ)

(xk(J
(n)) − βj)

1/2 ≤ 1
2
ε (3.31)

∑

xk(J(n))∈(αj−δ,αj)

(αj − xk(J
(n)))1/2 ≤ 1

2
ε (3.32)

Proof. (i) By the min-max principle for eigenvalues above and below
the essential spectrum, the sums for eigenvalues below α1 or above βℓ+1

get smaller. In each gap, we use Theorem 3.5 (ii). This yields (3.30)
as r = 1.

(ii) We prove (3.31); the proof of (3.32) is similar. Take δ0 < 1
4
(αj+1−

βj) so that ∑

xk(J)∈(βj ,βj+2δ0)

(xk(J) − βj)
1/2 < 1

4
ε (3.33)

Then pick δ < δ0 so that δ1/2 < 1
4
ε. (3.29) implies (3.31). �

Theorem 3.8. Let J, J̃ be two Jacobi matrices with σess(J) =

σess(J̃) = e and E(J), E(J̃) < ∞. For m, q ≥ 0, let Jm,q be the Ja-

cobi matrix with

an(Jm,q) =

{
an(J) n = 1, . . . , m

an−m+q(J̃) n = m + 1, . . .
(3.34)

bn(Jm,q) =

{
bn(J) n = 1, . . . , m

bn−m+q(J̃) n = m + 1, . . .
(3.35)
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Then for a constant, K, independent of m and q,

E(Jm,q) ≤ E(J) + E(J̃) + K (3.36)

and for any j ∈ {1, . . . , ℓ + 1} and ε > 0, there is a δ > 0 so that for

all m, q, ∑

xk(Jm,q)∈(βj ,βj+δ)

(xk(Jm,q) − βj)
1/2 < 1

2
ε (3.37)

A similar result holds near αj.

Proof. Let Qm be the projection onto span{δj}m
j=1 and Pm = 1 − Qm.

Then Jm,q − QmJQm − PmJ̃ (q)Pm is rank two. Thus, for j = 1, . . . , ℓ
and γ = maxj=1,...,ℓ(

1
2
|αj+1 − βj |)1/2,

Σ(βj ,αj+1)(Jm,q) ≤ 2γ + Σ(βj ,αj+1)(QmJQm) + Σ(βj ,αj+1)(PmJ̃ (q)Pm)

≤ 4γ + Σ(βj ,αj+1)(J) + Σ(βj ,αj+1)(J̃
(q))

≤ 5γ + Σ(βj ,αj+1)(J) + Σ(βj ,αj+1)(J̃)

For eigenvalues below α1 (or above βℓ+1), we use the fact that

|an(Jm,q)| ≤ ‖J‖ to see that ‖Jm,q‖ ≤ 2‖J‖ + ‖J̃‖ (a crude over-
estimate). Hence we can do a similar bound on some Σ(κ,α1)(Jm,q) with
κ independent of m and q.

The passage from the proof of (3.36) to the proof of (3.37) is similar
to the argument in the proof of Theorem 3.7. �

It is a well-known phenomenon that, under strong limits, spectrum
can get lost (e.g., if Jn is a Jacobi matrix which is the free J0, except

that for m ∈ (n2 − n, n2 + n), bm = −2, then Jn
s−→ J0 but Jn has

more and more eigenvalues in (−4,−2)). We are going to be interested
in situations where this doesn’t happen, which is the last subject we
consider in this section.

Theorem 3.9. Let J be a Jacobi matrix with σess(J) = e. Suppose

that J (nk) → J̃ in the sense that for each m ≥ 1,

ank+m → ãm bnk+m → b̃m (3.38)

Then J̃ has at most one eigenvalue in (βj, αj+1), and for each δ small

and nk large, J (nk) has the same number of eigenvalues in (βj+δ, αj+1−
δ) as J̃ . In fact, if J̃ has an eigenvalue λ̃ there, the eigenvalue of J (nk)

in that interval converges to λ̃.

Proof. If λ̃ is an eigenvalue of J̃ in (βj , αj+1) with J̃ ũ = λ̃ũ (and ‖ũ‖ =

1), then εnk
≡ ‖(J (nk)−λ̃)ũ‖ → 0. Thus, (λ̃−εnk

, λ̃+εnk
)∩σ(J (nk)) 6= ∅.

Since the interval for small enough εnk
is disjoint from σess(J

(nk)), we
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conclude that there is at least one eigenvalue λnk
in the interval, and

clearly, λnk
→ λ̃.

This fact plus Theorem 3.4 implies that J̃ has at most one eigenvalue
in (βj , αj+1).

Suppose next that J (nk)unk
= λnk

unk
with ‖unk

‖ = 1 and λnk
→ λ̃ ∈

(βj, αj+1). Given v ∈ ℓ2(N) and nk, define

(v(nk))m =

{
0 m ≤ nk

vm−nk
m > nk

(3.39)

Then [
Jv(nk) − (J (nk)v)(nk)

]

m

=

{
0 m 6= nk

ank
v1 m = nk

(3.40)

We conclude that

‖(J − λnk
)u(nk)

nk
‖ = ank

|(unk
)1| (3.41)

If (unk
)1 → 0, this implies λ̃ ∈ σess(J) since u

(nk)
nk

w−→ 0. But that is
impossible, so (unk

)1 9 0. By compactness of the unit ball in the weak
topology, we conclude unk

has a weak limit point ũ with (ũ)1 6= 0, so

ũ 6≡ 0. But (J̃ − λ̃)ũ = 0, so λ̃ ∈ σ(J̃).
We have thus proven the final sentence in the theorem, given The-

orem 3.4, which says J (nk) for k large has at most one eigenvalue in
(βj + δ, αj+1 − δ). �

The final theorem of the section deals with a specialized situation
that we’ll need later.

Theorem 3.10. Let J be a Jacobi matrix with σess(J) = e. Suppose

that, as nk → ∞, (3.38) holds for some two-sided J̃ and all m ∈ Z.

Let Jk be defined by

an(Jk) =

{
am m ≤ nk

ãm−nk
m > nk

(3.42)

bm(Jk) =

{
bm m ≤ nk

b̃m−nk
m > nk

(3.43)

Then for any δ > 0, with {βj + δ, αj+1 − δ} /∈ σ(J), all the eigenvalues

of Jk in (βj + δ, αj+1 − δ) for k large are near eigenvalues of J in

that interval, and these eigenvalues converge to those for J . Moreover,

there is exactly one eigenvalue of Jk near a single eigenvalue of J in

that interval.
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Proof. We follow the first part of the proof of the last theorem until the
analysis of Jkuk = λkuk with λk → λ∞ ∈ (βj + δ, αj − δ). If we prove
that λ∞ ∈ σ(J) and uk converges in norm to the corresponding eigen-
vector, we are done. For we immediately get existence of eigenvalues
near λ∞, and uniqueness follows from the orthogonality of eigenvectors
and the norm convergence.

Define ũk ∈ ℓ2(Z) by

(ũk)m =

{
(uk)m+nk

m > −nk

0 m ≤ −nk

(3.44)

and suppose ũk has a nonzero weak limit ũ∞. Then (J̃ − λ∞)ũ∞ = 0,

so λ∞ ∈ σ(J̃). As σ(J̃) ⊂ σess(J) = e by approximate eigenvector
arguments (see, e.g., [12]), we arrive at a contradiction. Thus, ũk

converges weakly to zero. This implies that its projection P ũk onto
ℓ2(N) converges to zero in norm since otherwise ‖(J̃ − λ∞)P ũk‖ → 0

which is again impossible because λ∞ /∈ σ(J̃).
Therefore, we conclude that ‖(J−λ∞)uk‖ → 0. Since λ∞ is a simple

discrete point of σ(J), this can only happen if λ∞ is an eigenvalue of J
and ‖(1− P ′)uk‖ → 0, where P ′ is the projection onto the eigenvector
of λ∞; that is, uk converges to that eigenvector in norm. �

4. Szegő’s theorem

Our goal in this section is the following. Let e be a finite gap set, J
a bounded Jacobi matrix with σess(J) = e, and {an, bn}∞n=1 its Jacobi
parameters. Let {xk} be the eigenvalues of J outside e, and write

dµ(x) = w(x) dx + dµs(x) (4.1)

where dµ is the spectral measure for J .
Next, define

An =
a1 · · ·an

cap(e)n
Ā = lim sup An A= lim inf An (4.2)

Consider the three conditions:
(i) Szegő condition

∫

e

log(w(x))dist(x, R \ e)−1/2 dx > −∞ (4.3)

(ii) Blaschke condition

E(J) =
∑

k

dist(xk, e)
1/2 < ∞ (4.4)
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(iii) Widom condition
0 < A ≤ Ā < ∞ (4.5)

Theorem 4.1. Any two of (i)–(iii) imply the third.

Remarks. 1. We’ll eventually prove more; for example, if (ii) holds,
then (i) ⇔ Ā > 0; and if either holds, then (iii) holds.

2. This is a precise analog of a result for e = [−2, 2] of Simon–
Zlatoš [27] (cf. Theorem 1.1) who relied in part on Killip–Simon [11]
and Simon [21].

3. For e = [−2, 2], the relevance of (4.4) to Szegő-type theorems is a
discovery of Killip–Simon [11] and Peherstorfer–Yuditskii [15].

4. When there are no eigenvalues, the implication (i) ⇒ (iii) is a
result of Widom [33]; see also Aptekarev [1]. Peherstorfer–Yuditskii
[16] allowed infinitely many bound states, and in [17], they proved (i)
⇒ (iii) if (ii) holds. The other parts of Theorem 4.1 are new, although
as noted to us by Peherstorfer [14], there is an argument to go from
[16, 17] to (iii) ⇒ (i) if (ii) holds (see Remark 3 following Theorem 4.5
below).

Recall that, given any pair of Baire measures, dµ, dν, on a compact
Hausdorff space, we define their relative entropy by

S(µ | ν) =

{
−∞ if dµ is not dν-a.c.

−
∫

log(dµ
dν

) dµ if dµ is dν-a.c.
(4.6)

It is a fundamental fact (see, e.g., [23, Thm. 2.3.4]) that S(µ | ν) is
jointly concave and jointly weakly upper semicontinuous in dµ and dν,
and that

µ(X) = ν(X) = 1 ⇒ S(µ | ν) ≤ 0 (4.7)

S is relevant because we define

Z(J) = −1
2
S(ρe | µJ) (4.8)

with dµJ the spectral measure of J and dρe the potential theoretic
equilibrium measure for e. Then, by (4.7),

Z(J) ≥ 0 (4.9)

More importantly,
(4.3) ⇔ Z(J) < ∞ (4.10)

We have (4.10) because (see eqn. (4.31) and Theorem 4.4 of paper I)
dρe is dx ↾ e a.c. and

C1 dist(x, R \ e)−1/2 ≤ dρe

dx
≤ C2 dist(x, R \ e)−1/2 (4.11)
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for 0 < C1 < C2 < ∞.
Given the connection (1.24) between Blaschke products and Ge,

the potential theoretic Green’s function for e, and the symmetry of
Blaschke products (eqn. (4.19) of paper I), one can rewrite the step-
by-step C0 sum rule, Theorem 2.2, as

Theorem 4.2. For each n, Z(J) < ∞ ⇔ Z(J (n)) < ∞, and in that

case,
a1 · · ·an

cap(e)n
= Kn exp[Z(J (n)) − Z(J)] (4.12)

where

Kn = exp

(∑

k

[Ge(xk(J)) − Ge(xk(J
(n)))]

)
(4.13)

Remark. By Theorem 3.1, and the monotonicity of Ge near gap edges
(eqns. (4.45) and (4.46) of paper I), the sum in (4.13) is always condi-
tionally convergent if ordered properly.

Proof. By iterating, it suffices to prove the result for n = 1. As noted,
K1 is always finite and the remarks before the statement of the theorem
show that for n = 1, K1 = B∞(0). Thus, the step-by-step C0 sum rule
says

a1

cap(e)
= K1 exp

(
1

2

∫ 2π

0

log

(
Im M(eiθ)

Im M (1)(eiθ)

)
dθ

2π

)
(4.14)

Since M and so Im M is automorphic, Corollary 4.6 of paper I implies
∫ 2π

0

log

(
Im M(eiθ)

Im M (1)(eiθ)

)
dθ

2π
=

∫

e

log

(
w(x; J)

w(x; J (1))

)
dρe(x) (4.15)

where we use

w(x; J) =
1

π
Im m(x + i0, J) (4.16)

Thus,
∫

e

log(w(x; J (1))) dρe(x) > −∞ ⇔
∫

e

log(w(x; J)) dρe(x) > −∞
(4.17)

showing Z(J (1)) < ∞ ⇔ Z(J) < ∞. Moreover, if both are finite,

RHS of (4.15) = 2Z(J (1)) − 2Z(J) (4.18)

(4.14)–(4.18) imply (4.12). �

Proposition 4.3. We have that

Kn ≤ AneZ(J) (4.19)
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In particular, for some constant C1,

A(J) ≥ e−Z(J) lim inf[exp(−C1E(J (n)))] (4.20)

and

lim sup Kn ≤ Ā(J)eZ(J) (4.21)

Proof. (4.19) is immediate from (4.12) if we note that Z(J (n)) ≥ 0
so that exp(−Z(J (n))) ≤ 1. (4.20) follows from noting that Kn ≥
exp(−∑

k Ge(xk(J
(n)))) since Ge(xk(J)) ≥ 0 and then, that for some

C1 (depending only on e),

Ge(x) ≤ C1 dist(x, e)1/2 (4.22)

by Theorem 4.4 of paper I. Finally, (4.21) is immediate by taking
lim sup in (4.19). �

Proposition 4.4. Let Je be the Jacobi matrix with spectral measure

dρe and let {a(e)
n , b

(e)
n }∞n=1 be its Jacobi parameters. Let Jn be the Jacobi

matrix with parameters

am(Jn) =

{
am m = 1, . . . , n

a
(e)
m−n m > n

(4.23)

bm(Jn) =

{
bm m = 1, . . . , n

b
(e)
m−n m > n

(4.24)

Then

An(J) = exp

(∑

k

Ge(xk(Jn))

)
exp(−Z(Jn)) (4.25)

In particular, for some C1 (depending only on e),

An(J) ≤ exp(C1E(Jn) − Z(Jn)) (4.26)

Proof. Jn is defined so that

(Jn)(n) = Je (4.27)

and
An(Jn) = An(J) (4.28)

Thus, since Z(Je) = 0 and Je has no eigenvalues outside e, (4.12) for
Jn is (4.25). (4.26) is then immediate from (4.22). �

Theorem 4.5. If E(J) < ∞, then

Ā(J) > 0 ⇔ Z(J) < ∞ (4.29)

and if these are true, the Widom condition holds:

0 < A(J) ≤ Ā(J) < ∞ (4.30)
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Proof. By (4.20) and Theorem 3.7,

E(J), Z(J) < ∞ ⇒ A(J) > 0 ⇒ Ā(J) > 0 (4.31)

By (4.26) and Theorem 3.8, going through a subsequence with
Anj

(J) → Ā(J), we see that

E(J) < ∞, Ā(J) > 0 ⇒ lim sup[exp(−Z(Jnj
))] > 0 (4.32)

Thus, for some subsequence,

lim inf Z(Jnj
) < ∞ (4.33)

Since Jnj

s−→ J , the spectral measures converge weakly. Since S is

upper semicontinuous, Z = −1
2
S is lower semicontinuous, and thus,

Z(J) ≤ lim inf Z(Jnj
) (4.34)

so (4.33) implies Z(J) < ∞. That is, we have proven

E(J) < ∞, Ā(J) > 0 ⇒ Z(J) < ∞ (4.35)

If we have Z(J) < ∞ and E(J) < ∞, we get A(J) > 0 by (4.31),
and since Z(Jn) ≥ 0, (4.26) implies

Ā(J) ≤ lim sup[exp(C1E(Jn))] < ∞ (4.36)

by Theorem 3.8. �

Remarks. 1. The above proof shows that even without Z(J) < ∞,
we have E(J) < ∞ ⇒ Ā(J) < ∞.

2. The proof borrows heavily from ideas of Killip–Simon [11] and
Simon–Zlatoš [27].

3. As noted, E(J), Z(J) < ∞ ⇒ (4.30) is a prior result (using
variational methods) of Peherstorfer–Yuditskii [16, 17]. Peherstorfer
[14] has pointed out that their results can be used to prove E(J) <
∞, Ā(J) > 0 ⇒ Z(J) < ∞ by the following argument: While it is not
explicitly stated, [16, 17] prove that for any K, there is a constant C
so that for all measures with Z(J) < ∞ and E(J) ≤ K,

lim sup
n→∞

a1 · · ·an

cap(e)n
≤ Ce−Z(J) (4.37)

Given dµ with Z(J) = ∞ and E(J) ≤ K, let dµ̃ε be the measure
dµ + ε dx ↾ e. Then with dµε the normalized measure and an(ε) the
corresponding a’s, (4.37) implies (since Z(Jε) < ∞)

lim sup
a1(ε) · · ·an(ε)

cap(e)n
≤ Ce−Z(Jε) (4.38)

By the variational principle for a1 · · ·an = ‖Pn‖, we have

a1 · · ·an ≤ [a1(ε) · · ·an(ε)](1 + ε|e|)1/2 (4.39)
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Since Z(Jε)− 1
2
log(1+ ε|e|) ↑ Z(J), (4.38)–(4.39) imply that Ā(J) = 0

if Z(J) = ∞. This argument for the classical Szegő case is in Garnett
[8].

Theorem 4.6. Ā(J), Z(J) < ∞ ⇒ E(J) < ∞
Proof. This is immediate from (4.21) and Theorem 3.2. �

Remark. This argument follows ideas of Simon–Zlatoš [27].

Theorems 4.5 and 4.6 imply Theorem 4.1.

5. Jost Functions and Jost Solutions

In Section 8 of paper I, we defined the Szegő class for e, which we’ll
denote Sz(e), to be the set of probability measures, dµ, of the form
(4.1) that obey (4.3) and (4.4). As usual, we associate dµ with its
Jacobi matrix and Jacobi parameters {an, bn}∞n=1, which we will write
as {an(µ), bn(µ)}∞n=1 if we need to be explicit about the measures. Of
course, the a’s obey the Widom condition (4.5) for all measures in the
Szegő class.

In this section, we want to recall the definitions of Jost function and
Jost solution from Sections 8 and 9 of paper I, extend some results on
Jost solutions to the full Szegő class, and state the main theorem that
we’ll prove in the next section about their asymptotics.

Jost functions require a reference measure, and we’ll use the one
from paper I. Let ζ̃j ∈ C̃+

j , the full orthocircle, be the point farthest

from 0 on C̃+
j and let wj ∈ S, the Riemann surface for e, be given by

wj = x♯(ζ̃j). Each wj lies in Gj = π−1([βj, αj+1]), so ~w = (w1, . . . , wℓ) ∈
G = G1 × · · ·×Gℓ, which can be associated with the isospectral torus.
Our reference measure is the measure in Te associated to ~w. We denote
it by

dνe(x) = ve(x) dx (5.1)

We point out that while our choice of the reference measure is con-
venient, one can take any other measure in the Szegő class to be the
reference measure.

Given dµ ∈ Sz(e), let {xk} be the eigenvalues of J in R\ e and define
zk ∈ F by

x(zk) = xk (5.2)

The Jost function is then defined on D by

u(z; µ) =
∏

k

B(z, zk) exp

(
1

4π

∫ 2π

0

eiθ + z

eiθ − z
log

(
ve(x(eiθ))

w(x(eiθ))

)
dθ

)
(5.3)
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Since (4.16) implies

ve(x(eiθ))

w(x(eiθ))
=

Im Mνe
(eiθ)

Im Mµ(eiθ)
(5.4)

we could use that ratio instead. By the Blaschke condition and Propo-
sition 4.8 of paper I, the product in (5.3) (which we’ll call the Blaschke
part) converges. By eqn. (4.54) of paper I and the Szegő condition for
dµ and dνe, the log in (5.3) is in L1(∂D, dθ/2π). We call the exponen-
tial in (5.3) the Szegő part. As proven in Theorem 8.2 of paper I, u is
a character automorphic function on D.

For any Jacobi matrix, J , with σess(J) = e, we let M (n) be the m-
function (1.26) of the n-times stripped Jacobi matrix, J (n), and define
the Weyl solution by

Wn(z) = M(z)(a1M
(1)(z)) · · · (an−1M

(n−1)(z)) (5.5)

M (k) has poles at the inverse images of eigenvalues of J (k) and zeros at
the inverse images of eigenvalues of J (k+1), so there is a cancellation,
and Wn can be defined as meromorphic on D with poles exactly at the
points ζ with x(ζ) an eigenvalue of J .

The name, Weyl solution, comes from the fact that because m is a
ratio of solutions L2 at n = +∞, Wn obeys

Wn(z) = −〈δn, (J − x(z))−1δ1〉 (5.6)

so that for k ≥ 2,

[(J − x(z))W
·
(z)]k = 0 (5.7)

where W
·
(z) is the vector (W1(z), W2(z), . . . ). That is,

anWn(z) + bn+1Wn+1(z) + an+1Wn+2(z) = x(z)Wn+1(z) (5.8)

for n = 1, 2, . . . .
The Jost solution is defined by

un(z; µ) = u(z; µ)Wn(z) (5.9)

Since u(z; µ) is n-independent, (5.8) holds for un also. Since u has zeros
at the points where M , and so Wn, has poles, un is analytic on D.

Theorem 5.1.

anM (n−1)(z) = B(z)
u(z; µn)

u(z; µn−1)
(5.10)

where M (0) = M , dµ0 = dµ, and dµn, M (n) are associated to J (n), the

n-times stripped Jacobi matrix.

Proof. This is a rewrite of (2.3) for J (n−1). �
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Theorem 5.2. Let dµ ∈ Sz(e). Then

un(z; µ) = a−1
n B(z)nu(z; µn) (5.11)

where dµn is the spectral measure for J (n), the n-times stripped Jacobi

matrix.

Proof. By (5.10) and (5.5),

anWn(z) = B(z)n u(z; µn)

u(z; µ)
(5.12)

which by (5.9) implies (5.11). �

The key asymptotic result of the next section is the following:

Theorem 5.3. Suppose dµ ∈ Sz(e) and that for some subsequence

nj → ∞ and all m ∈ Z,

anj+m(Jµ) → a♯
m bnj+m(Jµ) → b♯

m (5.13)

for some point {a♯
n, b♯

n}∞n=−∞ in the isospectral torus. If dµ♯ is the spec-

tral measure for the Jacobi matrix with parameters {a♯
n, b♯

n}∞n=1, then

u(z; µnj
) → u(z; µ♯) (5.14)

uniformly on compact subsets of D.

We note, as will be explained in the next section, that there is no
loss in supposing that the limit J ♯ is in the isospectral torus. We’ll also
show that Theorem 5.3 allows the proof of (1.17) for a point J̃ in the
isospectral torus.

6. Jost Asymptotics

In this section, we’ll prove Theorem 5.3, use this result to prove that
for dµ ∈ Sz(e), the Jacobi parameters an, bn are asymptotic to a fixed
element of Te, and prove an asymptotic formula for the Jost solution.

The key to our proof of the existence of an {ãn, b̃n}∞n=1 obeying (1.17)
is the Denisov–Rakhmanov–Remling theorem for e ([18]) which implies
that any right limit of J lies in the isospectral torus. Tracking the
characters of the Jost functions will determine exactly which right lim-
its occur. This leads to a proof quite different from the variational
approach of [33, 1, 16].

We write

u(z; µ) = β(z; µ)ε(z; µ) (6.1)

where β is the Blaschke part and ε the Szegő part. We’ll prove (5.14)
by proving separately the convergence of the two parts.
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Theorem 6.1. Under the hypotheses of Theorem 5.3, uniformly on

compact subsets of D,

β(z; µnj
) → β(z; µ♯) (6.2)

Proof. By Theorem 3.7 of this paper and Proposition 4.8 of paper I
(and its proof), given a compact set K ⊂ D and ε > 0, we can find
δ > 0 so that the product of the contributions to β from x’s with
dist(x, e) < δ are within ε of 1 for all z ∈ K. Thus, it suffices to prove
convergence of individual x’s for µnj

to those for µ♯, and this follows
from Theorem 3.9. �

To control the Szegő part, we first need the following lemma of
Simon–Zlatoš [27]:

Theorem 6.2 ([27]). Let X be a compact Hausdorff measure space,

dρ, dµn, dµ∞ probability measures with dµn → dµ∞ weakly, and

dµn = fn dρ + dµn;s (6.3)

Suppose that

S(ρ | µn) → S(ρ | µ∞) (6.4)

with all relative entropies finite. Then

log(fn) dρ
w−→ log(f∞) dρ (6.5)

Proof. If h is continuous and strictly positive, by upper semicontinuity,

lim sup S(hρ | µn) ≤ S(hρ | µ∞) (6.6)

or

lim sup

∫
log(fnh−1)h dρ ≤

∫
log(f∞h−1)h dρ (6.7)

so that

lim sup

∫
log(fn)h dρ ≤

∫
log(f∞)h dρ (6.8)

For arbitrary continuous real-valued g, let h = 2‖g‖∞ ± g to get

lim

∫
log(fn)g dρ =

∫
log(f∞)g dρ (6.9)

�

Proposition 6.3. To get

ε(z; µnj
) → ε(z; µ♯) (6.10)

uniformly for z in compact subsets of D, it suffices to prove that

lim
j→∞

S(ρe | µnj
) = S(ρe | µ♯) (6.11)
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Proof. By definition of ε, it suffices that as measures on ∂D,

log
( 1

π
|ImMµnj

(eiθ)|
)dθ

2π

w−→ log
(1

π
|Im Mµ♯(eiθ)|

)dθ

2π

Given g ∈ C(∂D), define

g̃(eiθ) =

∑
γ∈Γ g(γ(eiθ))|γ′(eiθ)|

∑
γ∈Γ|γ′(eiθ)| (6.12)

and h on e by
h(x(eiθ)) = 1

2
[g̃(eiθ) + g̃(e−iθ)] (6.13)

Note that h is continuous on e since g̃ is continuous on ∂F ∩ ∂D by
eqn. (3.4) of paper I.

By Corollary 4.6 of paper I,
∫ 2π

0

g(eiθ) log

(
1

π
|ImMµ(eiθ)|

)
dθ

2π
=

∫

e

h(x) log(wµ(x)) dρe(x) (6.14)

so the necessary weak convergence on ∂D is implied by weak conver-
gence of log(fnj

) dρe to log(f∞) dρe. This in turn follows from (6.11)
and Theorem 6.2. �

Theorem 6.4. Under the hypotheses of Theorem 5.3, uniformly on

compact subsets of D,

ε(z; µnj
) → ε(z; µ♯) (6.15)

Proof. By Proposition 6.3, it suffices to prove (6.11). Since µnj

w−→ µ♯,
upper semicontinuity of S implies

lim sup S(ρe | µnj
) ≤ S(ρe | µ♯) (6.16)

So it suffices to prove that

S ≡ lim inf S(ρe | µnj
) ≥ S(ρe | µ♯) (6.17)

Pick a subsequence (that we’ll still denote by nj) so that S(ρe |
µnj

) → S and so that τj → τ∞ for some τ∞ > 0, where

τj =
a1 · · ·anj

cap(e)nj
(6.18)

Note that by Theorem 4.1 and dµ ∈ Sz(e), the original τj ’s are bounded,
so we can pick such a convergent subsequence.

For k < ℓ, let Jk,ℓ be the Jacobi matrix obtained by starting with
J (nk) and then putting J ♯ at sites beyond nℓ, that is,

am(Jk,ℓ) =

{
ank+m 1 ≤ m ≤ nℓ − nk

a♯
m−nℓ+nk

m > nℓ − nk

(6.19)
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bm(Jk,ℓ) =

{
bnk+m 1 ≤ m ≤ nℓ − nk

b♯
m−nℓ+nk

m > nℓ − nk

(6.20)

Thus, (Jk,ℓ)
(nℓ−nk) = J ♯, so the iterated step-by-step C0 sum rule

says that

τℓ

τk
=

β(0; µ♯)

β(0; µk,ℓ)
exp

[
1
2
S(ρe | µk,ℓ) − 1

2
S(ρe | µ♯)

]
(6.21)

We claim that

lim
ℓ→∞

β(0; µk,ℓ) = β(0; µnk
) (6.22)

Accepting this for now, we take ℓ → ∞ in (6.21), using the upper
semicontinuity of S(ρe | µ) in µ to get

exp
[

1
2
S(ρe | µnk

) − 1
2
S(ρe | µ♯)

]
≥ τ∞

τk

β(0; µnk
)

β(0; µ♯)
(6.23)

Now take k → ∞ using the assumption that S(ρe | µnk
) → S. Since

τ∞/τk → 1 and, by (6.2),

β(0; µnk
)

β(0; µ♯)
→ 1

we get (6.17).
Thus, we need only prove (6.22), which follows the proof of Theo-

rem 6.1, but using Theorems 3.8 and 3.10. �

Proof of Theorem 5.3. By (6.1), this follows from Theorems 6.1 and
6.4. �

We can now prove (1.17).

Theorem 6.5. Let dµ ∈ Sz(e). Take dµ̃ to be the unique element in Te

so that u(z; µ) and u(z; µ̃) have the same automorphic character. Then

lim
n→∞

|an − ãn| + |bn − b̃n| = 0 (6.24)

Remark. The existence and uniqueness of dµ̃ ∈ Te follows from The-
orem 7.3 of paper I.

Proof. If not, by compactness, there is a right limit J ♯ so that

am+nj
→ a♯

m bm+nk
→ b♯

m (6.25)

and so that
ãm+nj

→ a(∞)
m b̃m+nj

→ b(∞)
m (6.26)

with

J ♯ 6= J (∞) (6.27)
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By the Denisov–Rakhmanov–Remling theorem [18], J ♯ and J (∞) lie
in the isospectral torus. Let χB(γ) be the automorphic character of
B(z). Then with χJ(γ) the character of the Jost function for J , (5.10)
and the fact that M (n−1) is automorphic implies that

χJ(n) = χJχ−n
B χJ̃(n) = χJ̃χ−n

B (6.28)

Since the definition of J̃ is χJ̃ = χJ , we see that

χJ(n) = χJ̃(n) (6.29)

By Theorem 5.3 and the fact that uniform convergence of character
automorphic functions implies convergence of their characters, we get

χJ♯ = χJ(∞) (6.30)

But J ♯ and J (∞) lie in the isospectral torus, so by Theorem 7.3 of
paper I,

J ♯ = J (∞) (6.31)

This contradiction to (6.27) implies that (6.24) holds. �

As a corollary, we get convergence of Jost solutions.

Theorem 6.6. Uniformly on compact subsets of D,

un(z; µ) − un(z; µ̃)

B(z)n
→ 0 (6.32)

Moreover,
un(z; µ)

un(z; µ̃)
→ 1 (6.33)

uniformly on compact subsets of F int.

Remark. At each point in {γ(0) | γ ∈ Γ}, un and Bn have zeros of
order n, so unB

−n has removable singularities at those points.

Proof. Since J (n) and J̃ (n) (by Theorem 6.5) have the same right limits,
by Theorem 5.3,

|u(z; µn) − u(z; µ̃n)| → 0 (6.34)

uniformly on D. Since an/ãn → 1, (5.11) implies (6.32).
As un(z; µ̃) is bounded away from zero (uniformly in n) on compact

subsets of F int, (6.34) implies (6.33). �

Corollary 6.7. Let dµ ∈ Sz(e) and let dµ̃ ∈ Te be the measure for

which (6.24) holds. Then, as n → ∞,

a1 · · ·an

ã1 · · · ãn
→ u(0; µ̃)

u(0; µ)
(6.35)

In particular, a1 · · ·an/ cap(e)n is asymptotically almost periodic.
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Proof. The final sentence follows from (6.35) and Corollary 7.4 of pa-
per I. To obtain (6.35), note that (5.10) at z = 0 and (2.12) implies

u(0; µn)

u(0; µ)
=

a1 · · ·an

cap(e)n
(6.36)

Thus,
a1 · · ·an

ã1 · · · ãn
=

u(0; µ̃)

u(0; µ)

u(0; µn)

u(0; µ̃n)
(6.37)

Since u(0; ν) is bounded away from 0 as dν runs through the isospec-
tral torus, (6.34) implies that

u(0; µn)

u(0; µ̃n)
→ 1

proving (6.35). �

7. Szegő Asymptotics

In Section 6, we proved that if un is the Jost solution of a Jµ with
dµ ∈ Sz(e) and ũn is the Jost solution for the element of the isospectral
torus to which Jµ is asymptotic (in the sense of (1.17)), then, as n → ∞,
un(z)/ũn(z) → 1 uniformly on compact subsets of F int. Our goal in this
section is to prove that if pn and p̃n are the corresponding orthonormal
polynomials, then also on F int, pn(z)/p̃n(z) has a limit (which will
not be identically 1 and which we’ll write explicitly in terms of Jost
functions).

The passage from Jost asymptotics to Szegő asymptotics in the case
e = [−2, 2] was studied by Damanik–Simon [5] using constancy of the
Wronskian. Our first approach for general e mimicked that of [5] but
was awkward because certain objects which were constant in the case
e = [−2, 2] were instead almost periodic. To overcome this, we found
a new approach which, even for e = [−2, 2], is somewhat simpler than
the approach in [5].

The idea is to exploit the formula for the diagonal Green’s function
for x ∈ C+,

Gnn(x) = 〈δn, (J − x)−1δn〉 (7.1)

namely (see, e.g., [26]),

Gnn(x) =
pn−1(x)Un(x)

Wr(x)
(7.2)

where Un(x) is defined by

Un(x) = un(ζ) x(ζ) = x ζ ∈ F int (7.3)
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and Wr(x) is defined by

Wr(x) = am

(
Um+1(x)pm−1(x) − Um(x)pm(x)

)
(7.4)

for m ≥ 1. The right-hand side is independent of m. The funny
indices in (7.4) compared to Wronskians come from the fact that Um

and Vm = pm−1 obey the same difference equation, and RHS of (7.4)
is nothing but am(Um+1Vm − UmVm+1).

In (7.4), we can also take m = 0 if we set a0 = 1, p−1(x) = 0, and

U0(x) = u(ζ ; µ) (7.5)

With this choice of p−1, U0, and a0, Um obeys a0U0+b1U1+a1U2 = xU1,
and similarly for Vm. Since p−1 = 0 and p0 = 1, (7.4) for m = 0 says

Wr(x) = −u(ζ ; µ) (7.6)

Here is the key to going from Jost to Szegő asymptotics:

Theorem 7.1. Suppose {an, bn}∞n=1 obey (1.17) for some {ãn, b̃n}∞n=1 in

Te. Then, uniformly for z in compact subsets of C \ ([α1, βℓ+1]∪ σ(J)),

lim
n→∞

[Gnn(z) − G̃nn(z)] = 0 (7.7)

where G̃nn is given by (7.1) with J replaced by J̃ .

Proof. By the resolvent formula,

Gnn(z) − G̃nn(z) =
∑

m,k

Gnm(z)(J̃ − J)mk G̃kn(z) (7.8)

On compact subsets of C+,

|Gkn(z)| + |G̃kn(z)| ≤ Ce−D|k−n| (7.9)

for suitable C, D > 0. Since (J̃ − J)mk → 0 as m, k → ∞, we get (7.7)
from (7.8) and (7.9). Using the maximum principle, one extends the
result to compact subsets of C \ ([α1, βℓ+1] ∪ σ(J)). �

Theorem 7.2. Under the hypotheses of Theorem 7.1, uniformly on the

same compact subsets of C, we have that

lim
n→∞

Gnn(z)

G̃nn(z)
= 1 (7.10)

Proof. For each fixed n, G̃nn(z) is nonvanishing on the compact subsets
under discussion since neither ũn nor p̃n−1 have zeros there. Since shift-

ing n is equivalent to moving on the torus, G̃nn is uniformly bounded
away from zero as n varies (cf. (7.13) below). Therefore, (7.7) implies
(7.10). �



FINITE GAP JACOBI MATRICES, II 31

As a final preliminary on Szegő asymptotics, we look at the isospec-
tral torus. If dν ∈ Te, then reflection of the Jacobi parameters about
n = 0,

b(r)
n = b−n, a(r)

n = a1−n, n ∈ Z (7.11)

gives an almost periodic Jacobi matrix in the isospectral torus, so a
point we will call dν(r) ∈ Te.

For n ∈ Z, we denote by dνn ∈ Te the spectral measure of the two-
sided Jacobi matrix J̃ν when restricted to ℓ2({n + 1, n + 2, . . .}). In
particular, dν0 = dν.

Following paper I, for x ∈ C∪{∞}\ e, we define z(x) ∈ F to be the
unique point with x(z(x)) = x, and for x ∈ e, we set z(x) = z(x − i0).

Theorem 7.3. Given dν ∈ Te, there exist nonvanishing, continuous

functions α(x; ν) and β(x; ν) for x ∈ C \ [α1, βℓ+1] so that the or-

thonormal polynomials are given by

pn−1(x; ν) = α(x; ν)
u(z(x), ν

(r)
−n)

a
(r)
−nB(z(x))n

+ β(x; ν)
u(z(x), νn)

anB(z(x))−n
(7.12)

In particular, pn−1(x; ν)B(z(x))n is asymptotically almost periodic.

Moreover, on any compact subset, K, of C \ [α1, βℓ+1], there is a con-

stant C > 1 so that

C−1B(z(x))n ≤ |pn−1(x; ν)| ≤ CB(z(x))n (7.13)

for all x ∈ K and dν ∈ Te.

Proof. Define

u+
n (x; ν) = un(z(x); ν) u−

n (x; ν) = u+
−n(x; ν(r)) (7.14)

Then u±
n are two solutions of

anvn+1 + bnvn + an−1vn−1 = xvn (7.15)

and they are linearly independent since one is L2 at +∞ and the other
at −∞, and x is not an eigenvalue of J̃ν .

Since pn−1(x; ν) also solves (7.15), we have

pn−1(x; ν) = α(x; ν)u−
n (x; ν) + β(x; ν)u+

n (x; ν) (7.16)

and Wronskian formulae for α and β show that they are real analytic
in ν ∈ Te and analytic in x ∈ C \ [α1, βℓ+1].

(7.12) then follows from Theorem 9.2 of paper I.
Since |B| < 1 on D, the second term multiplied by Bn is expo-

nentially small, and the first is almost periodic, so pn−1B
n is almost

periodic up to an exponentially small error.
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The upper bound in (7.13) is immediate from (7.12), |B| < 1, and
the almost periodicity of u(z; νn).

Since x is not an eigenvalue of J̃ν , α is nonvanishing, which proves
that for any K and n ≥ N , we have a lower bound. Since pn has no zero
in K, a lower bound on n < N is immediate. That proves (7.13). �

Theorem 7.4 (Szegő asymptotics). Let dµ ∈ Sz(e) and let dµ̃ be the

measure of the Jacobi matrix in Te for which (1.17) holds. Then, uni-

formly on compact subsets of C \ [α1, βℓ+1],

pn(x; µ)

pn(x; µ̃)
→ u(z(x); µ)

u(z(x); µ̃)
(7.17)

In particular, pn(x; µ)B(z(x))n is asymptotically almost periodic.

Remarks. 1. It is not hard to see that the last statement extends to
C \ e.

2. In the periodic case, one also has Szegő asymptotics in the gaps
of e except at finitely many points.

3. Since the monic orthogonal polynomials, Pn(x), are related to the
orthonormal ones via Pn(x) = (a1 · · ·an) pn(x), Szegő asymptotics for
the monic polynomials immediately follows from (6.35) and (7.17),

Pn(x; µ)

Pn(x; µ̃)
→ u(z(x); µ)/u(0; µ)

u(z(x); µ̃)/u(0; µ̃)

Proof. It follows from (7.2) and (7.6) that

pn−1(x; µ)

pn−1(x; µ̃)
=

Gnn(x)

G̃nn(x)

un(z(x); µ̃)

un(z(x); µ)

u(z(x); µ)

u(z(x); µ̃)
(7.18)

The result is immediate from (7.10) and (6.33) since we can include
points below α1 and above βℓ+1 by the maximum principle and the
fact that pn(x; µ̃) is non-vanishing on R \ [α1, βℓ+1]. �

8. L2 Szegő Asymptotics on the Spectrum

By a standard approximation argument going back to Szegő [30], the
function ∫ 2π

0

eiθ + z

eiθ − z
log(Im M(eiθ))

dθ

2π

is in H2(D), so it has nontangential boundary values for a.e. z ∈ ∂D.
Since convergent Blaschke products (with a Blaschke condition) are
well known to have boundary values (see [19, pp. 249, 310]), u(z; µ)
has boundary values for a.e. z ∈ ∂D and all dµ ∈ Sz(e), and so does
un(z; µ) by (5.11).
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Thus, for Lebesgue a.e. x ∈ e,

u+
n (x; µ) ≡ un(z(x − i0); µ) (8.1)

exists. Moreover, since Im m(x + i0) 6= 0 for a.e. x ∈ e, we can define
a linearly independent solution u−

n by

u−
n (x; µ) ≡ u+

n (x; µ) (8.2)

This leads to an expansion:

pn(x) =
Wr(p

·−1, u
−
·
)u+

n+1(x; µ) − Wr(p
·−1, u

+
·
)u−

n+1(x; µ)

Wr(u+
·
, u−

·
)

(8.3)

=
u+

0 (x; µ)u+
n+1(x; µ) − u+

0 (x; µ)u+
n+1(x; µ)

Wr(u+
·
, u−

·
)

(8.4)

Given the asymptotics of u+
n to ũ+

n , this explains the expected L2 as-
ymptotic result we’ll prove:

Theorem 8.1. Let dµ ∈ Sz(e) have the form (1.9) and let ũ+
n (x) be

the Jost solution for the asymptotic point in Te (i.e., the point given by

(1.17)). Then

∫

e

∣∣∣∣pn(x) − Im(u(z(x); µ) ũ+
n+1(x))

πve(x)

∣∣∣∣
2

w(x) dx → 0 (8.5)

and ∫
|pn(x)|2 dµs(x) → 0 (8.6)

where ve is the weight for the reference measure used in (5.3).

Remarks. 1. πve(x) enters because of the following calculation:

Wr(ũ+
·
, ũ−

·
) = ã0(ũ

+
1 ũ+

0 − ũ+
1 ũ+

0 ) (8.7)

= −(ã0)
2|ũ+

0 |22i Im m̃(x − i0) (8.8)

= 2i
ve(x)

w̃(x)
πw̃(x) (8.9)

= 2πi ve(x) (8.10)

In the above, (8.8) comes from (1.26) and (5.10), and (8.9) comes
from (4.16), (5.3) (see Lemma 8.2 below), and (5.11), which says that
ũ+

0 = ã−1
0 u( · , µ̃).

2. In case e = [−2, 2], (8.5) becomes
∫ 2

−2

∣∣∣∣pn(x) − Im(u(z(x); µ) ei(n+1)θ(x))

sin(θ(x))

∣∣∣∣
2

w(x) dx → 0
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where θ(x) is given by z(x) = eiθ(x). This is a result of [15]; see also [5]
and [26, Sect. 3.7].

We define

k+
n (x) =

u(z(x); µ) ũ+
n+1(x)

2πive(x)
(8.11)

k−
n (x) = k+

n (x) (8.12)

in which case, (8.5)–(8.6) become

‖pn − k+
n − k−

n ‖2
w + ‖pn‖2

s → 0 (8.13)

where ‖·‖w is the L2(e, w dx) norm (we use 〈 , 〉w for the inner product)
and ‖·‖s is the L2(R, dµs) norm. Clearly, (8.13) follows from:

‖pn‖2
w + ‖pn‖2

s = 1 (8.14)

‖k±
n ‖2

w = 1
2

(8.15)

lim
n→∞

〈k−
n , k+

n 〉w = 0 (8.16)

lim
n→∞

Re〈k−
n , pn〉w = 1

2
(8.17)

(8.14) is the normalization condition on pn, so we only need to prove
(8.15)–(8.17). We’ll need some preliminaries:

Lemma 8.2. For a.e. z ∈ ∂D, the boundary value of u(z; µ) obeys

|u(z; µ)|2 =
ve(x(z))

w(x(z))
(8.18)

Proof. In (5.3), |∏k B(z, zk)| has 1 as boundary value, by standard
results on Blaschke products. By convergence of the Poisson kernel, for

a.e. z in ∂D, the real part of the exponential converges to log(ve(x(z))
w(x(z))

).

�

Lemma 8.3. For any dν ∈ Te with weight wν, we have∫

e

dx

wν(x)
= 2π2a0(ν)2 (8.19)

Proof. If G̃00(z; ν) is the Green’s function of the whole-line Jacobi ma-

trix J̃ν and u+
n (x; ν) = un(z(x + i0); ν) the boundary value of the Jost

solution, then

G̃00(x + i0; ν) =
u+

0 (x; ν) u+
0 (x; ν)

a0(ν)[u+
1 (x; ν) u+

0 (x; ν) − u+
1 (x; ν) u+

0 (x; ν)]
(8.20)

= − 1

a0(ν)22i Im m(x + i0; ν)
(8.21)
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=
i

2πa0(ν)2wν(x)
(8.22)

so
1

π
Im G̃00(x + i0; ν) =

1

2π2a0(ν)2wν(x)
(8.23)

But the whole-line Jacobi matrix J̃ν has purely a.c. spectrum σ(J̃ν) =

e and the density of the probability spectral measure for J̃ν and δ0 is
1
π

Im G̃00(x + i0; ν), so

1

π

∫

e

Im G̃00(x + i0; ν) dx = 1 (8.24)

(8.23) and (8.24) imply (8.19). �

Proposition 8.4. (8.15) holds.

Proof. By (5.11) and (8.11),

|k+
n (x)|2 =

|u(z(x); µ)|2|u(z(x); µ̃n+1)|2
4π2(ãn+1)2ve(x)2

(8.25)

so, by Lemma 8.2,

|k+
n (x)|2 =

1

4π2(ãn+1)2w(x)w̃n+1(x)
(8.26)

and so, ∫

e

|k+
n (x)|2w(x) dx =

1

4π2(ãn+1)2

∫

e

dx

w̃n+1(x)
=

1

2
(8.27)

by Lemma 8.3. Since |k−
n | = |k+

n |, we get the same result for ‖k−
n ‖2

w. �

Lemma 8.5. Let f ∈ L1(e, dρe). Then

lim
n→∞

∫

e

B(z(x))nf(x) dρe(x) = 0 (8.28)

Moreover, (8.28) holds uniformly on norm compact subsets of

L1(e, dρe).

Proof. Without loss of generality, assume that f is real-valued. Then
by Corollary 4.6 of paper I, we obtain

∫

e

B(z(x))nf(x) dρe(x) =

∫ 2π

0

B(eiθ)nf(x(eiθ))
dθ

2π
(8.29)

By the Cauchy theorem, {Bn}n∈Z forms an orthonormal system in
L2(∂D, dθ

2π
). Hence it follows from the Bessel inequality that RHS of

(8.29) converges to zero for any L2-function. The general case of L1-
functions and the result on uniform convergence on norm compacts
follow by approximation. �
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Remark. The above result can be also established via a stationary
phase argument.

Proposition 8.6. (8.16) holds.

Proof. By the same calculation that was used in the proof of Proposi-
tion 8.4,

〈k−
n , k+

n 〉w =

∫

e

fn(x)B2n+2(z(x)) dx (8.30)

where

fn(x) = − 1

4π2(ãn+1)2

u(z(x); µ̃n+1)
2

ve(x)

|u(z(x); µ)|2
u(z(x); µ)2

(8.31)

For dν ∈ Te, let

f(x; ν) = − 1

4π2a0(ν)2

u(z(x); ν)2

ve(x)

|u(z(x); µ)|2
u(z(x); µ)2

(8.32)

By Lemma 8.2, the f ’s are all in L1 (with L1 norm 1/2 by Lemma
8.3) and f is L1 continuous in ν. So, since Te is compact, we see from
Lemma 8.5 that the integral in (8.30) goes to zero. �

This leaves (8.17). The argument is somewhat complicated in case
there are bound states, especially if there are infinitely many. So let us
consider it first when dµ has no point masses in R \ e.

Proposition 8.7. Suppose dµ has support e so that u(z; µ) is nonva-

nishing on D. Then (8.17) holds.

Proof. We claim that

Re

[∫

e

k−
n (x) pn(x)w(x) dx

]

=
1

2

∫

∂F∩∂D

u(z; µ) ũn+1(z)

2πive(x(z))
pn(x(z)) w(x(z))x′(z) dz

(8.33)

where the integral is evaluated counterclockwise. As Re k−
n = 1

2
k+

n + 1
2
k−

n

and Re pn(x) = pn(x), the k+
n term directly gives the counterclockwise

integral over C+ ∩ ∂F ∩ ∂D (since x′(z) is positive there). Since u and
ũ+

n+1 are real on R, and x′ and i flip signs under eiθ → e−iθ, the k−
n

term gives the integral over ∂F ∩ ∂D ∩ C−.
Notice next that, by (8.18),

u(z; µ)
w(x(z))

ve(x(z))
=

1

u(z; µ)
(8.34)
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so

LHS of (8.33) =
1

4πi

∫

∂F∩∂D

ũn+1(z)pn(x(z))

u(z; µ)
x′(z) dz (8.35)

By (6.28), (5.11), and the choice of dµ̃, the integrand in (8.35), call it

F , is automorphic under Γ. Since F is real on R, we have F (z̄) = F (z).

Moreover, there are γ ∈ Γ so that for z ∈ C+
ℓ , we have γ(z) = z, so we

conclude that F is real on C+
ℓ and C−

ℓ . Thus, orienting the contours
counterclockwise about 0, we get

∫

C+
ℓ
∪C−

ℓ

F (z) dz = 0

since C+
ℓ and C−

ℓ run in opposite directions. It follows that

LHS of (8.33) =
1

4πi

∫

∂F

ũn+1(z)pn(x(z))

u(z; µ)
x′(z) dz (8.36)

Inside F , the integrand is regular except at z = 0. Since pn is a
polynomial of degree n in x(z), and x(z) has a simple pole at z = 0,
znpn(x(z)) is regular at z = 0. By (5.11), ũn+1(z)/B(z)n+1 is regular
at z = 0. Thus, ũn+1(z)pn(x(z)) has a first-order zero at z = 0. u(z)
is regular there and x′(z) has a double pole. So the integrand in (8.36)
has a simple pole at z = 0 and we conclude that

LHS of (8.33) =
1

2

[
un+1(z; µ)pn(x(z))

zu(z; µ)

∣∣∣∣
z=0

]
un+1(0; µ̃)

un+1(0; µ)
[z2x′(z)|z=0]

(8.37)
The first factor in (8.37) is z−1Gn+1,n+1(x(z))|z=0, which is

lim
z→0

z−1

(
− 1

x(z)
+ O

(
1

x(z)2

))
= − 1

x∞

(8.38)

The third factor is

lim
z→0

z2

(
−x∞

z2
+ O(1)

)
= −x∞ (8.39)

so

LHS of (8.33) =
1

2

un+1(0; µ̃)

un+1(0; µ)
→ 1

2
(8.40)

by Theorem 6.6. �

Proposition 8.8. If dµ has support e plus finitely many mass points

in R \ e, then (8.17) holds.
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Proof. We follow the proof of the last proposition until we get to (8.35).
However, u now has a pole at each zk in F with

x(zk) = xk ∈ σ(J) (8.41)

Thus, the integrand can have poles (but only finitely many) in F int and
also on C±

j . Interpret (8.36) as taking principal parts at the poles on

C±
j . Each such pole contributes with half of 2πi times the residue, so

we get 2πi times the residue if we only count the poles in F (i.e., in
C+

j but not in C−
j ).

The residue at zk is

B(zk)
n+1u(zk; µ̃n+1)pn(xk)x

′(zk)

2ãn+1u′(zk; µ)
(8.42)

As
∑

n|pn(xk)|2 = 1/µ({xk}), |B(zk)| < 1 and supn|u(zk; µ̃n+1)| < ∞,
the quantity in (8.42) goes to zero. Since there are finitely many of
these poles, their contribution vanishes in the limit and LHS of (8.33)
converges to 1/2. �

Finally, we turn to the general case. The following completes the
proof of Theorem 8.1:

Proposition 8.9. For any dµ ∈ Sz(e), (8.17) holds.

Proof. Following Peherstorfer–Yuditskii [15], we’ll approximate u by
one with a finite number of zeros, but to preserve the fact that we need
certain functions to be automorphic, we also modify ũn.

Label all the point masses of dµ in a single sequence {xk}∞k=1 with
corresponding points zk ∈ F such that x(zk) = xk. Let

u(m)(z; µ) =
m∏

k=1

B(z, zk)ε(z; µ) (8.43)

and denote by dµ̃(m) the measure in the isospectral torus whose Jost
function has the same character as u(m). Define

k(m)+
n (x) =

u(m)(z(x); µ)u+
n+1(x; µ̃(m))

2iπve(x)
(8.44)

Clearly, it suffices to prove that

lim
m→∞

‖k(m)+
n − k+

n ‖w → 0 (8.45)

uniformly in n, and that

lim
m→∞

lim
n→∞

|Re〈k(m)+
n , pn〉 − 1

2
| = 0 (8.46)

Since
∏m

k=1 B(z, zk) → ∏∞
k=1 B(z, zk) uniformly on compacts, the

characters converge. Moreover, this convergence of B’s is pointwise
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on ∂D. The first implies convergence of u(z(x); µ̃
(m)
n+1) to u(z(x); µ̃n+1)

away from the band edges (uniformly in n and x as m → ∞) with
uniform square root bounds. This plus (8.26) yields (8.45).

The proof of (8.46) follows the proof of Proposition 8.8. The fact
that we’ve arranged for the functions to be automorphic allows the
cancellation of the C+

j and C−
j integrals, and since there are only finitely

many poles away from z = 0, we get convergence in (8.42) and hence
in (8.46). �
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