
FINITE GAP JACOBI MATRICES,
I. THE ISOSPECTRAL TORUS

JACOB S. CHRISTIANSEN1,2, BARRY SIMON1,3,
AND MAXIM ZINCHENKO1

Abstract. Let e ⊂ R be a finite union of disjoint closed inter-
vals. In the study of OPRL with measures whose essential support
is e, a fundamental role is played by the isospectral torus. In this
paper, we use a covering map formalism to define and study this
isospectral torus. Our goal is to make a coherent presentation of
properties and bounds for this special class as a tool for ourselves
and others to study perturbations. One important result is the ex-
pression of Jost functions for the torus in terms of theta functions.

1. Introduction

Let e ⊂ R be a union of ℓ+ 1 disjoint closed intervals

e = e1 ∪ e2 ∪ · · · ∪ eℓ+1 (1.1)

ej = [αj , βj] (1.2)

α1 < β1 < α2 < · · · < αℓ+1 < βℓ+1 (1.3)

ℓ counts the number of gaps.
For later purposes, we will need to exploit potential theoretic ob-

jects associated to e. cap(e) will be its logarithmic capacity, dρe the
equilibrium measure (normalized by ρe(R) = 1)

dρe(x) = ρe(x) dx (1.4)

and ρe(ej) the harmonic measures. For reasons that become clear soon,
we say e is periodic if all harmonic measures, ρe(ej), j = 1, . . . , ℓ + 1,
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are rational. See [35, 41, 55, 62, 69, 74] for discussions of potential
theory.

We will be interested in one- and two-sided Jacobi matrices: one-
sided with parameters labelled {an, bn}∞n=1,

J =




b1 a1 0 0 · · ·
a1 b2 a2 0 · · ·
0 a2 b3 a3 · · ·
...

...
...

...
. . .


 (1.5)

and two-sided with {an, bn}∞n=−∞ extended to the top and left in the
obvious way. And, of course, we want to consider the orthogonal poly-
nomials on the real line (OPRL) [28, 66, 71] defined by

p−1(x) = 0 p0(x) = 1

xpn(x) = an+1pn+1(x) + bn+1pn(x) + anpn−1(x)
(1.6)

If dµ is the spectral measure for J and vector (1, 0, 0, . . . )t, then the
pn’s are orthonormal ∫

pn(x)pm(x) dµ(x) = δnm (1.7)

We will also want to consider monic OPs, Pn, the multiple of pn with
leading coefficient 1,

pn(x) = (a1 · · ·an)−1Pn(x) (1.8)

xPn(x) = Pn+1(x) + bn+1Pn(x) + a2
nPn−1(x) (1.9)

We want to analyze the case where

σess(J) ≡ σess(dµ) = e (1.10)

Here σess(J) is the essential spectrum of J , aka the derived set of
supp(dµ). We will use σ(J) (or σ(dµ)) for the spectrum of J and
Σac(dµ) = {x | dµ

dx
6= 0} for the essential support of the a.c. part of

dµ. In this paper, we will focus on the isospectral torus, in [16] on
the Szegő class, and in [17] on results that go beyond the Szegő class.
Some of our results were announced in [15].

The goal is to extend what is known about the case e = [−1, 1]. This
can be viewed as a problem in approximation theory where polynomial
asymptotics is critical or as a problem in spectral theory where Jacobi
parameter asymptotics is critical. As usual, there are three main levels
from the point of view of polynomial asymptotics:

(a) Root asymptotics. Asymptotics of |Pn(x)|1/n. For [−1, 1], the
theory is due to Erdös–Turán [23] and Ullman [75, 76, 77]. For general
sets, including finite gap sets, the theory is due to Stahl–Totik [69] (see
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Simon [62] for a review). One has for x /∈ σ(dµ) and dµ regular (i.e.,
σess(dµ) = e and lim(a1 · · ·an)1/n = cap(e)) that

|Pn(x)|1/n → exp

(∫
log|x− y| dρe(y)

)
(1.11)

(b) Ratio asymptotics. Traditionally, this involves the ratio
Pn+1(x)/Pn(x) having a limit. Nevai [48] showed that if an → a,
bn → b (a 6= 0) so that σess(dµ) = [b − 2a, b + 2a], then the limit
exists for x /∈ σ(dµ). Simon [59] proved a converse: if the limit ex-
ists at a single point in C+ = {z | Im z > 0}, then for some a, b, we
have that an → a, bn → b. Thus, the proper analog for σess(dµ) = e

will not be existence of a limit but something more subtle. This is an
interesting open question which we will not address.

(c) Szegő asymptotics. This says that for z /∈ σ(dµ),
Pn(z)/D(z)E(z)n → 1 for an explicit function E ((z +

√
z2 − 1) for

e = [−1, 1]) and a function D which is µ-dependent. The proper
analog for general finite gap sets was obtained by Widom [82] (see
also Aptekarev [3]) and by Peherstorfer–Yuditskii [51] using variational
methods. The ratio is only asymptotically (almost) periodic. One of
our main goals in this series is to provide a new nonvariational ap-
proach to this result. In addition, following Damanik–Simon [20] for
[−1, 1], we want to consider cases where the Szegő condition fails.

From the spectral theory point of view, the analogs of an → 1
2
,

bn → 0 (aka the Nevai class) concern the isospectral torus, an object
we will discuss extensively in this paper. For now, we note that if e is
periodic, the J ’s in the isospectral torus are all periodic Jacobi matrices
with σess(J) = e. In the general case, it is an ℓ-dimensional torus of
almost periodic J ’s with σess(J) = e. It can be singled out via minimal
Herglotz functions [66] or reflectionless potentials [56]; see Section 6
below.

The key realization is that the Nevai class needs to be replaced by
approach to an isospectral torus. This was first noted by Simon [60, 61]
as conjectures in the context of the OPUC case. In turn, Simon was
motivated by work of López and collaborators [6, 9] who studied the
case of a single gap for OPUC.

From a spectral point of view, the analogs of the asymptotics results
are:

(a) Regularity implies more restrictions on the Jacobi parameters
than (a1 · · ·an)1/n → cap(e). For example, for e = [−1, 1], it is known
that 1

n

∑n
j=1(aj − 1

2
)2 + b2j → 0 and, for e periodic, a similar Cesàro

convergence result for distances to the isospectral torus is proven in
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[65]. The analog for general finite gap sets remains an interesting open
question.

(b) The key result here in the case e = [−1, 1] is the theorem of
Denisov–Rakhmanov [21] stating that if Σac(dµ) = σess(dµ) = [−1, 1],
then an → 1

2
, bn → 0. Simon [61] conjectured that for periodic e, the

proper result is that if Σac(dµ) = σess(dµ) = e, then all right limits lie
in the isospectral torus. For periodic e, this was proven by Damanik–
Killip–Simon [19] who conjectured the result for general e. It was then
proven for general finite gap sets by Remling [56]. Remling’s result
plays a key role in our work in paper II [16]. We note that in the
opposite direction, Last–Simon [42] have shown that if all right limits
lie in the isospectral torus, then σess(dµ) = e.

(c) Here there are two main results. When σ(dµ) = e (no bound
states), Widom proved that a Szegő condition implies

lim inf
a1 · · ·an
cap(e)n

> 0 (1.12)

lim sup
a1 · · ·an
cap(e)n

<∞ (1.13)

The Szegő condition in this situation is
∫

e

dist(x,R \ e)−1/2 log

(
dµ

dx

)
dx > −∞ (1.14)

Widom allowed no eigenvalues outside e. Peherstorfer–Yuditskii [51]
had eigenvalues, but only in a later note [52] did they have the natural
(from their paper [50]) condition

∑

j

dist(xj , e)
1/2 <∞ (1.15)

where xj are the point masses of dµ (or eigenvalues of J) outside e.
Thus, Peherstorfer–Yuditskii [52] showed

(1.14) + (1.15) ⇒ (1.12) + (1.13) (1.16)

One of our main results in paper II [16] is to show

(1.12) + (1.15) ⇒ (1.14) + (1.13) (1.17)

Peherstorfer remarked to us that, while this result is new, it can also
be derived from the results of [51].

The key to our analysis is a machinery developed by Sodin–Yuditskii
[67] and exploited by Peherstorfer–Yuditskii [51, 52]. To explain it, we
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note that the key to recent sum rule discussions (summarized in [66])
is to take the m-function given by

m(z) =

∫
dµ(x)

x− z
(1.18)

and in the case e = [−2, 2], move it to D = {z | |z| < 1} via

M(z) = −m(z + z−1) (1.19)

The map
x(z) = z + z−1 (1.20)

is the unique analytic bijection of D to C ∪ {∞} \ [−2, 2] with

x(0) = ∞ lim
z→0
z 6=0

zx(z) > 0 (1.21)

The minus sign in (1.19) comes from the fact that x maps D ∩ C+ to
−C+ (where C+ = {z | Im z > 0}).

In our case, there cannot be an analytic bijection of D to C∪{∞}\ e

since C ∪ {∞} \ e is not simply connected. However, because the
holomorphic universal cover of C ∪ {∞} \ e is D, there is an analytic
map x : D → C ∪ {∞} \ e which is locally one-one and obeys (1.21).
Moreover, there is a group Γ of Möbius transformations of D to D so
that

x(z) = x(w) ⇔ ∃γ ∈ Γ so that z = γ(w) (1.22)

This group is isomorphic to π1(C ∪ {∞} \ e) = Fℓ, the free nonabelian
group on ℓ generators. We mention that x is uniquely determined if
(1.21)–(1.22) hold and x is locally one-one.

Our goal in this paper is to discuss the isospectral torus in terms of
this formalism. It turns out that basic objects for the isospectral torus,
like Bloch waves and Green’s function behavior, are not discussed in
detail anywhere. We will remedy that here. While these results will
not be surprising to experts, they are exceedingly useful both in our
further works [16, 17] and in [11, 27, 36, 64].

We should expand on the point we already remarked upon that there
are two distinct ways of describing the isospectral torus: as a set of
minimal Herglotz functions or as the family of reflectionless Jacobi
matrices with spectrum e. The view as minimal Herglotz functions goes
back to the earliest periodic KdV work [22, 45] (see also [25, 40, 79]),
while the reflectionless definition goes back at least to Sodin–Yuditskii
[67] (see also [56]).

There is an important distinction: reflectionless objects are natural
whole-line (doubly infinite) Jacobi matrices, while minimal Herglotz
functions are associated to half-line objects. Of course, the passage
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from whole-line to half-line objects is by restriction—but the converse is
not so simple. From our point of view, the key is that the J ’s associated
to minimal Herglotz functions are quasiperiodic and such functions
are determined by their values on a half-line (because a quasiperiodic
function vanishing on a half-line is identically zero). Alternatively, if
m(z) is a minimal Herglotz function, the demand that

m0(z) = M(a0, b0, m(z)) (1.23)

where

M(a, b, f(z)) =
1

−z + b− a2f(z)
(1.24)

be a minimal Herglotz function determines a0 and b0, and so induc-
tively, minimality allows a unique continuation from the half-line.

In Section 2, we describe the map x in (1.21)–(1.22) and its natural
extension to a covering (albeit not universal covering) map of the two-
sheeted Riemann surface, S, that the m-function for elements of the
isospectral torus lives on. In Section 3, we describe a critical result of
Beardon [8] on the Poincaré index of Γ. Section 4 reviews the facts
about character automorphic Blaschke products and their connection
to potential theory. We will also present estimates on these products
needed in later papers [16, 17]. In Section 5, we use this machinery
to prove Abel’s theorem. In Section 6, we describe the isospectral
torus as the family of minimal Herglotz functions on S. Sections 7
and 8 will describe the Jost functions of elements of the isospectral
torus and will prove that the natural map from the isospectral torus
to the group of characters of Γ, given by the character of the Jost
function, is an isomorphism of tori. We will also relate Jost functions
to theta functions, one of the more significant results of the present
paper. Section 9 will discuss Jost solutions and the associated Bloch
waves. Finally, Section 10 will apply these solutions to the study of
the Green’s function. Some of the material in Sections 2, 4, and 6 is
in suitable texts but included here because we wish to make this paper
more accessible to approximation theorists who may be unfamiliar with
it.

We also mention the enormous debt this paper owes to the seminal
work of Sodin–Yuditskii [67] and Peherstorfer–Yuditskii [51]. About
the only real advantage of our presentation in this first paper over
ideas implicit in [67, 51] is that we are more explicit and our Jost
functions, unlike the close relatives in [67, 51], are strictly character
automorphic. We emphasize that [67, 51] had as their focus the theory
of certain infinite gap sets for which e is typically a Cantor set of positive
Lebesgue measure. But they include finite gap sets and provide useful
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tools in that special case. Our work makes use of some results special
to this finite gap situation.

We note that while we discuss Jost functions and solutions here for
the isospectral torus, in [16, 17] we will present them for any J in the
Szegő class. For us, they are the key to understanding Szegő asymp-
totics in this finite gap situation.

We want to thank D. Calegari, H. Farkas, F. Gesztesy, I. Kra,
N. Makarov, F. Peherstorfer, and P. Yuditskii for helpful discussions
and comments.

2. The Covering Map and the Fuchsian Group

In this section, we describe the basic objects and setup that we will
use. We emphasize that these constructs are not new here, and more
than anything else, this section sets up notation and gives a pedagogical
introduction. The Riemann surface, S, was introduced for finite gap
KdV in [22, 45] and for finite gap Jacobi matrices in [25, 40, 79]. The
Fuchsian group formalism is from [67].

Let S+ be the set C ∪ {∞} \ e viewed as a Riemann surface. First
of all, we want to view this as one sheet of the Riemann surface of the
function

w = (R(z))1/2 (2.1)

where

R(z) =
ℓ+1∏

j=1

(z − αj)(z − βj) (2.2)

More explicitly, we consider pairs (w, z) in C2 obeying

w2 − R(z) ≡ G(w, z) = 0 (2.3)

Since ∂G
∂z

6= 0 at those 2ℓ + 2 points where ∂G
∂w

= 0, this set is a one-
dimensional complex manifold, aka a Riemann surface.

With two points at infinity added, this set becomes a compact surface
S. One can formally define S by looking in C3\{0} at triples, (w, z, u),
with

w2u2ℓ =

ℓ+1∏

j=1

(z − αju)(z − βju) (2.4)

and regarding (w, z, u) as equivalent to (w′, z′, u′) if there is λ ∈ C\{0},
so w = λw′, z = λz′, u = λu′. Rather than this formal projective space
view, we will think of two points, ∞± ∈ S, obtained by using ζ = 1/z
coordinates on S± and adding the missing point ζ = 0.

There is a natural map π : S → C ∪ {∞} given by (w, z) → z. It
sets up S as a branched cover of C∪{∞}. π is two-one on all points in
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C∪{∞} except {αj, βj}ℓ+1
j=1—these latter points are the branch points.

There is a second natural map τ : S → S that in (w, z) coordinates
takes w → −w. S− will denote the image of S+ under τ . τ(∞+) = ∞−.
S \ (S+ ∪ S−) is thus π−1(e). Each π−1(ej) is topologically a circle.

There is a close connection between S and the potential theory as-
sociated to e. In terms of the equilibrium measure, dρe, consider its
Borel transform,

Me(z) =

∫
dρe(x)

x− z
(2.5)

It is a basic fact (due to Craig [18]; see also [62, 66]) that for suitable
points, xj ∈ (βj, αj+1), we have

Me(z) =
−∏ℓ

j=1(z − xj)
(∏ℓ+1

j=1(z − αj)(z − βj)
)1/2

(2.6)

so Me has a natural analytic continuation from C ∪ {∞} \ e to S.
Topologically, S is the sphere with ℓ handles attached—the canonical

surface of genus ℓ. Its first homology group (see [4, 33, 80] for basic
topological notions we use here) is Z2ℓ. One way of looking at the
generators is picking curves that loop around each π−1(ej) but one
(the sum of all ℓ+ 1 is homologous to zero) and also curves that loop
around each

π−1([βj , αj+1]) ≡ Gj j = 1, . . . , ℓ (2.7)

For a while, we put S aside and focus on S+. S+ is not simply
connected. Its fundamental group is the free nonabelian group on ℓ
generators. We will pick ∞ as the base point. One way of picking
generators is to pick γ̃1, . . . , γ̃ℓ where γ̃j is the curve that starts at ∞,
traverses in C− to 1

2
(βj + αj+1) (in the j-th gap), and returns to ∞ in

C+ (see the lower half of Fig. 2 below).
The universal cover of S+ inherits the local complex structure of S+

and so is a Riemann surface. The deck transformations preserve this
complex structure so there is a discrete group, Γ, of complex automor-
phisms of the universal cover where each γ ∈ Γ has no fixed points.

It is a fundamental result in the theory of Riemann surfaces (the
uniformization theorem; see [24, 31, 47]) that the only simply connected
Riemann surfaces are the Riemann sphere, the complex plane, and the
unit disk, D. The sphere has no fixed point free complex automorphism
and the only discrete groups of automorphisms on C are one- and two-
dimensional lattices, so the only Riemann surfaces with cover C are the
tori and the punctured disk. Since S+ is neither of these, its universal
cover is D.
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Thus, there exists a map x : D → S+, which is locally one-one, and
a group, Γ, of Möbius transformations on D so that (1.22) holds. By
requiring (1.21) (which, by the action of maps on D, we can always
do), we uniquely fix x. There is a lovely proof of the existence of x due
to Radó [54] that follows the standard proof of the Riemann mapping
theorem ([1]); see [66, Sect. 9.5].

Γ is a discrete group of Möbius transformations leaving D setwise
fixed, aka a Fuchsian group. For background on such groups, see [38]
or [66, Ch. 9].

S+ is invariant under complex conjugation, as is D, so x(z̄) is also a
covering map of D over S+. But it obeys (1.21), so by uniqueness,

x(z̄) = x(z) (2.8)

We define the fundamental region, F int ⊂ D, as follows: x−1(C ∪
{∞} \ [α1, βℓ+1]) consists of connected components on which x is a
bijection (this is because C∪ {∞} \ [α1, βℓ+1] is simply connected, and
so contains no closed curve nonhomotopic to the trivial curve in S+).
We let F int be the component containing 0 ∈ x−1({∞}); we will shortly
enlarge F int to a fundamental set, F .

In F int, consider x−1(R ∪ {∞} \ [α1, βℓ+1]). By (2.8), the set is a
subset of D ∩ R. But as y → α1 or βℓ+1, x−1(y) must approach the
boundary of D. It follows that x−1(R∪{∞}\ [α1, βℓ+1]) = (−1, 1) ⊂ D.
The other inverse images of this set are, by (1.22), images of (−1, 1)
under Möbius transformations, so arcs of orthocircles, that is, pieces of
circles orthogonal to ∂D.

In place of (1.21), we could have required x(0) = 1
2
(βj + αj+1) to-

gether with x′(0) > 0 and seen that for this x, one has (−1, 1) in the
inverse image of the gap (βj, αj+1). Since the two x’s are related by
a Möbius transformation, we conclude that under our x (normalized
by (1.21)) the inverse images of gaps are also arcs of orthocircles. The
boundary of F int in D (not D) clearly has 2ℓ pieces corresponding to
the tops and bottoms of the ℓ gaps. Thus, F int is D with 2ℓ orthocircles
(and their interior) removed—ℓ in each half-plane—these are conjugate
to one another. We label the boundary pieces in the upper half-disk
C+

1 , . . . , C
+
ℓ . Figure 1 shows a typical F int for ℓ = 2 with the inverse

image of C− ∩ S+ shaded.

We now define a fundamental set, F , by adding the arcs C+
1 , . . . , C

+
ℓ

to F int. With this definition, every point in D can be uniquely written
as γ(w) for some w ∈ F and some γ ∈ Γ. The fundamental region F int

is indeed the interior of F . As a subset of D, F has C−
1 , . . . , C

−
ℓ added.
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Figure 1. The fundamental region

Here C−
j denotes the complex conjugate of C+

j . Sometimes we want to

consider the closure of F in D, that is, also add the 2ℓ arcs in ∂D at
the ends.

To describe the Fuchsian group, Γ, we begin with the ℓ generators:
the deck transformations that go into the generators, γ̃1, . . . , γ̃ℓ, of the
homotopy group, π1(S+). Figure 2 shows the lift of the curve associated
to γ̃2 in our example. The bottom half of the curve in S+ under x−1

goes from 0 to a point on C+
2 . Since that half of γ̃2 lies in C−, this

piece of curve lies in C+ ∩F . The second half must be the inversion in
the curve C+

2 of the first half, and so it is as shown.

Figure 2. Fuchsian group generators

A little thought shows that the Möbius map that corresponds to γ̃2,
which we will call γ2, is what one gets by composing complex conju-
gation with inversion in C+

2 . Inversion in the circle |z − z0| = r is the
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map

z → z0 +
r2

z̄ − z̄0
(2.9)

Thus,
γj = r+

j c

where c(z) = z̄ and r+
j is inversion in C+

j .

Γ is the free nonabelian group generated by {γj}ℓj=1. Every element
of Γ can be uniquely written as αw(γ) · · ·α2α1 where each αj is either a
γj or a γ−1

j and no αj is an α−1
j−1. w(γ) is the word length of γ. It will

be convenient to define

Γk = {γ | w(γ) = k} (2.10)

We have #Γk = 2ℓ(2ℓ − 1)k−1 since α1 has 2ℓ choices (γ1, . . . , γℓ,
γ−1

1 , . . . , γ−1
ℓ ) and each other αj has 2ℓ − 1 choices. By definition,

Γ0 = {1}.
Alternatively, one can write for γ ∈ Γ2m,

γ = s1 · · · s2m (2.11)

with each sk an r±j (r−j is inversion in C−
j ), and for γ ∈ Γ2m+1,

γ = s1 · · · s2m+1c (2.12)

We point out that F is the Dirichlet fundamental region for Γ, that
is,

F = {z | |γ(z)| ≥ |z| for all γ ∈ Γ} (2.13)

Moreover, C+
j is the perpendicular bisector in the hyperbolic metric of

0 and γj(0) (see, e.g., [66, Sect. 9.3]).
Since γ ∈ Γ has no fixed points in D, it cannot be elliptic, and it is

not hard to see [66] that it is, in fact, hyperbolic.
The fact that F is a fundamental set implies that

D =
⋃

γ∈Γ

γ(F) (2.14)

We will let
Dk =

⋃

w(γ)≤k

γ(F) (2.15)

and
Rk = D \ Dk (2.16)

and finally define ∂Rk ⊂ ∂D as

∂Rk = Rk ∩ ∂D (2.17)

where the closure is taken in D. Thus, Dk is connected, while Rk con-
sists of 2ℓ(2ℓ−1)k disks (intersected with D) with only some boundaries
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included and ∂Rk is 2ℓ(2ℓ− 1)k connected arcs in ∂D. Figure 3 shows
the arcs C±

j and their images under Γ1 and Γ2.

Figure 3. Iterated generators

In Figure 3, the union of the large partial disks is R0, the union of the
medium partial disks, R1, and the union of the tiny partial disks, R2.

Notice the geometry is such that

z ∈ Rk ⇒ z

|z| ∈ ∂Rk (2.18)

which we will need in Section 7 and [16].
We denote by L the set of limit points of Γ. It is a subset of ∂D and

can be defined via several equivalent definitions:
(i) L = ∩kRk

(ii) L = {z ∈ ∂D | γ(z) = z for some γ 6= 1; γ ∈ Γ}
(iii) L = {γ(0) | γ ∈ Γ} ∩ ∂D.

In (ii), each γ ∈ Γ is hyperbolic, so it has two fixed points on ∂D,
each of which is either limn→∞ γn(0) or limn→∞ γ−n(0). This is the
key to proving that (ii) and (iii) are equivalent and that (iii) is the
same if γ(0) is replaced by γ(z0) for any fixed z0 ∈ D. The key to
understanding (i) is that, by definition, Dk contains only finitely many
γ(0), all of which are a finite distance from ∂D. As we will explain
in the next section, L is of one-dimensional Lebesgue measure zero,
indeed, of Hausdorff dimension strictly smaller than one.
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Now, we return to S+ and the two-sheeted Riemann surface S. The
basic fact here is that the map x : D → S+ has an analytic continuation
both to a map of C ∪ {∞} \ L to C ∪ {∞} and to a map

x♯ : C ∪ {∞} \ L → S. (2.19)

By construction, x(z) approaches R as z → ∂D with z ∈ F . So, by the
strong form of the reflection principle, x is continuous and real-valued
up to ∂D∩F and can be meromorphically continued to (∂D∩F)∪F−1.
Utilizing (1.22), we can thus extend x to a map of C ∪ {∞} \ L onto
C ∪ {∞}. x outside D is defined by

x(1/z) = x(z) (2.20)

At points, z0, where x(z0) is real and x(z)−x(z0) has a zero of order
k, there are 2k curves (asymptotically rays) coming out of z0 on which
x(z) is real. On C+ ∩ F , x has negative imaginary part and so, by
reflection, at points, z0, in C+ ∩ ∂D ∩ F—except for the endpoints,
there are two rays near z0 where x is real. It follows that on the set

{
z ∈ C ∪ {∞} \ L | x(z) /∈ {αj, βj}ℓ+1

j=1

}
(2.21)

x′ is nonzero. At points, z0, where x(z0) ∈ {αj, βj}ℓ+1
j=1, images of R

or a C+
j under an element γ ∈ Γ intersect ∂D orthogonally, so four

rays on which x is real come out of z0. Hence, x(z) − x(z0) has a
double zero, that is, x′(z0) = 0 and x′′(z0) 6= 0, and the extended
map x is therefore not a local bijection at such points z0. The same
is true for the canonical projection π : S → C ∪ {∞} so if we think of
x : D → S+ ⊂ S (rather than into a subset of C∪{∞}), we can extend
it to a map x♯ : C ∪ {∞} \ L → S via

x♯(1/z) = τ(x(z)) (2.22)

Then the maps x and x♯ are related via

x = π ◦ x♯ (2.23)

The elements of Γ are rational functions and so maps of C∪{∞} to
itself. It is easy to see that each γ maps L to L (for if γn(0) → z0, then
γ ◦ γn(0) → γ(z0)) and so C ∪ {∞} \ L to itself. Of course, we have

x(γ(z)) = x(z) (2.24)

since γ is analytic and this holds on D. x♯ has a similar relation. Indeed,
since (2.22) holds, we have (1.22) for x♯ on all of S. By the unfolding
discussed above, x♯ is a local bijection on all of C ∪ {∞} \ L, that is,
a covering map, albeit not the universal cover.

A major role will be played by automorphic and character automor-
phic functions. These are functions, f , defined on D (usually analytic
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but occasionally meromorphic and occasionally only harmonic) or on
C ∪ {∞} \ L (always meromorphic) which obey

f(γ(z)) = c(γ)f(z) (2.25)

for all γ and z. Here c 6= 0 and must obey

c(γγ′) = c(γ)c(γ′) (2.26)

If c ≡ 1, f is called automorphic. If |c| = 1 so that c is a unitary group
character, we call f character automorphic. A character is determined
by {c(γj)}ℓj=1 which can be chosen independently so the set of all char-
acters is an ℓ-dimensional torus, Γ∗. This set has a group structure if
cc̃(γ) = c(γ)c̃(γ) is the product and c(γ) = 1 the identity. Moreover,

c−1(γ) = c(γ).
Notice that x is automorphic on D and x♯ is automorphic on

C ∪ {∞} \ L if we extend the notion to include S-valued functions.
Moreover, f is automorphic and analytic (resp. meromorphic) on D

if and only if there is a function, F , on S+ which is analytic (resp.
meromorphic) with

F (x(z)) = f(z) (2.27)

Similarly, (2.27) with x replaced by x♯ sets up a one-one correspon-
dence between meromorphic functions on S and meromorphic auto-
morphic functions on C ∪ {∞} \ L.

In particular, we have that the analog of (1.19),

M(z) = −m(x(z)) (2.28)

is an automorphic function with ImM(z) > 0 for z ∈ F int ∩ C+.
We will require the following result:

Theorem 2.1. Fix ℓ and let Qℓ ⊂ R
2ℓ+2 be the set of

(α1, β1, . . . , αℓ+1, βℓ+1) for which (1.3) holds. Given q ∈ Qℓ, let xq
be the covering map and γj;q the Fuchsian group generators. Then xq
and γj;q are continuous in q on Qℓ.

This is a special case of a theorem of Hejhal [34] who noted that one
can also base a proof using ideas from Ahlfors–Bers [2]. We have found
a proof for the case at hand and given it in [66, Sect. 9.8]. We note
that the Blaschke product, B(z), that we discuss in Section 4 below is
also continuous in q.

We will also need the following well-known fact about functions on
S (see [24, 31] or [66, Thm. 5.12.5]):

Theorem 2.2. Let F be a nonconstant meromorphic function on S.

Then F has a degree, d, so that for all a, {w | F (w) = a} has d
points, counting multiplicity (i.e., d is the sum of the orders of zeros of
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F (w) − a in local coordinates). If F ◦ τ 6≡ F , then the degree of F is

at least ℓ+ 1.

Remark. In particular, if F is analytic on S, it must be constant.

3. Beardon’s Theorem

From our point of view, a theorem of Beardon [8] plays a critical
role. To state the theorem, we need some notions. Fix s > 0 and a
Fuchsian group, Γ. The Poincaré series is given by

∑

γ∈Γ

|γ′(0)|s (3.1)

We are interested in when this series is convergent. It is a basic fact
(see [38, 66]) that if the series in (3.1) converges, then uniformly for z
in compacts of D, the series

∑

γ∈Γ

|γ′(z)|s (3.2)

converges, as does uniformly on compacts of D, the series
∑

γ∈Γ

(1 − |γ(z)|)s (3.3)

Indeed, convergence of (3.2) for one z implies convergence uniformly
on compacts. What is also true (see, e.g., [66, Sect. 9.4]) is that if
K ⊂ D \ L is compact, then there is C > 0 so that for all z ∈ K and
all γ ∈ Γ,

|γ′(z)| ≤ C|γ′(0)| (3.4)

so convergence of (3.1) implies convergence of (3.2) uniformly for z ∈
K. In particular, since D \ L is connected, we see that the series

∑

γ∈Γ

|γ(z) − γ(w)|s (3.5)

converges uniformly for z, w in compacts K ⊂ D \ L.
Poincaré [53] proved that for any Fuchsian group, (3.1) converges if

s = 2, and Burnside [13, 14] proved that if the set of limit points is not
all of ∂D, then (3.1) converges if s = 1. Beardon proved

Theorem 3.1 (Beardon [8]). If Γ is a finitely generated Fuchsian group

whose limit points are not all of ∂D, then there is some s < 1 so that

(3.1) converges.
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As Beardon noted, this is equivalent to the set of limit points having
Hausdorff dimension less than 1. Indeed, it is known (work later than
Beardon, see [49, 70] and also [10, Ch. 14]) that the infimum over s for
which (3.1) converges is the Hausdorff dimension of L. We note that
Beardon’s proof is very involved, in part because of the need to consider
issues such as elliptic and parabolic elements that are irrelevant to our
setup. The result for our case is proven using some simple geometry in
Simon [66].

There is an important consequence of Beardon’s theorem that we
need. Let

R̃ = ∂D \ ∂R0 (3.6)

that is, F ∩ ∂D. This set consists of 2ℓ arcs. For each γ ∈ Γ, γ(R̃) is
also 2ℓ arcs, so

∂Rk = L ∪
[ ⋃

w(γ)>k

γ(R̃)
]

(3.7)

It is not hard to see that on R̃ and its images, each γ±j , but one,
decreases sizes by a fixed amount so that (| · | is total arc length)

|γ(R̃)| ≤ Ce−Dw(γ) (3.8)

for some fixed constants C,D > 0 (proven in [66, Sect. 9.6]).
By (3.4), for some constant Q,

|γ(R̃)| ≤ Q|γ′(0)| (3.9)

Hence,
|γ(R̃)| ≤ |Ce−Dw(γ)|1−s|Q|γ′(0)||s (3.10)

So, by Beardon’s theorem for some s < 1,

|∂Rk| ≤ C1−sQse−D(1−s)k
∑

γ∈Γ

|γ′(0)|s (3.11)

and thus,

Theorem 3.2. For some constants C0, D0 > 0, we have

|∂Rk| ≤ C0e
−D0k (3.12)

4. Blaschke Products and (Potential Theorist’s) Green’s
Function

The initial elements of this section are classical; see, for example,
Tsuji [74]. Given w ∈ D, we define b(z, w) by

b(z, w) =

{
|w|
w

w−z
1−w̄z

w 6= 0

z w = 0
(4.1)
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which is meromorphic in z on C ∪ {∞}, analytic in z on D, and is the
unique bijective map of D → D with

b(w,w) = 0 (4.2)

and

b(0, w) > 0 (w 6= 0); b′(0, w) > 0 (w = 0) (4.3)

Note that b is continuous in z on D and

|b(eiθ, w)| = 1 (4.4)

The following is standard (see Rudin [57]):

Lemma 4.1. Let (wj)
∞
j=1 be a sequence of points in D.

(a) If
∞∑

j=1

(1 − |wj|) = ∞ (4.5)

then as N → ∞,

N∏

j=1

b(z, wj) → 0 (4.6)

uniformly on compact subsets of D.

(b) If
∞∑

j=1

(1 − |wj|) <∞ (4.7)

then as N → ∞,

N∏

j=1

b(z, wj) → B(z, (wj)) (4.8)

uniformly on compact subsets of D, where B is analytic in D and

obeys

B(z, (wj)) = 0 ⇔ z ∈ (wj) (4.9)

Moreover, for Lebesgue a.e. θ,

lim
r↑1

B(reiθ, (wj)) ≡ B(eiθ, (wj)) (4.10)

exists obeying

|B(eiθ, (wj))| = 1 (4.11)
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Remarks. 1. The refined form of (4.9) says that the order of the zero
at some wj is the number of times it occurs in (wj).

2. The proof shows that when (4.7) holds, uniformly for |z| ≤ ρ < 1,
we have

∞∑

j=1

|1 − b(z, wj)| <∞ (4.12)

3. The proof of (4.12) follows from the simple inequality

|1 − b(z, w)| ≤ 1 + |z|
|1 − w̄z| (1 − |w|) (4.13)

which also proves that the product converges on C \
[
D∪ (1/w̄j)

]
and

on any set K ⊂ ∂D with

inf
eiθ∈K,wj

|eiθ − wj | > 0 (4.14)

In particular, if there is any set K ⊂ ∂D for which (4.14) holds, we can
find such an open set and so get a product analytic across K. This
product is meromorphic, with poles at the points 1/w̄j.

We also need the following:

Lemma 4.2. Suppose γ is an analytic bijection of D to D. For any

z, w ∈ D, we have

(i) |b(z, w)| = |b(w, z)| (4.15)

(ii) |b(γ(z), γ(w))| = |b(z, w)| (4.16)

Proof. (i) is immediate. For (4.16), fix w and let

h(z) =
b(γ(z), γ(w))

b(z, w)
(4.17)

It is easy to see that h has a removable singularity at z = w and so, it
is analytic in D and continuous on D. By (4.4), |h(eiθ)| = 1 so, by the
maximum principle, |h(z)| ≤ 1 on D. But 1/h has the same properties
as h, so |1/h(z)| ≤ 1, which implies that |h(z)| = 1, that is, (4.16)
holds. �

The following is true for any Fuchsian group whose limit points are
not dense in ∂D—but we only care here about the Γ’s associated to
finite gap sets:

Theorem 4.3. Let Γ be the Fuchsian group of a finite gap set. For

any w ∈ D, the product
∏

γ∈Γ

b(z, γ(w)) ≡ B(z, w) (4.18)



FINITE GAP JACOBI MATRICES, I 19

converges for all z ∈ C∪{∞}\
[
L∪{γ(w)

−1}γ∈Γ

]
and defines a function

analytic there and meromorphic in C∪{∞}\L. B has simple poles at

the points {γ(w)
−1}γ∈Γ, simple zeros at {γ(w)}γ∈Γ, and no other zeros

or poles. Moreover,

(i) For z, w ∈ D,

|B(z, w)| = |B(w, z)| (4.19)

(ii) Each B( · , w) is character automorphic, that is, for every w ∈ D

there is a character, cw, on Γ so that

B(γ(z), w) = cw(γ)B(z, w) (4.20)

(iii) If

B(z) ≡ B(z, 0) (4.21)

then for z ∈ C ∪ {∞} \
[
L ∪ {γ(0)

−1}γ∈Γ

]
,

|B(z)| =
∏

γ∈Γ

|γ(z)| (4.22)

(iv) For eiθ ∈ ∂D \ L (with ′ = ∂/∂θ),

|B′(eiθ)| =
∑

γ∈Γ

|γ′(eiθ)| (4.23)

Remarks. 1. We will see below (Theorem 4.4) that c0(γ) is not the
identity.

2. When z ∈ {γ(0)
−1}γ∈Γ, both sides of (4.22) are infinite.

Proof. By Theorem 3.1 (or Burnside’s theorem), for any w ∈ D,
∑

γ∈Γ

|1 − γ(w)| <∞ (4.24)

So, by Lemma 4.1 and (4.13), the product converges where claimed
and has the claimed analytic/zero/pole properties.

(i) is immediate from (4.15)–(4.16). By the proof of (4.16), there
exists η(w, γ) ∈ ∂D so that

b(γ(z), γ(w)) = η(w, γ)b(z, w) (4.25)

Thus, for any finite subset, G ⊂ Γ,
∏

γ′∈G

b(γ(z), γ′(w)) =
∏

γ′∈G

b(γ(z), γ(γ−1γ′(w)))

=
∏

γ′∈G

η(γ−1γ′(w), γ)
∏

γ′′∈γ−1(G)

b(z, γ′′(w)) (4.26)
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If Gn ⊂ Gn+1 with ∪nGn = Γ and γ is fixed, γ−1(Gn) ⊂ γ−1(Gn+1)
and ∪nγ−1(Gn) = Γ, so the left side of (4.26) and the last factor on
the right converge to B(γ(z), w) and B(z, w), respectively. Thus, the
product of η’s converges to some cw(γ) ∈ ∂D, that is, (4.20) holds.
From (4.20), it is easy to see that cw(γγ′) = cw(γ)cw(γ′). That proves
(ii).

To get (4.22), suppose first z ∈ D. Then by (4.19),

|B(z)| = |B(z, 0)| = |B(0, z)| =

∣∣∣∣
∏

γ∈Γ

γ(z)

∣∣∣∣

proving (4.22) for z ∈ D.
Since for z ∈ D,

B(1/z̄) = B(z)−1 γ(1/z̄) = γ(z)−1 (4.27)

(on account of |B(eiθ)| = |γ(eiθ)| = 1 and the reflection principle), we

get (4.22) on C ∪ {∞} \
[
D ∪ {γ(0)

−1}γ∈Γ

]
. Finally, on ∂D \ L, both

sides of (4.22) are 1. This completes (iii).
To prove (iv), we note that if g is an analytic function on D with

|g(z)| < 1 on D and I ⊂ ∂D is an open interval so that g has an analytic
continuation across I with |g(eiθ)| = 1 on I, then

∂

∂θ
|g(eiθ)| = 0 (4.28)

so, by Cauchy–Riemann equations,

∂

∂r
arg(g(reiθ))

∣∣∣∣
r=1

= 0 (4.29)

and
∂

∂θ
arg(g(eiθ)) =

∂

∂r
|g(reiθ)|

∣∣∣∣
r=1

> 0 (4.30)

Hence, with ′ = ∂
∂θ

,

|g′(eiθ)| =
∂

∂r
|g(reiθ)|

∣∣∣∣
r=1

=

∣∣∣∣
dg

dz
(eiθ)

∣∣∣∣ (4.31)

and

g′(eiθ) = i|g′(eiθ)|g(eiθ) (4.32)

In (4.30), we have strict positivity by the same argument that shows
boundary values of Herglotz functions are strictly monotone.

Let G be a finite subset of Γ and

BG(z) =
∏

γ∈G

b(z, γ(0)) (4.33)
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Then
∂

∂r
|BG(z)|

∣∣∣∣
z=eiθ

=
∑

γ∈G

∂

∂r
|b(z, γ(0))|

∣∣∣∣
z=eiθ

(4.34)

by Leibnitz’s rule and |b(eiθ, γ(0))| = 1. If z0 ∈ ∂D \ L, BG(z) →
B(z) for z in a neighborhood of z0, so derivatives converge. Since
∂
∂r
|BG(z)| = | d

dz
BG(z)|, the ∂

∂r
derivatives converge. The terms in the

sum are positive, so the sum over all of Γ is absolutely convergent
and (4.34) extends to the limit. By (4.30)–(4.31) and the fact that
|b(z, γ(0))| = |γ(z)|, we get (4.23). �

We emphasize for later use that (4.30)–(4.31) imply

∂

∂θ
arg(γ(eiθ)) = |γ′(eiθ)| > 0 (4.35)

Recall that the (real-valued) potential theoretic Green’s function, Ge,
is uniquely determined by requiring Ge(z) − log|z| to be harmonic on
C ∪ {∞} \ e, and for quasi-every x ∈ e,

lim
z→x
z /∈e

Ge(z) = 0. (4.36)

In fact, when e has the form (1.1)–(1.3), Ge can be chosen globally
continuous on C with

Ge ↾ e = 0 (4.37)

Moreover, near infinity,

Ge(z) = log|z| − log(cap(e)) +O(z−1) (4.38)

and, by the reflection principle, Ge(z) is real analytic in x and |y| near
any z0 ∈ eint. For x ∈ eint, we have

ρe(x) = lim
ε↓0

1

π

∂Ge

∂y
(x+ iε) (4.39)

which we will write as
1

π

∂

∂n
Ge(x+ i0) (4.40)

the normal derivative in the positive direction.

Theorem 4.4. Let Γ be the Fuchsian group of a finite gap set, e. Then

for all z ∈ D \ {0},
|B(z)| = e−Ge(x(z)) (4.41)

Moreover,
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(i) If x∞ is given by

x(z) =
x∞
z

+O(1) (4.42)

near z = 0, then, also near z = 0,

B(z) =
cap(e)

x∞
z +O(z2) (4.43)

(ii) The character, c0, of B(z) is given by

c0(γj) = exp(2πiρe([α1, βj])) (4.44)

(iii) At any x0 ∈ {αj , βj}ℓ+1
j=1, Ge has a square root zero in the sense

that

lim
x↑αj

Ge(x)(αj − x)−1/2 = aj (4.45)

lim
x↓βj

Ge(x)(x− βj)
−1/2 = bj (4.46)

for nonzero aj , bj.

Proof. By (4.20), |B(z)| is automorphic, so there exists a function h on
C ∪ {∞} \ e such that

|B(z)| = h(x(z)) (4.47)

Since x is analytic and xB is nonvanishing and analytic in a neigh-
borhood of F , log(h(x)) + log |x| is harmonic on C ∪ {∞} \ e. By
|B(z)| = 1 on F ∩ ∂D, log(h(x)) → 0 as x → e. Thus, − log(h(x)) is
Ge(x), proving (4.41).

(4.43) is immediate from (4.42) and (4.38). (4.45) and (4.46) follow
from (4.41), B′(z) 6= 0 on F∩∂D, and the fact that on x−1({αj , βj}ℓ+1

j=1),
we have x′(z) = 0, x′′(z) 6= 0. That leaves (4.44).

Consider the generator, γℓ, whose action takes 0 into the endpoint
of the curve in the top of Figure 2. Since

B(γℓ(0)) = c0(γℓ)B(0) (4.48)

we see that

arg(c0(γℓ)) =

∫ γℓ(0)

0

	
d

dz
arg(B(z)) dz (4.49)

Ge(z) is harmonic on C \ e so that, locally, it is the real part of an

analytic function, G̃e(z), but that function has a multivalued imaginary

part. Thus, e−G̃e(z) ≡ E(z) has a multivalued argument. Clearly,

B(z) = E(x(z)) (4.50)

and the change of argument in (4.49) is given by the change of argument
of E(z) over the curve in the bottom of Figure 2. This is given by
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a sum of change of argument around curves surrounding each band,
since in the gaps and in (−∞, α1), there is cancellation between top
and bottom.

By a Cauchy–Riemann equation,

∂

∂x
arg(E(z)) = − ∂

∂y
log|E(z)| =

∂Ge

∂n

The normal derivatives on top and bottom of a band have opposite
sign, so given the opposite directions,

arg(c0(γℓ)) =

ℓ∑

j=1

∫ βj

αj

2
∂Ge(x+ i0)

∂n
dx (4.51)

= 2π

ℓ∑

j=1

∫ βj

αj

ρe(x) dx = 2πρe([α1, βℓ]) (4.52)

which is (4.44) for j = ℓ. (4.52) follows from (4.39). The argument for
general j = 1, . . . , ℓ− 1 is similar. �

Corollary 4.5. B(z)p is automorphic if and only if

ρe([αj, βj ]) =
qj
p

(4.53)

for integers qj.

Remark. We will eventually see (Corollary 6.4) that this relates peri-
odic e to periodic Jacobi matrices.

Proof. B(z)p is automorphic if and only if c0(γj)
p = 1 for j = 1, 2, . . . , ℓ

and this, given (4.44), is equivalent to (4.53). �

Corollary 4.6. Let e be a finite gap set and dρe its equilibrium measure.

Then ∫

∂D

f(x(eiθ))
dθ

2π
=

∫

e

f(x) dρe(x) (4.54)

for all continuous f on e and, if integrals are allowed to be infinite,

for any positive measurable f on e. In particular, f ∈ Lp(e, dρe) if and

only if f ◦ x ∈ Lp(∂D, dθ
2π

) so the Szegő conditions,
∫

∂D

log(f(x(eiθ)))
dθ

2π
> −∞ (4.55)

and ∫

e

log(f(x)) dρe(x) > −∞ (4.56)

are equivalent for f ∈ L1(e, dρe).
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Proof. It suffices to prove (4.54) for continuous functions, f , and then

use standard approximation arguments. Recall that R̃ is given by
(3.6) and consists of 2ℓ arcs. Except for endpoints, it is a fundamental
domain for the action of Γ on ∂D, so

∫

∂D

f(x(eiθ))
dθ

2π
=

∑

γ∈Γ

∫

γ(R̃)

f(x(eiθ))
dθ

2π
(4.57)

=
∑

γ∈Γ

∫

R̃

f(x(eiθ))|γ′(eiθ)| dθ
2π

(4.58)

by a change of variables and the invariance of x under Γ, that is,
x ◦ γ = x. Thus, by (4.23),

∫

∂D

f(x(eiθ))
dθ

2π
=

∫

R̃

f(x(eiθ))|B′(eiθ)| dθ
2π

(4.59)

=

∫

R̃

f(x(eiθ))

∣∣∣∣
∂

∂n
e−Ge(x(eiθ))

∣∣∣∣
dx(eiθ)

dθ

dθ

2π
(4.60)

where we use (4.41), |B′(eiθ)| = d
dr
|B(reiθ)|

∣∣
r=1

, and the chain rule to

go from dθ to dx derivatives. x on R̃ is a two-fold cover of e, so using
∂
∂n
e−Ge(x) = − ∂

∂n
Ge (since Ge is 0 on e) and (4.39)–(4.40), we get

∫

∂D

f(x(eiθ))
dθ

2π
= 2

∫

e

πρe(x)f(x)
dx

2π
=

∫

e

f(x) dρe(x) (4.61)

�

That concludes what we need about Blaschke products in this paper,
but we put in some results on products of Blaschke products which will
be critical in later papers in this series.

Theorem 4.7. Let (wk)
∞
k=1 be a sequence in F . Then

∞∑

k=1

(1 − |wk|) <∞ ⇔
∞∑

k=1

(1 − |B(wk)|) <∞ (4.62)

Moreover,

(i) If
∑∞

k=1(1 − |wk|) = ∞, then
∏N

k=1B(z, wk) converges to 0 uni-

formly on compact subsets of D.

(ii) If
∞∑

k=1

(1 − |wk|) <∞ (4.63)
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then for all z ∈ D,

∞∑

k=1

|1 − B(z, wk)| <∞ (4.64)

uniformly on compact subsets of D, so
∏N

k=1B(z, wk) converges to

an analytic limit vanishing if and only if z ∈ {γ(wk)}γ∈Γ, k=1,....

Remarks. 1. If {γk} is a countable set of distinct elements in Γ and
wk = γk(0), then

∑∞
k=1(1 − |wk|) < ∞ (by Burnside or Beardon), but

|B(z, γk(0))| = |B(z)| and
∏N

k=1B(z, wk) converges to 0 uniformly on
compact subsets of D. Thus, the condition wk ∈ F cannot be replaced
by wk ∈ D in (ii).

2. As in the case of Theorem 4.3, we can prove convergence on

open subsets of C ∪ {∞} \
[
L ∪ {γ(wk)

−1}γ∈Γ, k=1,...

]
with poles at

{γ(wk)
−1}γ∈Γ, k=1,....

Proof. B is analytic in a neighborhood of F ∩ D, as noted in (4.30),
|B′(eiθ)| 6= 0, and, of course, |B(eiθ)| = 1. Thus, for nonzero constants,
c, d, and for all w ∈ F ,

c(1 − |B(w)|) ≤ 1 − |w| ≤ d(1 − |B(w)|) (4.65)

from which (4.62) is immediate. (Notice that (4.65) only holds on F ,
not on D, and is where the condition wk ∈ F is used.)

To prove (i), we need only note that

|B(z, wk)| ≤ |b(z, wk)| (4.66)

and use Lemma 4.1(a).
To prove (ii), we note that

∏∞
k=1B(z, wk) is a product of Blaschke

products, so to prove (4.64), it suffices to prove that
∑

γ∈Γ,k

(1 − |γ(wk)|) <∞ (4.67)

Since
∑

γ∈Γ(1 − |γ(0)|) < ∞ and zero occurs at most finitely often in

the sequence (wk)
∞
k=1 if (4.63) holds, we can suppose that no wk is zero,

in which case, since wk ∈ F implies (by (2.13))

|wk| = inf
γ∈Γ

|γ(wk)| (4.68)

we have

inf
γ∈Γ,k

|γ(wk)| > 0 (4.69)
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This implies that (4.67) is equivalent to
∏

γ∈Γ,k

|γ(wk)| > 0 (4.70)

which, by (4.22), is equivalent to
∏

k

|B(wk)| > 0 (4.71)

Now, (4.71) is implied by
∑

k

(1 − |B(wk)|) <∞ (4.72)

As we have seen, (4.63) implies (4.72), and thus (4.67). �

We are especially interested in the case where wk is determined by
wk ∈ F and x(wk) real (so wk ∈ [∪ℓj=1C

+
ℓ ] ∪ (−1, 1)). In that case,

Proposition 4.8. Let (xk)
∞
k=1 be a sequence in R \ e and let wk ∈ F

be uniquely determined by

x(wk) = xk (4.73)

Then the following are equivalent:

(i)

∞∑

k=1

(1 − |wk|) <∞ (4.74)

(ii)

∞∑

k=1

Ge(xk) <∞ (4.75)

(iii)

∞∑

k=1

dist(xk, e)
1/2 <∞ (4.76)

Proof. By (4.45)–(4.46), we have (ii) ⇔ (iii). By (4.62), we have that
(i) is equivalent to

∞∑

k=1

(1 − |B(wk)|) <∞ (4.77)

which, by (4.41) and (4.73), is equivalent to
∞∑

k=1

|1 − e−Ge(xk)| <∞ (4.78)

In turn, (4.78) is easily seen to be equivalent to (4.75). �

Finally, we need to discuss alternating Blaschke products. We will
discuss a case with points approaching the top of a gap (or α1). A
similar result holds for approach to a βj .
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Theorem 4.9. Suppose (ζk)
∞
k=1, (ρk)

∞
k=1 obey, for some j,

βj−1 < ζ1 < ρ1 < ζ2 < ρ2 < · · · < αj (4.79)

(where β0 ≡ −∞) and

lim
k→∞

ζk = αj (4.80)

Let {zk} ∪ {pk} ⊂ F and aj ∈ F be given by

x(zk) = ζk x(pk) = ρk x(aj) = αj

Then as N → ∞,
N∏

k=1

B(z, zk)

B(z, pk)
→ B∞(z) (4.81)

uniformly in z on compact subsets of

C ∪ {∞} \ [L ∪ {γ(pk), γ(z−1
k )}γ∈Γ, k=1,... ∪ {γ(aj)}γ∈Γ] (4.82)

to a function which is analytic on the set in (4.82) with simple poles

at points in {γ(pk), γ(z−1
k )}γ∈Γ, k=1,... and with simple zeros only at the

points {γ(p−1
k ), γ(zk)}γ∈Γ, k=1,....

Moreover,

z ∈ ∂D \ [L ∪ {γ(aj)}γ∈Γ] ⇒ |B∞(z)| = 1 (4.83)

and for some constant C (e-dependent),

z ∈ F ⇒ |arg(B∞(z))| ≤ C (4.84)

if arg(B∞) is determined by requiring one value of arg(B∞(0)) to be

zero.

In addition, if we remove the arc of C+
j−1 (or segment of [−1, 0) if

j = 1) that runs from z1 to aj and all its images under γ ∈ Γ, we get

a region, B, free of zeros and poles of B∞, on which

z ∈ B \ Rn ⇒ |arg(B∞(z))| ≤ (2n+ 1)C (4.85)

Remarks. 1. If zk ∈ C+
j for some j, then γ−1

j (zk) = z̄k, so

{γ(z−1
k )}γ∈Γ = {γ(z̄−1

k )}γ∈Γ, which is why we do not need to put com-
plex conjugates in (4.82).

2. The analog of this result for e = [−2, 2] is from Simon [58].

Sketch (see [66] for details). One first shows that if ζ, ω run through
a compact set, Q, in a single C+

j (including the endpoints) or [−1, 0)
or (0, 1] and z through a compact subset, K, of C \ L ∪ [{γ(Q)}γ∈Γ ∪
{γ(Q−1)}γ∈Γ], then there is C <∞ so that for all γ ∈ Γ, ζ, ω ∈ Q and
z ∈ K,

|b(z, γ(ζ)) − b(z, γ(ω))| ≤ C|γ(ζ) − γ(ω)| (4.86)
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This comes from looking at the three parts of

b(z, w) =
|w|
w

w − z

1 − w̄z
(4.87)

From this and telescoping, one gets

|B(z, ζ) −B(z, ω)| ≤ C
∑

γ∈Γ

|γ(ζ)− γ(ω)| ≤ C1|ζ − ω| (4.88)

Since
inf
z∈K
w∈Q

|B(z, w)| > 0 (4.89)

(4.88) implies that
∣∣∣∣1 −

B(z, ζ)

B(z, ω)

∣∣∣∣ ≤ C2|ζ − ω| (4.90)

which leads to the convergence of (4.81) if we note that
∞∑

k=1

|zk − pk| <∞ (4.91)

since the sum is bounded by the arclength of C+
j (or by 1 if αj = α1).

This easily leads to all the statements except those about arg(B∞).
For any smooth function, f , on a circle C = {z | z = z0 + reiθ},

define

VarC(f) =

∫ 2π

0

∣∣∣∣
d

dθ
f(z)

∣∣∣∣ dθ (4.92)

For w outside C, let
fw(z) = arg(w − z) (4.93)

Then this arg is increasing on one arc between the tangents to C from
w and decreasing on the other, so

VarC(fw) = 2 × angle between tangents (4.94)

This shows that
VarC(fw) ≤ 2π (4.95)

and

VarC(fw) ≤ 4 radius(C)

dist(w,C)
(4.96)

Since arg(B(z, w)) is built out of such arg(z − γ(w)) and arg(z −
γ(w)

−1
), and the radii of the circles containing γ(C+

j ) decrease so fast
that, by Beardon’s theorem,

∑

γ∈Γ

radius(γ(C+
j )) <∞ (4.97)
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we find, uniformly for z ∈ F , that

VarC+

j
(arg(B(z, · ))) ≤ C0 (4.98)

for some finite constant C0.
Consider arg(B∞(z; {zk}, {pk})) as pk is changed from zk to its final

value. At pk ≡ zk, this arg is 0 and the total change is bounded by the
variation of arg(B(z, w)) as w varies over C+

j−1. We conclude that on
F ,

|arg(B∞(z))| ≤ C0 (4.99)

proving (4.84). Since B∞ is character automorphic, the variation of
arg(B∞(z)) over any γ(F) is at most 2C0, from which (4.85) is imme-
diate.

5. Theta Functions and Abel’s Theorem

Given a general compact Riemann surface, S, of genus ℓ, one can con-
struct a natural map, A, called the Abel map from S to a 2ℓ-dimensional
real torus, called the Jacobi variety, realized as Cℓ/L where L is a 2ℓ-
dimensional lattice. Once a base point in S is fixed, the group structure
comes into play. The theory of meromorphic functions—essentially,
which finite subsets of S can occur as zeros and poles—is described
using A via a result called Abel’s theorem.

As we will see in the next section, certain m-functions of Jacobi
matrices with σess(J) = e define meromorphic functions on the Rie-
mann surface, S, constructed in Section 2. Their zeros and poles lie
only at ∞+, ∞−, or in the sets Gj of (2.7). A takes ∪jGj into an
ℓ-dimensional torus inside the 2ℓ-dimensional Jacobi variety (the real
part of the Jacobi variety), which is also a subgroup with a suitable
choice of base point. The traditional construction of the isospectral
torus ([22, 25, 40, 45, 79]) uses this general theory of the Abel map and
Abel’s theorem.

Here, following Sodin–Yuditskii [67], we restrict ourselves to mero-
morphic functions with poles and zeros only at ∞+, ∞−, and in ∪jGj.
In that case everything can be made explicit in a way that the real
part of the Jacobi variety becomes just the ℓ-dimensional torus, Γ∗, of
characters for the Fuchsian group, Γ. The key is the definition of some
natural functions on C ∪ {∞} \ L parametrized by points in ∪ℓj=1C̃

+
j

(defined below). Our construction is motivated by the one in [67] but
is more explicit.
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We will need to use a fundamental set of the action of Γ on C ∪
{∞} \ L,

F̃ = (F ∪ F−1
) \

ℓ⋃

j=1

C̃−
j (5.1)

where closure is taken in C, and C̃±
j are the complete orthocircles (ob-

tained by adding the two missing points on ∂D to C±
j ∪ (C∓

j )−1, re-

spectively); see Figure 4 below. F̃ int will denote its interior; this is a
fundamental region. F̃ is then F̃ int with ∪ℓj=1C̃

+
j added.

Figure 4. Complete orthocircles

x♯ maps C̃+
j onto Gj bijectively. We will use ζ1, . . . , ζℓ for the unique

points on C̃+
1 , . . . , C̃

+
ℓ that map to β1, . . . , βℓ, that is,

ζj ∈ C̃+
j ∩ ∂D x♯(ζj) = βj (5.2)

We need the following lemma:

Lemma 5.1. Let f be a character automorphic meromorphic function

on C ∪ {∞} \ L. Suppose

(i) f has no zeros or poles in F̃ int (so in F̃ , the only zeros and poles

are on ∪ℓj=1C̃
+
j ).

(ii) Every zero or pole of f has even order.
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(iii) If Dj is a counterclockwise contour that is just outside C̃+
j (say, a

circle with the same center but a slightly larger radius), then

1

2πi

∫

Dj

	
f ′(z)

f(z)
dz = 0 (5.3)

(iv)
f(0) > 0 (5.4)

Then there is a (unique) character automorphic function, g, which we

will denote as
√
f , with

g(0) > 0 (5.5)

and so that for all z ∈ C ∪ {∞} \ L,

g(z)2 = f(z) (5.6)

Proof. By (5.3), we can define a single-valued function h(z) on F̃ int by

h(z) = log(f(0)) +

∫ z

0

	
f ′(w)

f(w)
dw (5.7)

with any contour in F̃ int used. Then

g(z) = exp(1
2
h(z)) (5.8)

obeys (5.5)–(5.6) and is defined and analytic on F̃ int.
Since all poles and zeros on C̃+

j are of even order, g(z) can be mero-

morphically continued to a neighborhood, N , of the closure of F̃ . Then
for each j, Sj ≡ {z ∈ F̃ int | γj(z) ∈ N} is open and nonempty, and by
decreasing N , one can suppose each Sj is connected.

If z ∈ Sj , we have g(γj(z))
2 = cf (γj)g(z)

2. Hence, by continuity and
connectedness, there is a single square root, cg(γj), so that

z ∈ Sj ⇒ g(γj(z)) = cg(γj)g(z) (5.9)

We can use this to extend g to ∪jγj(F̃) and also to ∪jγ−1
j (F̃), and so

(5.9) holds for all z with z and γj(z) in the domain of current definition.
In this way, one gets a character automorphic continuation of g to
C ∪ {∞} \ L. �

Lemma 5.2. Let ζ ∈ C̃+
j for some j. Then

f(z) =
x(z) − x(ζ)

x(z) − x(ζj)
η(z)η(0)−1 (5.10)

where

η(z) =





B(z, ζ) if ζ ∈ D

1 if ζ ∈ ∂D

B(z, ζ̄−1)−1 if ζ ∈ C \ D

(5.11)
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obeys properties (i)–(iv) of Lemma 5.1. If ζ 6= ζj, f has double zeros

at {γ(ζ)}γ∈Γ, double poles at {γ(ζj)}γ∈Γ, and is otherwise finite and

nonvanishing.

Remarks. 1. If ζ = ζj, f ≡ 1.

2. When z ∈ {γ(0)}γ∈Γ, x(z) = ∞ and the first factor in (5.10) is
interpreted as 1. Thus, because of η(0)−1, we have f(0) = 1.

Proof. (i) and (iv) are obvious. Moreover, if ζ 6= ζj then f(z)/η(z)
has double poles at {γ(ζj)}γ∈Γ (since x′(z) = 0, x′′(z) 6= 0 at such

points), double zeros at {γ(ζ)}γ∈Γ if ζ is the other point on C̃+
j in ∂D

(i.e., if x♯(ζ) = αj+1), and simple zeros at {γ(ζ)}γ∈Γ ∪ {γ(ζ̄−1)}γ∈Γ if
ζ /∈ ∂D (since x′(z) 6= 0 at such points and x(ζ) is real). Thus, there
are precisely the claimed zeros/poles for f since η cancels the zeros at
{γ(ζ̄−1)}γ∈Γ and doubles the zeros at {γ(ζ)}γ∈Γ. This proves (ii).

To prove (iii), we need only check (5.3) if f is replaced by η or by
f/η. f/η is real on ∂D, so if q is the composition of this function and
a conformal map of C taking R to ∂D, q is real on the set of points in
its domain which lie on R. So

1

2πi

∫

D̃

	 q(z) dz = 0 (5.12)

for any conjugate symmetric curve, and so by contour deformation, for
Dj and (f/η)′/(f/η).

For η, we note that if f in (5.3) is replaced by a finite prod-
uct

∏
γ∈G b(z, γ(ζ)), the integral is zero since the finite product is

meromorphic inside Dj with an equal number of (simple) zeros and
(simple) poles. By taking limits, (5.3) holds for B(z, ζ), and by
(1/g)′/(1/g) = −g′/g for B(z, ζ̄−1)−1. Thus, (5.3) holds for f . �

Definition. Let y ∈ Gj for some j and let ζ be the unique point in

C̃+
j with

x♯(ζ) = y (5.13)

We define Θ( · ; y) to be the character automorphic function

Θ(z; y) =

[
x(z) − x(ζ)

x(z) − x(ζj)
η(z)η(0)−1

]1/2

(5.14)

and denote by A(y) ∈ Γ∗ its character. Moreover, we define A(∞) to
be the character of B(z).

By the lemma, Θ( · ; y) is indeed a character automorphic function
on C ∪ {∞} \ L with simple zeros at {γ(ζ)}γ∈Γ and simple poles at
{γ(ζj)}γ∈Γ (and otherwise nonvanishing and finite). By definition,

Θ(0; y) = 1 (5.15)
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We also define

Ã : G → Γ∗ (5.16)

by

Ã(y1, . . . , yℓ) = A(y1) · · ·A(yℓ) (5.17)

using the product in Γ∗. Here

G = G1 × · · · ×Gℓ. (5.18)

Theorem 5.3. The map Ã of (5.16)–(5.17) is a real analytic homeo-

morphism of ℓ-dimensional tori.

Remark. By real analytic functions, we do not mean real-valued but
functions of real parameters which are given locally by convergent series
of those parameters—they are, of course, C∞.

Proof. By construction, Θ(z; y), as a map of D×∪ℓj=1Gj to C, is jointly
real analytic. Since

A(y)(γ) =
Θ(γ(0); y)

Θ(0; y)
= Θ(γ(0); y) (5.19)

A and so Ã are real analytic maps.
Suppose ~y = (y1, . . . , yℓ) and ~w = (w1, . . . , wℓ) lie in G and Ã(~y) =

Ã(~w). Then

f(z) =

ℓ∏

j=1

Θ(z; yj)

Θ(z;wj)
(5.20)

is automorphic since the characters cancel. Hence, there is a unique
meromorphic function F on S so that

f(z) = F (x♯(z)) (5.21)

Let m be the number of j’s with yj 6= wj . F has exactly m poles
and m zeros, all simple (the poles/zeros where yj = wj cancel), and so
has degree m ≤ ℓ. If m 6= 0, F ◦ τ 6≡ F since there is a gap with a
single simple zero (and if F ◦ τ = F , F has either two zeros or a double
zero at a branch point). Thus, if m 6= 0, we get a contradiction to

Theorem 2.2. It follows that m = 0, that is, ~y = ~w and Ã is one-one.
Any smooth one-one map between two smooth, orientable compact

manifolds of the same dimension has degree ±1, and so is also surjective
(see [26, 32, 39, 43, 46, 68] for expositions of degree theory). �

We saw above that Theorem 2.2 is the key to the proof of Theo-
rem 5.3. It is also very powerful in connection with Theorem 5.3 as the
following theorems show:
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Theorem 5.4. Let f be a character automorphic function on C∪{∞}\
L with no zeros or poles. Then f is constant.

Proof. Let cf ∈ Γ∗ be the character of f . By Theorem 5.3, find ~y ∈ G

with Ã(~y) = cf . Let

h(z) =
f(z)

∏ℓ
j=1 Θ(z; yj)

(5.22)

Then h is automorphic, so there is H meromorphic on S with

h(z) = H(x♯(z)) (5.23)

H has degree m where m = #{j | yj 6= βj}. By Theorem 2.2, m = 0,

that is, ~y = (β1, . . . , βℓ) so Ã(~y) = 1 and f is automorphic. But then

f(z) = F (x♯(z)) (5.24)

with F analytic on S, and therefore f is constant. �

Corollary 5.5. Let ζ ∈ C̃+
j and suppose h is a character automorphic

meromorphic function with zeros only at {γ(ζ)}γ∈Γ and poles only at

{γ(ζj)}γ∈Γ, all simple. If h(0) = 1, then

h(z) = Θ(z;x♯(ζ)) (5.25)

Moreover,

Θ(z̄; y) = Θ(z; y) (5.26)

and, in particular, Θ( · ; y) is real and strictly positive on R.

Remark. Thus, Θ and so A are unique.

Proof. Apply Theorem 5.4 to h(z)/Θ(z;x♯(ζ)). This gives (5.25). To
get (5.26), use (2.8) and the fact that for ζ ∈ C̃+

j

B(z, ζ) =
∏

γ∈Γ

b(z, γ(ζ)) =
∏

γ∈Γ

b(z, γ(ζ)) =
∏

γ∈Γ

b(z, γ(ζ)) = B(z, ζ)

�

Definition. By a divisor, we mean a finite subset ∆ ⊂ ∪ℓj=1Gj and the
assignment of a nonzero integer nx to each x ∈ ∆ plus an assignment
of an integer n+ to ∞+ and

n− = −n+ (5.27)

to ∞−. We write the divisor formally as

n+δ∞+
+ n−δ∞−

+
∑

x∈∆

nxδx (5.28)
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Definition. By a special meromorphic function, we mean a meromor-
phic function on S so that
(i) All zeros and poles lie in [∪ℓj=1Gj] ∪ {∞±}.
(ii) If n± are the orders of the zeros and poles at ∞± (n± > 0 means a

zero of order n±, n± < 0 means a pole of order −n±), then (5.27)
holds.

Definition. The divisor, δ(F ), of a special meromorphic function F is
given by (5.28) where ∆ is the set of zeros and poles of F , and nx is
the order of the zero/pole at x.

Notice that we have chosen a base point ζj that depends on which
Gj the point y lies in. For our later applications, where for each j,

∑

x∈Gj

nx = 0 (5.29)

that is very convenient. But when (5.29) does not hold, we will need a
factor to move the base point to a fixed point, say ζ1. So we define

Ψj(z) =

√
x(z) − x(ζj)

x(z) − x(ζ1)
(5.30)

where we can take special roots by Lemma 5.1, verifying (5.3) as we
did for (x(z) − x(ζ))/(x(z) − x(ζj)).

We also need to define Aj to be the character of the character auto-
morphic function Ψj. For x ∈ Gj, we let

A
♯(x) = AjA(x) (5.31)

Theorem 5.6 (Abel’s theorem for special meromorphic functions). A

divisor is the divisor of a special meromorphic function F if and only

if

(a)
∑

x∈∆

nx = 0 (5.32)

(b) A(∞)n+

∏

x∈∆

A
♯(x)nx = 1 (5.33)

the identity element of Γ∗.

Remarks. 1. The proof provides an explicit formula for F , namely,

F (x♯(z)) = B(z)n+

ℓ∏

j=1

∏

x∈∆∩Gj

Θ(z; x)nxΨj(z)
nx (5.34)

2. Notice that if (5.29) holds, we can drop the Ψj factors from (5.34)
and change A

♯ to A in (5.33).
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Proof. (5.32) is an expression of the constancy of degree, that is, that
the number of zeros of F is equal, counting multiplicities, to the number
of poles. So really we need to prove, assuming (5.32), that a divisor is
a δ(F ) if and only if (5.33) holds.

If the divisor obeys (5.33), then the right side of (5.34) is automor-
phic, so (5.34) holds for some meromorphic F with the proper zeros
and poles. Hence, the divisor is a δ(F ). Because of the Ψj factors, the
poles of Θ(z; x) at ζj are all moved to ζ1 and the poles at ζ1 cancel each
other by (5.32).

On the other hand, if F is a special meromorphic function and δ(F )
is its divisor, then letting f(z) be the right side of (5.34),

F (x♯(z))

f(z)
≡ h(z) (5.35)

is character automorphic with no zeros and poles (again, the poles
and zeros at ζj cancel because of the Ψj ’s and at ζ1 by (5.32)). By
Theorem 5.4, h is constant, so automorphic. Thus, since F (x♯(z)) is
automorphic, so is f , which implies (5.33). �

6. The Isospectral Torus

Once one has the Abel map and Abel’s theorem, the construction
of the isospectral torus along the lines pioneered for KdV [22, 45] is
straightforward (see [66, Ch. 5] for an exposition of the original papers
[25, 40, 79]) but in the covering map guise has a more explicit feel. For
additional discussions of the isospectral torus, see [7, 12, 29, 30, 72].

Definition. A minimal Herglotz function for e is a meromorphic func-
tion m on S with degree precisely ℓ+ 1 and which obeys
(i)

z ∈ S+ ∩ C+ ⇒ Imm(z) > 0 (6.1)

(ii) Near ∞+,

m(z) = −1

z
+O(z−2) (6.2)

(iii) m(z) has a pole at ∞−.

In the usual way (see [66]), m ↾ S+ ∩ C+ determines a probability
measure, dµ, with

m(z) =

∫
dµ(x)

x− z
(6.3)

for z ∈ S+ \ R. Moreover, the continuity properties of m as one ap-
proaches e (and the fact that we will see that all poles of m are simple)
imply that

dµ(x) = w(x)dx+ dµs(x) (6.4)
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where w is real analytic on eint and nonvanishing there, and dµs is a pure
point measure with pure points only in the open gaps ∪ℓj=1(βj , αj+1)
and at most one pure point per gap.

Condition (iii) may seem ad hoc. We mention now that one can show
([66, Ex. 5.13.4]) that if (iii) is dropped, the once-stripped m-function,
m1, (i.e., m(z) = M(a1, b1, m1(z)) in terms of (1.24)) obeys condition
(iii). Thus, the extra possibilities allowed if (iii) is dropped result from
taking the Jacobi matrix of a minimal Herglotz function as we have
defined it and extending by one row and column, with the “wrong”
values of a0 or b0.

The main elements of the theory are:
(i) The minimal Herglotz functions are in one-one correspondence

with G, and so form an ℓ-dimensional torus, Te.
(ii) The correspondence is that the coordinates of (y1, . . . , yℓ) ∈ G are

the positions of ℓ of the poles of m—the last pole is at ∞−. The
zeros are then determined via the Abel map.

(iii) The Abel map “linearizes” coefficient stripping (i.e., the map
(1.24)) since the zeros of m are the poles of the once-stripped
m-function, m1. Explicitly,

Ã : G → Γ∗ (6.5)

and coefficient stripping corresponds to multiplying by the inverse
of the character of B.

(iv) The linearization shows that the corresponding Jacobi parameters,
{an, bn}∞n=1, are almost periodic sequences with almost periods
given by the harmonic measures {ρe([α1, βj])}ℓj=1. In particular,
one has periodicity if and only if these numbers are all rational.

(v) The construction provides explicit formulae for m and, thus, a1, b1
(and so, via the Abel map, an, bn) in terms of theta functions and
the logarithmic capacity of e.

(vi) Uniformly on Te, there are bounds on the weight w in (6.4) of the
form

C
√

|R(x)| ≤ w(x) ≤ D
√
|R(x)|−1 (6.6)

where 0 < C,D <∞.

We begin by recalling what one can get without using the covering
or Abel maps.

Theorem 6.1. (i) Every minimal Herglotz function has exactly one

simple pole in each gap Gj, one at ∞− and no others.

(ii) For every choice (y1, . . . , yℓ) ∈ G, there is exactly one minimal

Herglotz function with poles exactly at y1, . . . , yℓ (and ∞−).
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(iii) For every minimal Herglotz function, the once-stripped Herglotz

function is also a minimal Herglotz function.

(iv) Every minimal Herglotz function has one zero in each gap Gj, one

at ∞+ and no others.

Remark. Of course, (i) and (ii) set up a one-one correspondence be-
tween Te, the set of minimal Herglotz functions, and G. We will often
refer to G as the isospectral torus.

Sketch. (See [66, Ch. 5] for details.) (i) Every minimal degree mero-
morphic function, m, on S with m ◦ τ 6≡ m has the form

m(z) =
p(z) +

√
R(z)

a(z)
(6.7)

where R(z) is given by (2.2), and p, a have degree at most ℓ+ 1. Since
m has a zero at ∞+, p(z) must cancel the leading O(zℓ+1) term in√
R(z) at ∞+, so

deg(p) = ℓ+ 1 (6.8)

Because this cancellation takes place at ∞+, it does not at ∞− (since√
R flips sign but p does not). For m to have a simple pole at ∞−, we

must have

deg(a) = ℓ (6.9)

m is real on each [βj, αj+1] so, by analyticity, on the entire gap Gj.

Thus, m(z) is real on R\e on both sheets. Since
√
R(z) is real on R\e,

we conclude first that a is real and then that p is real. In particular,
on S+ ∩ e,

Imm(x+ i0) =
Im

√
R(x)

a(x)
(6.10)

Since R has two zeros between bands, Im
√
R(x) changes sign be-

tween successive bands. As Imm(x + i0) ≥ 0, a must change signs
between bands, that is, have an odd number of zeros in each gap.
Since, by (6.9), a has only ℓ zeros and there are ℓ gaps, a has one zero
per gap.

If a has a zero at x0 ∈ (βj, αj+1), then

(p+
√
R) − (p−

√
R) = 2

√
R 6= 0 (6.11)

at x0, so on one sheet or the other, m must have a pole. If a has a
zero at x0 ∈ {βj, αj+1}, the numerator is at best O((x − x0)

1/2) and
the denominator is O((x− x0)). So again, m has a pole at x0.

Thus, m has at least one pole per gap. So, since deg(m) = ℓ+1 and
m has a pole at ∞−, m has exactly one simple pole in each gap.
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(ii) Write yj = (π(yj), σj) if π(yj) ∈ (βj , αj+1) with σj = 1 (resp.
−1) if yj ∈ S+ (resp. S−). Since a has to vanish at π(yj) to get a pole
at yj, we see that m has a pole at yj and not at τ(yj) if and only if
a(π(yj)) = 0 and

p(π(yj)) = σj

√
R(yj) (6.12)

If π(yj) ∈ {βj , αj+1}, then to avoid a double pole, p(π(yj)) = 0, that

is, (6.12) still holds (since
√
R(yj) = 0, it does not matter that σj is

undefined).
At ∞+, a(z) is O(zℓ). Thus, for m(z) to vanish at ∞+, we must

have
p(z) +

√
R(z) = O(zℓ−1) (6.13)

near ∞+. Since
√
R(z) = O(zℓ+1), (6.13) determines the top two

coefficients (with the top one nonzero) and then, by standard polyno-
mial interpolation, the ℓ conditions (6.12) determine the remaining ℓ
coefficients of p.

We have thus proven that given ~y = (y1, . . . , yℓ) ∈ G, there is a
meromorphic function of degree precisely ℓ+ 1 with poles at y1, . . . , yℓ
and ∞−, and a zero at ∞+. Moreover, it is unique up to a single overall
constant—for the above determines p and

a(z) = −c
ℓ∏

j=1

(z − π(yj)) (6.14)

for some constant c > 0.
The fact that a changes sign in each gap shows that the sign of c in

(6.14) can be picked so that

Imm(x+ i0) > 0 (6.15)

on all bands in S+. Keeping track of the argument of
√
R(z) as one

crosses a branch point shows that with this choice at each yj ∈ S+ such
that π(yj) ∈ (βj, αj+1) and σj > 0,

m(z) =
cj

π(yj) − z
+O(1) (6.16)

with cj > 0. Thus, any limit point in the values of Imm(z) as z
approaches R is nonnegative. Since Imm(z) → 0 at ∞+, the maximum
principle applied to the harmonic function Imm(z) on S+ ∩ C+ shows
that (6.1) holds.

Any function obeying (6.1) with real boundary values on R \ e has
(6.2) holding up to a positive constant. We can thus adjust c in (6.14)
so that (6.2) holds. We have thus proven that there exists precisely
one meromorphic Herglotz function with poles at y1, . . . , yℓ.
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(iii) m and the once-stripped function, m1, are related by

m(z) =
1

−z + b1 − a2
1m1(z)

(6.17)

where (a1, b1) are (and can be) chosen so that (6.2) holds for m1. It is
always true, of course, that m1 obeys (6.1) and (6.2).

(6.17) sets up a one-one correspondence between poles of m1 in S \
{∞±} and zeros of m there. Since m has degree ℓ + 1, it has ℓ + 1
zeros and only a simple zero at ∞+ by (6.2). Thus, m has precisely
ℓ zeros in S \ {∞±}. Therefore, m1 has exactly ℓ poles on S \ {∞±}
and, obviously, no pole at ∞+. Since m(z) has a pole at ∞−, (6.17)
shows that near ∞−,

a2
1m1(z) = −z + b1 +O(z−1) (6.18)

that is, m1 has a simple pole at ∞−. Thus, m1 has degree exactly
ℓ+ 1 and we have proven condition (iii) in the definition of a minimal
Herglotz function.

(iv) Since m1 has a pole on each Gj , by (6.17), m has a zero on each
Gj. There is a zero at ∞+, and this accounts for all ℓ + 1. �

The above construction also lets us prove (6.6):

Theorem 6.2. (i) There are constants, A,B, so that uniformly in

~y ∈ G, we have (with c the constant in (6.14))

Ac−1
√

|R(x)| ≤ w~y(x) ≤ Bc−1
√

|R(x)|−1 (6.19)

and the residues cj of (6.16) obey

0 ≤ cj ≤ Bc−1 (6.20)

(ii) Uniformly in ~y ∈ G, the constant c in (6.14) is bounded and

bounded away from zero. Moreover, uniformly in x ∈ e and~y ∈ G,

(6.6) holds.

Proof. (i) Since a has the form (6.14), we have

sup
x∈e

|a(x)| ≤ c(βℓ+1 − α1)
ℓ (6.21)

which, given (6.10) and the relation

w~y(x) =
1

π
Imm(x+ i0) (6.22)

implies the first inequality in (6.19).
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Next, note that if we fix x ∈ e, the distance to the nearest zero of a
is at least dist(x,R \ e) and the distance to all the other zeros of a at
least 1

2
minj |βj − αj|. Thus, for x ∈ e,

|a(x)| ≥ c
(

1
2
min
j

|βj − αj |
)ℓ−1

dist(x,R \ e) (6.23)

On the other hand, for x ∈ e,

|R(x)| ≤ (βℓ+1 − α1)
2ℓ+1dist(x,R \ e) (6.24)

and

|R(x)| ≥
(

1
2
min
j

|βj − αj|
)2ℓ+1

dist(x,R \ e) (6.25)

We get the second inequality in (6.19) from (6.23)–(6.25), (6.10), and
(6.22).

By (6.10), the residue cj in (6.16) is given by

cj = 2c−1
√
|R(yj)|

∏

k 6=j

|yk − yj|−1 (6.26)

≤ 2c−1(βℓ+1 − α1)
ℓ+1

(
min
j
|βj − αj |

)−ℓ
(6.27)

(ii) By (6.19) and (6.20),

Ac−1

∫

e

√
|R(x)| dx ≤

∫

e

w~y(x) dx+
∑

j

cj

≤ Bc−1

[
ℓ+

∫

e

√
|R(x)|−1 dx

]
(6.28)

The total weight of the measure is 1, so we get the claimed upper and
lower bounds on c. Given those, (6.19) yields (6.6). �

Given ~y ∈ G, we denote by m~y the associated minimal Herglotz
function. The once-stripped m-function is also a minimal Herglotz
function and thus corresponds to some ~w ∈ G. We define a map
U : G → G by

U(~y) = ~w (6.29)

so that mU(~y) is the once-stripped m-function.
Now we can combine Theorem 6.1 with the Abel map:

Theorem 6.3. Suppose ~y = (y1, . . . , yℓ) ∈ G and let U be defined by

(6.29).

(i) With Ã defined in (5.16)–(5.17), we have

Ã(U(~y)) = Ã(~y)A(∞)−1 (6.30)
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(ii) Let

M~y(z) = −m~y(x(z)) (6.31)

Then we have that

M~y(z) =
B(z)

cap(e)

ℓ∏

j=1

Θ(z;U(~y)j)

Θ(z; yj)
(6.32)

Remark. Since

m(z) = −1

z
− b1
z2

− a2
1 + b21
z3

+O(z−4)

(6.32) implies an explicit formula for b1 and a1 in terms of theta func-
tions.

Proof. M~y(z) is a meromorphic function with divisor

δ∞+
− δ∞−

+

ℓ∑

j=1

(
δU(~y)j

− δyj

)
(6.33)

so (6.30) is just (5.33).
By (5.34) (note that (5.29) holds so there are no Ψj factors), we have

(6.32) with cap(e) replaced by a constant.
Since

m~y(x(z)) = − 1

x(z)
+O(z2) = − z

x∞
+O(z2) (6.34)

and (4.43) holds, the constant is cap(e). �

Corollary 6.4. Under the map Ã from G to Γ∗, {Un(~y)}∞n=0 is mapped

to the “equally spaced” orbit {Ã(~y)A(∞)−n}∞n=0 in Γ∗. In particular,

n→ mUn(~y) n→ {an, bn} (6.35)

are almost periodic sequences (indeed, real analytic quasiperiodic se-

quences) with almost periods {ρe([α1, βj])}ℓj=1. These sequences are pe-

riodic with period p for one point in Te if and only if they are for all

points, and that holds if and only if (4.53) holds.

Remark. By a quasiperiodic sequence, Xn, we mean a sequence given
by

Xn = x(einω1 , . . . , einωk) (6.36)

where x is a continuous function on the k-torus (∂D)k. It is called real

analytic if x is real analytic. (ω1, . . . , ωk) are called the almost periods.
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Proof. (6.30) immediately implies that

Ã(Un(~y)) = Ã(~y)A(∞)−n (6.37)

so the orbit is as claimed.
Realize Γ∗ as (∂D)ℓ by

c ∼ (c(γ1), . . . , c(γℓ)) (6.38)

Then, by (4.44),

Ã(Un(~y))j = Ã(~y)je
−2πiρe([α1,βj ])n (6.39)

which, given that Ã is real analytic and Θ(z; y) (and so, m, a1, b1) are
real analytic in the y’s, proves that the sequences (6.35) are almost
periodic, indeed, real analytic quasiperiodic.

For the final statement, note that, by (6.37), periodicity for one or

for all Ã(~y) is equivalent to A(∞)p = 1. Now use Corollary 4.5. �

7. Raw Jost Functions and the Jost Isomorphism

Recall that if dµ is a measure on R of the form (6.4) so that off
[−2, 2], dµ only has pure points, {xj}Nj=1, (N finite or infinite) with

N∑

j=1

(|xj | − 2)1/2 <∞ (7.1)

and so that w obeys a Szegő condition,
∫ 2

−2

(4 − x2)−1/2 log(w(x)) > −∞ (7.2)

one defines (see [20, 37, 51, 61]) the Jost function, u(z), on D by

u(z) = zB∞(z) exp

(∫
z + eiθ

z − eiθ
log

[
sin θ

ImM(eiθ)

]
dθ

4π

)
(7.3)

Here M(eiθ) is the boundary value of

M(z) = −m(z + z−1) (7.4)

(expressible in terms of w via ImM(eiθ) = πw(2 cos θ)) and B∞ is the
Blaschke product of b(z, ζj) with ζj ∈ D, ζj + ζ−1

j = xj (by (7.1) and
Lemma 4.1, this is a convergent Blaschke product). In this section
and the next, we will begin to discuss the analog for elements of the
isospectral torus, but in a way that connects up to definitions that work
in much greater generality and will be the key to later papers in this
series.

Surprisingly, our initial definition will be equal, up to a constant,
to an object that is based on the theta function formulae of the last
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section, and we will find there is a representation of the form (7.3).
We regard this as one of the more interesting discoveries in the present
paper.

Because there is only one natural choice for the reference measure
on [−2, 2], it is somewhat obscured that (7.3) involves not only dµ but
a reference measure which in (7.3) is

dµ0(x) =
1

2π

√
4 − x2 χ[−2,2](x) dx (7.5)

the measure of the free Jacobi matrix with an ≡ 1, bn ≡ 0. After a
change of variables via x = 2 cos θ and scaling,

√
4 − x2 turns into sin θ,

which is where that factor in (7.3) comes from.
When one shifts to multiple gap situations, there is also a reference

measure needed. Our eventual choice will be to use a particular point
on the isospectral torus—and the next section will explain change of
reference measure. In this section, the reference measure will be a
different measure on the isospectral torus, so we will call the resulting
object the “raw” Jost function.

As a bonus, we will also see that for any point on the isospectral
torus,

n→ a1 · · ·an
cap(e)n

(7.6)

is an almost periodic sequence.
Let ~y0 = (β1, β2, . . . , βℓ) be the point in G which serves as the base

point for our Θ’s. Given ~y = (y1, . . . , yℓ) ∈ G, we let ξj be the unique

point on C̃+
j such that

x♯(ξj) = yj, j = 1, . . . , ℓ (7.7)

Moreover, we denote by w~y(x) the weight of the measure dµ~y associated
to the m-function, m~y, in the isospectral torus.

For each~y ∈ G, we define a function on D, the raw Jost function, by

R(z;~y) =
∏

{j | |ξj |<1}

B(z, ξj) exp

(
1

4π

∫
eiθ + z

eiθ − z
log

[
w~y0(x(eiθ))

w~y(x(eiθ))

]
dθ

)

(7.8)
Here we use the estimate (6.6) to be sure that

∫
log(w~y(x(eiθ))

dθ

2π
> −∞ (7.9)

for all ~y ∈ G.
We will call the exp( · · · ) factor in (7.8), the Szegő part, and the first

factor, the Blaschke part. It is easy to see that each is continuous in~y,
so R(z;~y) is also continuous in~y. The Blaschke factor is only piecewise
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C1 and not C1 because whenever ξj moves from inside D to outside, a
factor disappears. We have B(0, ξj) = |ξj| and

ξj →
{
|ξj| if |ξj| ≤ 1

1 if |ξj| ≥ 1
(7.10)

has a discontinuous derivative as |ξj| passes from below 1 to above.
Nevertheless, we will see below that for many cases (where the harmonic
measures {ρe([α1, βj])}ℓj=1 obey a Diophantine condition), ~y 7→ R(z;~y)
is real analytic. It is an interesting open question if this is always true!

We need one more piece of notation. Each ~y ∈ G determines a
unique m~y and, thereby, a unique two-sided Jacobi matrix, J̃~y. Its
Jacobi parameters will be denoted {an(~y), bn(~y)}∞n=−∞. Here is the
main theorem of this section:

Theorem 7.1. There exists a continuous, everywhere strictly positive

function, ϕ, on G so that

R(z;~y) = ϕ(~y)

ℓ∏

j=1

Θ(z; yj) (7.11)

Moreover, ϕ obeys

ϕ(~y0) = 1 (7.12)

a1(~y)

cap(e)
=
ϕ(U(~y))

ϕ(~y)
(7.13)

Remarks. 1. In (7.13), U is the map from (6.29).

2. If the harmonic measures {ρe([α1, βj])}ℓj=1 are rationally indepen-
dent, the orbit {Un(~y0)}∞n=0 is dense in G and (7.12)–(7.13) determine
ϕ uniquely. In general, ϕ is continuous in {αj, βj}ℓj=1, so this, in prin-
ciple, determines it uniquely.

3. It is useful to define, for ~y = (y1, . . . , yℓ) ∈ G,

Θ̃(z;~y) =
ℓ∏

j=1

Θ(z; yj) (7.14)

We want to note some interesting corollaries before we turn to the
proof:

Corollary 7.2. For each ~y ∈ G, R(z;~y) has a meromorphic continu-

ation to C ∪ {∞} \ L with poles, all simple, only at {γ(ζj)}γ∈Γ, j=1,...,ℓ,

and zeros, all simple, at {γ(ξj)}γ∈Γ, j=1,...,ℓ, where ζj and ξj are given

by (5.2) and (7.7), respectively.
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Remark. Thus, the Szegő part cancels the poles of B(z, ξj) at
{γ(ξ̄−1

j )}γ∈Γ for j with |ξj| < 1.

Proof. Obvious from (7.11). �

Define the raw Jost isomorphism from G to Γ∗ by

Jr(~y) = Ã(~y) (7.15)

By Theorem 5.3, it is a real analytic homeomorphism. The following
corollary of Theorem 7.1 is so important, we call it a theorem.

Theorem 7.3. For each ~y ∈ G, R( · ;~y) is a character automorphic

function and its character is Jr(~y). Jr is a real analytic bijection be-

tween the isospectral torus G and Γ∗.

Remark. The Blaschke part of R is character automorphic, and we
will show directly in Lemma 8.1 that the Szegő part is, too. What
is difficult without (7.11) is that the map from ~y to the character of
R( · ;~y) is a bijection. That this map is a bijection will be critical in
our proof of Szegő asymptotics in [16].

Proof. Immediate from (7.11) and the definition of Ã. �

Corollary 7.4. For each ~y ∈ G, the sequence

n→ a1(~y) · · ·an(~y)
cap(e)n

(7.16)

is bounded and almost periodic, also bounded away from 0. The upper

and lower bounds are bounded uniformly in ~y.

Remark. That (a1 · · ·an)1/n → cap(e) is a general fact about regular
measures, and each dµ~y is regular by a theorem of Widom [81] and Van
Assche [78] (see [69, 62]). This more subtle result is a special case of a
theorem of Widom [82] (see also [3]).

Proof. By (7.13),

a1(~y) · · ·an(~y)
cap(e)n

=
ϕ(Un(~y))

ϕ(~y)
(7.17)

is given by the values of a continuous function (namely, ϕ ◦ Ã−1) on Γ∗

along the orbit Ã(~y)A(∞)−n. This function is bounded and bounded
away from 0. �

One key to the proof of Theorem 7.1 is a nonlocal step-by-step sum
rule. Such sum rules began with Killip–Simon [37] for [−2, 2], for-
malized by Simon [58], and one version was found for periodic Jacobi
matrices by Damanik–Killip–Simon [19]. The extension of the sum
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rules to the covering map context, which relies on Beardon’s theorem,
is a major theme in this paper and especially in the second paper [16]
in this series. Here is the version for the isospectral torus:

Theorem 7.5. Let m~y be the m-function for a point ~y ∈ G. Define

for z ∈ D,

M~y(z) = −m~y(x(z)) (7.18)

Then for all z ∈ D,

a1(~y)M~y(z) = B(z)
R(z;U(~y))

R(z;~y)
(7.19)

Proof. Let B(~y)(z) be the Blaschke part of R, that is, the Blaschke
product in (7.8). Define

B(~y)
∞ (z) = B(z)

B(U(~y))(z)

B(~y)(z)
(7.20)

Then B
(~y)
∞ (z) has zeros and poles precisely at all the zeros and poles of

M~y(z) inside D, so

h(z) =
a1(~y)M~y(z)

B
(~y)
∞ (z)

(7.21)

is analytic and nonvanishing in D.
The same argument that led to (4.84) shows that

z ∈ F ⇒ |arg(B(~y)
∞ (z))| ≤ C (7.22)

for some constant C. Moreover,

z ∈ F ⇒ |arg(M~y(z))| ≤ π (7.23)

so

z ∈ F ⇒ |arg(h(z))| ≤ C1 (7.24)

and, in particular, arg(h) varies by at most 2C1 over F .

B
(~y)
∞ is character automorphic and M~y is automorphic, so h(z) is

character automorphic. Thus, arg(h(z)) varies by at most 2C1 over
any γ(F), which means that

z ∈ Dk ⇒ |arg(h(z))| ≤ (2k + 1)C1 (7.25)

Thus, by (2.18), for any r,

{θ | |Im log(h(reiθ))| ≥ (2k + 1)C1} ⊂ ∂Rk (7.26)

So, by Beardon’s theorem in the form (3.12), for any p <∞,

sup
r

∫
|Im log(h(reiθ))|p dθ

2π
<∞ (7.27)
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By M. Riesz’s theorem (see Rudin [57]),

log(h) ∈
⋂

p<∞

Hp(D) (7.28)

so by the standard representation for Hp functions, p ≥ 1 (see, e.g.,
[57]), we get

a1(~y)M~y(z) = B(~y)
∞ (z) exp

(
1

2π

∫
eiθ + z

eiθ − z
log

(
a1(~y)|M~y(e

iθ)|
)
dθ

)

(7.29)

where we used that for a.e. θ, |B(~y)
∞ (eiθ)| = 1, so

log|h(eiθ)| = log(a1(~y)|M~y(e
iθ)|) (7.30)

Taking boundary values in

M~y(z)
−1 = x(z) − b1(~y) − a1(~y)

2MU(~y)(z) (7.31)

we see that
ImM~y(e

iθ)

|M~y(eiθ)|2
= a1(~y)

2 ImMU(~y)(e
iθ) (7.32)

or

log(a1(~y)|M~y(e
iθ)|) =

1

2
log

[
ImM~y(e

iθ)

ImMU(~y)(eiθ)

]

=
1

2
log

[
ImM~y(e

iθ)

ImM~y0(e
iθ)

]
− 1

2
log

[
ImMU(~y)(e

iθ)

ImM~y0(e
iθ)

]

(7.33)

Since ImM~y(e
iθ) = πw~y(x(eiθ)), (7.29) plus (7.33) and the definition

(7.8) imply (7.19). �

Corollary 7.6. For any ~y ∈ G, we have

R(z;U(~y))

Θ̃(z;U(~y))
=

a1(~y)

cap(e)

R(z;~y)

Θ̃(z;~y)
(7.34)

Proof. Immediate from (6.32) and (7.19). �

Proof of Theorem 7.1. For ~y0, we have

Θ̃(z;~y0) = R(z;~y0) = 1 (7.35)

Thus, by (7.34), we have (7.11) for ~y = Un(~y0) with

ϕ(Un(~y0)) =
a1(~y0) · · ·an(~y0)

cap(e)n

since
a1(U

n(~y0)) = an+1(~y0) (7.36)
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Thus, (7.13) also holds for ~y = Un(~y0).
Suppose now {αj , βj}ℓ+1

j=1 are such that {ρe([α1, βj])}ℓj=1 are rationally
independent. Then S0 ≡ {Un(~y0)} is dense in the isospectral torus.
Define

ϕ(~y) ≡ R(z = 0;~y)

Θ̃(z = 0;~y)
(7.37)

Since R is continuous in ~y, so is ϕ. As (7.11) holds on the dense set
S0 and both sides are continuous, (7.11) holds for all ~y ∈ G. Similarly,
both sides of (7.13) are continuous and as (7.13) holds on S0, it holds
in general.

To handle general {αj, βj}ℓ+1
j=1, we just repeat the continuity argument

“at a higher level.” Fix α1, . . . , αℓ+1 and βℓ+1 and vary (β1, . . . , βℓ).
By a theorem of Totik [73], the map (β1, . . . , βℓ) → {ρe([αj , βj])}ℓj=1

is a C∞ local bijection, so the set of β’s with rationally independent
{ρe([αj , βj])}ℓj=1 is dense. By conveniently labelling G (say, measure

angles in C̃+
j about its center starting at the point closest to 0) in

a way that is independent of {αj , βj}ℓ+1
j=1, all objects, that is, R(z;~y)

and Θ̃(z;~y), are continuous in (β1, . . . , βℓ) according to Theorem 2.1.
Therefore, by repeating the above argument, we get (7.11) and (7.13)
by continuity. �

Finally, we want to note that sometimes ϕ and so R are real ana-
lytic in ~y. We say that e obeys a Diophantine condition if there are a
constant, C, and an integer, k, so that for (n1, . . . , nℓ) 6= (0, . . . , 0) in
Zℓ, ∣∣∣∣

ℓ∑

j=1

njρe([α1, βj ])

∣∣∣∣ ≥ C(1 + |n|)−k (7.38)

As is well known, given Totik’s theorem quoted above, Lebesgue a.e.
{αj, βj}ℓ+1

j=1 lead to a Diophantine e.

Theorem 7.7. If e is Diophantine, the function ϕ of (7.11) is real

analytic in ~y and thus, R(z;~y) is real analytic in ~y.

Proof. Θ is real analytic in y, so by (7.11), the statement about ϕ
implies that for R.

Let

L(~y) = log

(
a1(~y)

cap(e)

)
(7.39)

Then
S(~y) ≡ log(ϕ(~y)) (7.40)

obeys
S(U(~y)) − S(~y) = L(~y) (7.41)
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Since L is real analytic on the torus, its Fourier coefficients, l(n1,...,nℓ),
obey

|l(n1,...,nℓ)| ≤ Ce−D|n| (7.42)

for some C,D > 0. By (7.41), the Fourier coefficients s(n1,...,nℓ) for S
obey

(ein·ω − 1)s(n1,...,nℓ) = l(n1,...,nℓ) (7.43)

where

n · ω =
ℓ∑

j=1

njρe([α1, βj]) (7.44)

(7.43) implies ℓ0 = 0 and (7.42)–(7.43) together with (7.38) imply that
for any ε > 0,

|s(n1,...,nℓ)| ≤ Cεe
−(D−ε)|n| (7.45)

This implies that S(~y) and so ϕ(~y) = eS(~y) are real analytic. �

8. Change of Reference Measure in Jost Functions

As is well known, OPRL obey a difference equation, (1.6). We will
also be interested in other solutions. Since we have labelled the Jacobi
parameters starting at n = 1, it will be useful to label solutions that
way too, that is, to look for solutions of

anun+1 + (bn − z)un + an−1un−1 = 0 (8.1)

for n = 1, 2, . . . where a0 is often picked to be 1, but in the isospectral
torus will be the natural two-sided almost periodic a0. Note that

un = pn−1(z) (8.2)

n = 1, 2, . . . is a solution of (8.1) with p−1 = 0 (so a0 is unimportant).
For any bounded Jacobi matrix, J , and z ∈ C+, there is a unique

solution of (8.1) which is ℓ2 at infinity, unique up to an overall constant
(see, e.g., [66]). One natural choice is the Weyl solution,

wn(z) = 〈δn, (z − J)−1δ1〉 (8.3)

It obeys (8.1) for n = 2, 3, . . . . At n = 1, one has

a1w2 + (b1 − z)w1 = −1 (8.4)

(since (J−z)(J −z)−1δ1 = δ1), and so (8.1) holds at n = 1 if we define

w0 = a−1
0 (8.5)

One defect of this solution is that, of course, wn(z) has a pole at each
discrete eigenvalue of J . To get around this, Jost had the idea (for con-
tinuum Schrödinger operators) of multiplying wn(z) by a z-dependent
constant u0(z) with a zero at the eigenvalues. Then u0(z)wn(z) can
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have a removable singularity at such z’s. Our raw Jost functions have
zeros at the ξj’s, so when we look at solutions in the next two sections,
the poles in the Weyl solutions will be cancelled by these zeros. But
we are going to want to continue these solutions up to the bands also,
and our raw Jost functions have poles at the ζj’s. These poles are not
intrinsic to the y’s, but come from the w~y0 term in (7.8). We thus want
to consider modifying that.

Definition. By the Szegő class for e, we mean the set of measures
dµ of the form (6.4) where w is supported on e and obeys the Szegő
condition (4.56) (with f = w), and so that outside e, dµs only has
countably many pure points {xj}Nj=1 obeying a Blaschke condition of
the form (4.76).

We are now prepared to define the Jost functions with reference
measure dµ1.

Definition. Suppose dµ, dµ1 are two measures in the Szegő class for
e. The Jost function, J(z;µ, µ1), with reference measure dµ1, is the
meromorphic function on D defined by

J(z;µ, µ1) =

∏N
j=1B(z, zj)

∏N1

j=1B(z, z
(1)
j )

exp

(
1

4π

∫
eiθ + z

eiθ − z
log

[
w1(x(eiθ))

w(x(eiθ))

]
dθ

)

(8.6)
where {zj}Nj=1 are the points in F with x(zj) = xj (and similarly for

z
(1)
j and x

(1)
j ).

Notice that, by Proposition 4.8 and condition (4.76), the Blaschke
products converge. By Corollary 4.6 and (4.56), the integral in (8.6)
converges. Notice that if dµ1 has pure points in the gaps, then J has
poles in D. For this reason, we will normally consider only dµ1’s with
no such pure points, but since we want to consider the entire isospectral
torus later in this section, we allow for the possibility.

We are heading towards proving that J is character automorphic.
The key is

Lemma 8.1. Suppose f is a real-valued function on ∂D so that∫
|f(eiθ)| dθ

2π
<∞ (8.7)

and for all γ ∈ Γ,

f(γ(eiθ)) = f(eiθ) (8.8)

Define for z ∈ D,

Sf (z) = exp

(∫
eiθ + z

eiθ − z
f(eiθ)

dθ

2π

)
(8.9)
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Then Sf is character automorphic.

Remark. If

f(eiθ) = log

[
w~y0(x(eiθ))

w~y(x(eiθ))

]
(8.10)

where ~y has no points in D (e.g., none of the ξj’s belongs to D), then
Sf is a raw Jost function which, if ~y 6= ~y0, is not automorphic but
only character automorphic (by Theorem 7.3). Thus, Sf may have a
nontrivial character.

Proof. Suppose first there is a > 0 so that

−a ≤ f(eiθ) ≤ a (8.11)

for all θ. Then, since
∫

Re

(
eiθ + z

eiθ − z

)
dθ

2π
= 1 (8.12)

with positive integrand, we have

e−a ≤ |Sf(z)| ≤ ea (8.13)

In particular, if γ ∈ Γ, then

h(z) ≡ Sf(γ(z))

Sf(z)
(8.14)

is analytic and

e−2a ≤ |h(z)| ≤ e2a (8.15)

so one can define log(h) on D and it belongs to H∞(D).
By (8.9), for Lebesgue a.e. θ,

lim
r↑1

|Sf(reiθ)| = ef(eiθ) (8.16)

Since γ maps D to D and boundary values are nontangential limits, for
Lebesgue a.e. θ,

lim
r↑1

|Sf(γ(reiθ))| = ef(γ(eiθ)) = ef(eiθ) (8.17)

by the hypothesis (8.8).
It follows that for a.e. θ,

lim
r↑1

Re(log(h(reiθ))) = lim
r↑1

log|h(reiθ)| = 0 (8.18)

Since log|h| is a bounded harmonic function, Re(log(h(z))) = 0, so
log(h(z)) = iψγ for some real ψγ , that is,

Sf (γ(e
iθ)) = eiψγSf (e

iθ) (8.19)
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As usual, this implies that γ → eiψγ is a character, and so Sf is char-
acter automorphic.

If f does not obey (8.11), it is easy to write it as an L1 limit of
functions that do. Thus, Sf is a uniform (on compact subsets of D)
limit of character automorphic functions. By the compactness of Γ∗, it
is easy to see that any such limit is character automorphic. �

Theorem 8.2. For any dµ, dµ1 in the Szegő class, J(z;µ, µ1) is a char-

acter automorphic function.

Remark. For dµ, dµ1 both in the isospectral torus, this follows from
Theorem 7.3 and Theorem 8.3 below.

Proof. Immediate from (8.6), (4.20), and Lemma 8.1. �

Theorem 8.3 (Change of reference measure in J). Let dµ, dµ1, dµ2 be

three measures in the Szegő class. Then for all z ∈ D,

J(z;µ, µ1) =
J(z;µ, µ2)

J(z;µ1, µ2)
(8.20)

In particular, for ~y,~y1 ∈ G, we have

J(z;µ~y, µ~y1) =
R(z;~y)

R(z;~y1)
(8.21)

Remark. By “all z ∈ D,” we either mean except for the discrete set
of poles and zeros or else in the sense of meromorphic functions.

Proof. In (8.6), the Blaschke products and the log[w1], log[w] factors
can be separated out and cancelled and recombined. �

Corollary 8.4. For any Szegő class measure, dµ1, the character Jµ1
(~y)

of J(z;µ~y, µ1) defines a real analytic bijection of G onto Γ∗.

Proof. By (8.20),

Jµ1
(~y) = Jr(~y)Jµ1

(~y0) (8.22)

Since~y 7→ Jr(~y) is a bijection between G and Γ∗ (by Theorem 7.3) and
χ 7→ χJµ1

(~y0) is a bijection of Γ∗, ~y 7→ Jµ1
(~y) is a bijection. �

Corollary 8.5. For any ~y,~y1 ∈ G,

J(z;µ~y, µ~y1) = ϕ(~y)ϕ(~y1)
−1 Θ̃(z;~y)

Θ̃(z;~y1)
(8.23)

where ϕ is the function of Theorem 7.1 and Θ̃ is given by (7.14).

Proof. Immediate from (7.11) and (8.21). �
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Since we want to make the poles of J as far from S+ as possible,
we define ~w to be the point on G whose coordinates (w1, . . . , wℓ) have

points ζ̃1, . . . , ζ̃ℓ in C̃+
j with x♯(ζ̃j) = wj and

|ζ̃j| = max
ζ∈C̃+

j

|ζ | (8.24)

Definition. Let dν be the measure in Te associated to ~w. For any dµ
in the Szegő class, we define the Jost function, u(z;µ), by

u(z;µ) = J(z;µ, ν) (8.25)

For ~y ∈ G, we use u(z;~y) for u(z;µ~y).

u(z;µ) will play a major role in the later papers of this series. u(z;~y)
will concern us in the rest of this paper. We begin by noting

Theorem 8.6. There is a neighborhood, N, of F (closure and neigh-

borhood in C) so that each u( · ;~y) is analytic in N and u is uniformly

bounded on N and in ~y ∈ G.

Proof. Obvious from (8.23), which says that

u(z;~y) = ϕ(~y)ϕ(~w)−1 Θ̃(z;~y)

Θ̃(z;~w)
(8.26)

and the fact that the ratio of Θ̃’s has poles only at {γ(ζ̃j)}γ∈Γ, j=1,...,ℓ.
�

Proposition 8.7. For z ∈ R, u(z;~y) > 0.

Proof. Follows from (8.26) and the facts that ϕ is positive and that Θ
is positive on R. �

9. Jost Solutions

One big benefit of the covering map formalism is that it provides ex-
plicit information about solutions of (8.1) for J in the isospectral torus
and, thereby, of ground states, spectral theorist’s Green’s function, etc.
We begin by moving the Weyl solutions, (8.3), to D:

Definition. For z ∈ D, the Weyl solution is defined by

Wn(z) = 〈δn, (x(z) − J)−1δ1〉 (9.1)

For the case e = [−2, 2], this function is studied in Section 13.9 of
[61]. The proof of Proposition 13.9.3 of [61] is purely algebraic and
immediately extends to our context:
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Theorem 9.1. Suppose J is the Jacobi matrix of any OPRL with

σess(J) = e and define M by

M(z) = −m(x(z)) (9.2)

for z ∈ D. Let J (n) be the n-times stripped Jacobi matrix, that is,

a
(n)
j = an+j b

(n)
j = bn+j (9.3)

and denote by M (n) its m-function on D. Then

Wn(z) = M(z)(a1M
(1)(z)) · · · (an−1M

(n−1)(z)) (9.4)

Definition. Suppose dµ lies in the Szegő class. Then the Jost solution

is defined for z ∈ D by

un(z) = u(z;µ)Wn(z) (9.5)

We focus here on the case dµ = dµ~y for ~y ∈ G, in which case we use
the notation un(z;~y).

Theorem 9.2. For n ≥ 1, we have

un(z;~y) = a−1
n B(z)nu(z;Un(~y)) (9.6)

If (9.6) is used to define un for all n ∈ Z, then

(i) un solves (8.1) with z replaced by x(z).
(ii) There is a neighborhood, N, of F so that un(z;~y) has an analytic

continuation to N and is real analytic in ~y.
(iii) B(z)−nun(z;~y) is almost periodic in n. Indeed, uniformly for z ∈

N and ~y ∈ G, it is real analytic quasiperiodic.

Proof. By (7.19),

aj+1M
(j)(z) = B(z)

u(z;U j+1(~y))

u(z;U j(~y))
(9.7)

Thus, by (9.4),

anWn(z) =

n−1∏

j=0

aj+1M
(j)(z) = B(z)n

u(z;Un(~y))

u(z;~y)
(9.8)

which is (9.6).
By (9.6), we have

an+jun+j(z;~y) = anB(z)jun(z;U
j(~y)) (9.9)

for all n, j ∈ Z. Since Wn solves (8.1) with z replaced by x(z) for n ≥ 1,
un does also, and then by (9.9), un is a solution for all n ∈ Z. (ii) is
immediate from Theorem 8.6. (iii) is then immediate from (9.6) and

the fact that under Ã, U is transformed to multiplication (by A(∞)−1)
on Γ∗. �
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For x ∈ e, define u+
n by picking z(x) ∈ F with Im z ≥ 0, so that

x(z(x)) = x, and letting

u+
n (x;~y) = un(z(x);~y) (9.10)

where we take boundary values of un on the right-hand side. We also
let

u−n (x;~y) = u+
n (x;~y) = un(z(x);~y) (9.11)

Theorem 9.3. Define the Wronskian, Wr(f, g), of two solutions of

(8.1) by

Wr(f, g) = an(fn+1gn − fngn+1) (9.12)

(which is n-independent). Then, if x = x(z(x)) and

Im z > 0 x ∈ e
int (9.13)

we have

Wr(u+
·
(x;~y), u−

·
(x;~y)) = 2πi|u(z(x);~y)|2w~y(x) (9.14)

where w~y is the weight in the spectral measure, dµ~y.

Proof. Since W0 = a−1
0 ,

Wr(W̄ ,W ) = a0(W̄1a
−1
0 −W1a

−1
0 )

= −2i ImW1 (9.15)

Taking into account that

1

π
Imm(x0 + i0) = w(x0) (9.16)

and

Wr(c̄f̄ , cf) = |c|2Wr(f̄ , f) (9.17)

we get (9.14). �

Recall ([66, Ch. 3]) that the transfer matrix, Tn(z), for a Jacobi
matrix updates solutions of (8.1) via

(
un+1

anun

)
= Tn(z)

(
u1

a0u0

)
(9.18)

and is given by

Tn(z) =

(
pn(z) −qn(z)

anpn−1(z) −anqn−1(z)

)
(9.19)

where qn are the second kind polynomials. As usual, if we want to
indicate the underlying point in the isospectral torus, we write Tn(z;~y).
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Theorem 9.4. There is a constant C so that uniformly for ~y ∈ G and

x ∈ eint,

‖Tn(x;~y)‖ ≤ C dist(x,R \ e)−1/2 (9.20)

Remark. This result is used in Proposition 7.2 of [11].

Proof. Let Un(x;~y) be the matrix

Un(x;~y) =

(
u+
n+1(x;~y) u−n+1(x;~y)

anu
+
n (x;~y) anu

−
n (x;~y)

)
(9.21)

Then
Tn(x;~y)U0(x;~y) = Un(x;~y) (9.22)

so
Tn(x;~y) = Un(x;~y)U0(x;~y)

−1 (9.23)

and, since 2 × 2 matrices obey ‖C−1‖ = |det(C)|−1‖C‖,
‖Tn(x;~y)‖ ≤ |det(U0(x;~y))|−1‖U0(x;~y)‖ ‖Un(x;~y)‖ (9.24)

As un is uniformly bounded in n, ~y, and x ∈ e, and det(U0) is the
Wronskian, by (9.14),

‖Tn(x;~y)‖ ≤ Cw~y(x)
−1

which yields (9.20), given (6.6) and (6.25). �

Corollary 9.5. Uniformly in n, x ∈ eint, and ~y ∈ G,

C1 dist(x,R \ e) ≤ |pn(x)|2 + |pn−1(x)|2 ≤ C2 dist(x,R \ e)−1

for suitable constants C1 and C2.

Proof. Immediate from (9.19), det(Tn) = 1 (so ‖T−1
n ‖ = ‖Tn‖), and

(9.20), recalling that the an’s are bounded and bounded away from
0. �

Next, we look at band edges where ‖Tn‖ can diverge. We begin with
a critical fact about the outer edges:

Theorem 9.6. There are positive, finite constants C1 and C2, so that

uniformly in n and ~y,

C1 ≤ u+
n (βℓ+1;~y) ≤ C2 (9.25)

C1 ≤ (−1)nu+
n (α1;~y) ≤ C2 (9.26)

Remark. (9.25) says, in the language of [27], that each whole-line J̃~y
has a regular ground state (see [27, Ex. 1.5]). It implies critical Lieb–
Thirring bounds for perturbations of J̃~y in (βℓ+1,∞). (9.26) implies
similar bounds for (−∞, α1).
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Proof. B(z)/z is positive at z = 0 and real and nonvanishing on (−1, 1),
so B(x) > 0 on (0, 1] and B(x) < 0 on [−1, 0). Since |B(±1)| = 1, we
conclude that

B(±1) = ±1 (9.27)

Since u(x;~y) is bounded, strictly positive, and continuous in x and ~y
for x ∈ [−1, 1] and ~y ∈ G, (9.6) implies (9.25)–(9.26). �

u+
n (x) is real at x ∈ {αj, βj}ℓ+1

j=1, so u−n = u+
n and the Jost solutions

are not linearly independent. The following gives a second solution
which grows linearly in n.

Theorem 9.7. Uniformly in ~y ∈ G and z ∈ ∂F ∩ D,

(i) ∣∣∣∣
∂u+

n (x(z);~y)

∂z

∣∣∣∣ ≤ C(|n| + 1) (9.28)

(ii)

lim inf
n→∞

∣∣∣∣
1

n

∂u+
n (x(z);~y)

∂z

∣∣∣∣ > 0 (9.29)

(iii) At x(z) ∈ {αj, βj}ℓ+1
j=1,

vn(~y) =
∂u+

n

∂z
(x(z);~y) (9.30)

is a solution of (8.1) with z replaced by x(z), linearly independent

of u+
n (x(z);~y).

Proof. (i), (ii) By (9.6),

∂u+
n (x(z);~y)

∂z
= a−1

n nBn−1(z)B′(z)u(z;Un(~y))

+ a−1
n Bn(z)

∂

∂z
u(z;Un(~y))

(9.31)

Since u(z;Un(~y)) and ∂
∂z

(u(z;Un(~y)) are uniformly bounded in ~y and

n, and B′(eiθ) > 0 for all θ, (9.28)–(9.29) are immediate.

(iii) u+
n (x(z)) obeys (8.1) with z replaced by x(z). Since x′(z) = 0

at points with x(z) ∈ {αj, βj}ℓ+1
j=1, we see that vn also solves (8.1). Since

u+
n is bounded and vn is not, they are linearly independent. �

Corollary 9.8. For z ∈ e, (8.1) has no solution which belongs to ℓ2 at

+∞ or at −∞.

Remark. This result is used in [11].

Proof. If z ∈ eint, this follows from the fact that ‖Tn(z)−1‖ is bounded,
and for z ∈ ∂e, it follows from Theorem 9.7. �
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Corollary 9.9. If x ∈ {αj , βj}ℓ+1
j=1, then

‖Tn(x)‖ ≤ C(1 + |n|) (9.32)

Proof. Let

Ũn(x) =

(
u+
n+1(x) vn+1(x)

anu
+
n (x) anvn(x)

)
(9.33)

As in (9.23),

Tn(x) = Ũn(x)Ũ0(x)
−1 (9.34)

Since u+, v are independent, Ũ0 is invertible and, clearly, ‖Ũn‖ ≤ C(1+
|n|). �

The bound (9.20) diverges as x approaches a point in {αj , βj}ℓ+1
j=1.

Since ‖Tn‖ is not bounded at these points, it must. However, we are
heading towards a uniform (on e) O(n) bound. As a starting point, we
need to know more about the right side of (9.14) than the crude bound
from (6.6).

Proposition 9.10. For any ~y ∈ G and fixed x0 ∈ {αj, βj}ℓ+1
j=1,

lim
x→x0

x∈e
int

|x− x0|−1/2|u(z(x);~y)|2w~y(x) (9.35)

exists, is finite and nonvanishing, and is continuous in ~y. In (9.35),
z(x) is the point obeying (9.13) with z ∈ F ∩ C+ and x = x(z(x)).

Remark. This result is subtle because |u(z(x);~y)|2 can vanish at

x0. In that case, w~y(x) has O(
√
|x− x0|

−1
) asymptotics rather than

O(
√
x− x0) asymptotics.

Proof. By the explicit formula for w~y ((6.10) and (6.22)), each factor in
w~y(x)|x− x0|−1/2 is continuous in x and ~y except for the |x− π(yj)|−1

factor with the π(yj) closest to x0. There is a cancelling factor in
|u(z(x);~y)|2, so the limit exists and is continuous in ~y. �

Theorem 9.11. There is a constant C so that uniformly in x ∈ e and

~y ∈ G,

‖Tn(x;~y)‖ ≤ C(|n| + 1) (9.36)

Proof. For each x0 ∈ {αj, βj}ℓ+1
j=1, we prove (9.36) in the half-band

starting at x0. Form a matrix Ũn like (9.21) but with u− replaced
by ṽ = (u− − u+)/|x − x0|1/2. As we have seen, ṽ has a limit as x
approaches x0 from eint. By the Wronskian calculation, det(Un) (which
is n-independent) is bounded as x approaches x0.
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Finally, writing (u− − u+) as the integral of a derivative and using
(9.28), we get

|Ũn| ≤ C(|n| + 1) (9.37)

so

‖Ũn‖ ≤ C(|n| + 1) (9.38)

which implies (9.36). �

At last, we want to note that (9.6) implies a result about the Jost
solutions used in [64].

Theorem 9.12. For any compact interval I ⊂ eint, we can write

u+
n (x) = einθ(x)fn(x) (9.39)

where θ′(x) = πρe(x) and fn is real analytic in x with derivatives uni-

formly bounded in n.

Proof. Let z(x) ∈ F ∩ C+ with x(z(x)) = x and write

B(z(x)) = eiθ(x)

By (9.6), u+
n has the form (9.39) and we see that fn has the required

properties. By the calculation that led to (4.61), we get the expression
for θ′. �

In [64], this was used to prove that for any dµ~y, with ~y ∈ G,

1

n
Kn(x, x) →

ρe(x)

w~y(x)
(9.40)

uniformly on I, where Kn is the CD kernel (see [63] for definition and
background on the classical work of Máté–Nevai–Totik and Totik on
limits like (9.40)). Using the calculations in [5] and identifying u+

n as a
multiple of the Deift–Simon eigenfunctions of [5], one sees that (9.40)
implies that

Proposition 9.13. Uniformly on compact subsets of eint × G,

1

n

n−1∑

k=0

Re[u+
k (x;~y)2] → 0 as n→ ∞ (9.41)

Remark. That is, (Reu+
n )2 and (Im u+

n )2 have the same average.
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10. Bounds on (Spectral Theorist’s) Green’s Function

For ~y ∈ G, let J~y be the associated Jacobi matrix and J̃~y the associ-
ated full-line Jacobi matrix. The (spectral theorist’s) Green’s functions
are defined by

Gnm(z) = 〈δn, (J~y − z)−1δm〉 n,m = 1, 2, . . . (10.1)

G̃nm(z) = 〈δn, (J̃~y − z)−1δm〉 n,m ∈ Z (10.2)

We will use Gnm(z;~y) when we need ~y to be explicit. It is unfortunate
that “Green’s function” is used both for these objects and forGe(z), the
potential theorist’s Green’s function, but both names are ubiquitous.
Ge will appear below in our discussions of Gnm.

The analogs ofGnm and G̃nm for −d2/dx2 on L2(0,∞) or L2(−∞,∞)
are given by

G̃(x, y;E) =
e−κ|x−y|

2κ
(10.3)

G(x, y;E) =
e−κx> sinh(κx<)

κ
(10.4)

where E = −κ2, x> = max(x, y), x< = min(x, y). The bounds

|G̃(x, y;E)| ≤ (2κ)−1 (10.5)

|G(x, y;E)| ≤ x< (10.6)

play important roles in the analysis of bound states of Schrödinger
operators with short-range potentials. Here we find analogs of these
bounds for Jacobi matrices in the isospectral torus for z in R\ e. These
bounds were used in [36] to obtain bounds on perturbations of J~y and

J̃~y.
We need to begin by defining u±n (x;~y) for x ∈ R \ e. Define z(x) to

be the unique point in [∪ℓj=1C
+
j ] ∪ (−1, 1) with

x(z(x)) = x (10.7)

Then we define

u+
n (x;~y) = a−1

n B(z(x))nu(z(x);Un(~y)) (10.8)

u−n (x;~y) = a−1
n B(z(x))−n u(1/z(x);Un(~y)) (10.9)

u+
n is the analytic continuation of u+

n as defined for x ∈ e in the last
section if we keep x ∈ C+. So is u−n since u−n is defined on the lower
lip of the cuts, so continuing in C+ brings us to the second sheet and

1/z(x). The −n in u−n comes from

B(1/z(x)) = B(z(x))−1 (10.10)
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Since

|B(z(x))| = e−Ge(x) (10.11)

u±n decays exponentially as n → ±∞ and grows exponentially as n →
∓∞. It follows that u±n must have constant phase (and perhaps we
should redefine them to be real). Indeed, the phase is constant on each
gap and u+ and u− have opposite phases.

Theorem 10.1. For x ∈ R \ e and n ≤ m, we have

G̃nm(x) =
u−n (x)u+

m(x)

Wr(x)
(10.12)

where

Wr(x) = an(u
+
n+1(x)u

−
n (x) − u−n+1(x)u

+
n (x)) (10.13)

Uniformly in x ∈ R \ e and ~y ∈ G, we have

|G̃nm(x)| ≤ Ce−Ge(x)|n−m|dist(x, e)−1/2 (10.14)

Proof. (10.12)–(10.13) is a standard formula for G̃ in terms of any
solutions decaying at ±∞. As x runs through R \ e, z(x) runs through
[∪ℓj=1C

+
j ]∪(−1, 1)\{0}, and u(z(x);~y) is uniformly bounded there. So,

by (10.11), we get (10.14) from

|Wr(x)| ≥ Cdist(x, e)1/2 (10.15)

This is trivial, except near the points |x| = ∞ and x ∈ {αj , βj}ℓ+1
j=1

since Wr(x) is nonvanishing and continuous away from those points.
Since u is regular at z = 0 and z = ∞, the dominant term in (10.8)–

(10.9) is the B(z) term. In

Wr(x) = a0(u
+
1 u

−
0 − u−1 u

+
0 )

the dominant term is B(z)−1 in u−1 , so

|Wr(x)| ∼ C|z(x)|−1 ∼ C|x| ≥ C|x|1/2 (10.16)

and (10.15) holds near |x| = ∞.
Near points x0 ∈ {αj, βj}ℓ+1

j=1, we are looking at the Wronskian of
two solutions u+ and u− which approach each other. Thus, we get a
Wronskian which goes to zero as (z(x) − z(x0)) times the Wronskian
of u+ and du−/dz. We have already seen in the last section that these
are two linearly independent solutions, so their Wronskian is nonzero
and thus, near x0 ∈ {αj , βj}ℓ+1

j=1, for some C > 0,

Wr(x) ≥ C|z(x) − z(x0)| = C ·O(|x− x0|1/2) (10.17)

proving (10.15). �
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As x approaches a point x0 ∈ {αj , βj}ℓ+1
j=1 from R \ e, typically (i.e.,

except for special values of ~y, n, and m), G̃nm(x) → ∞. For Gnm(x),
this is normally not true, which is why one expects bounds in this case
that are not divergent at x0. However, there are special values of ~y for
which this is not the case. One sees this for n = m = 1 since

G11(z) = m(z) (10.18)

the m-function of (6.3). m is meromorphic on S, so it normally has a
finite value at x0 but might have a pole there.

Definition. Fix ~y ∈ G. A point x0 ∈ {αj , βj}ℓ+1
j=1 is said to be a

resonance if and only if it is a pole of m~y(z) (in the sense of poles
on S which means (x− x0)

−1/2 divergence since x0 is a branch point).
Otherwise, we say x0 is nonresonant.

It is easy to see that resonances are equivalent to u+
0 (x0) = 0.

Theorem 10.2. Fix ~y ∈ G. For n,m ≥ 1 and x ∈ R \ e, we have

Gnm(x) = G̃nm(x) − G̃0n(x)G̃0m(x)G̃00(x)
−1 (10.19)

Suppose x0 is nonresonant for ~y. Let I be the open interval with one

end at x0 and the other determined by I ∩ e = ∅ and

(i) If x0 ∈ {α1, βℓ+1}, then |I| = 1.
(ii) If x0 is an edge of an internal gap and J~y has no eigenvalue in

that gap, then the other end of I is the middle of the gap.

(iii) If x0 is an edge of an internal gap and J~y has an eigenvalue in

the gap, then the other end of I is half-way between x0 and that

eigenvalue.

Then for all n,m ≥ 1 and x ∈ I, we have

|Gnm(x)| ≤ C min(n,m) (10.20)

|Gnm(x)| ≤ C|x− x0|−1/2 (10.21)

for some constant C.

Proof. Since, for x ∈ R \ e fixed,

u+
0 u

−
n − u−0 u

+
n ≡ qn (10.22)

vanishes at n = 0, qn(x) = C(x)pn−1(x) for some constant (depending
on x). Thus, by the standard formula for Gnm,

Gnm =
pn−1 u

+
m

Wr(u+, p·−1)
, 1 ≤ n ≤ m (10.23)

we get

Gnm(x) = qn(x)u
+
m(x)W̃r(x)−1 (10.24)
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where W̃r is the Wronskian of u+ and q.
By (10.22),

W̃r(x) = u+
0 (x)Wr(x) (10.25)

so (10.24) becomes

Gnm(x) =
u+

0 (x)u−n (x)u+
m(x) − u−0 (x)u+

n (x)u+
m(x)

u+
0 (x)Wr(x)

(10.26)

The first term in (10.26) is, by (10.12), G̃nm(x). If we note that (also
by (10.12))

G̃0n(x)G̃0m(x)G̃00(x)
−1 =

u−0 (x)u+
n (x)u+

m(x)

u+
0 (x)Wr(x)

(10.27)

we see that the second term in (10.26) is the second term in (10.19),
so we have proven (10.19).

As we noted above, x0 nonresonant implies that u+
0 (x0) 6= 0. Thus,

(10.26) shows that

sup
n,m≥1
x∈I

|Gnm(x)| ≤ C Wr(x)−1 (10.28)

which, by (10.15), proves (10.21).
We claim first that (10.20) is implied by

|qn(x)B(z(x))n| ≤ Cn|x− x0|1/2 (10.29)

For, by (10.24) and (10.15),

|Gnm(x)| ≤ C|u+
m(x)B(z(x))−m| |B(z(x))|m−n|qn(x)B(z(x))n| |x−x0|−1/2

(10.30)
so (10.29) together with |B(z(x))| ≤ 1 and the fact that
|u+
m(x)B(z(x))−m| is bounded implies (10.20).
Next, note that because of the definitions (10.8)–(10.9) and the con-

stancy of the phase of u±n , we see that for all n,

qn(x0) = 0 (10.31)

Define
hn(z) = qn(x(z))B(z)n (10.32)

By (10.31) and |z(x) − z(x0)| = O(|x− x0|1/2), (10.29) follows from

sup
z∈z(I)

∣∣∣∣
dhn(z)

dz

∣∣∣∣ ≤ Cn (10.33)

hn is built out of u’s which have bounded derivatives and B(z)n which
has a derivative bounded by Cn, so (10.33) holds. �
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[9] M. Bello Hernández and G. López Lagomasino, Ratio and relative asymptotics

of polynomials orthogonal on an arc of the unit circle, J. Approx. Theory 92
(1998), 216–244.

[10] D. Borthwick, Spectral Theory of Infinite-Area Hyperbolic Surfaces, Progress
in Mathematics, 256, Birkhäuser Boston, Boston, 2007.
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