INVERSE SPECTRAL ANALYSIS WITH PARTIAL INFORMATION ON THE POTENTIAL, III. UPDATING BOUNDARY CONDITIONS

Rafael del Rio ${ }^{1}$, Fritz Gesztesy ${ }^{2}$, and Barry Simon 3

June 3, 1997

Abstract

We discuss results where information on parts of the discrete spectra of onedimensional Schrödinger operators $H=-\frac{d^{2}}{d x^{2}}+q$ in $L^{2}((0,1))$ or of a finite Jacobi matrix together with partial information on q uniquely determines q a.e. on $[0,1]$. These extend classical results of Borg and Hochstadt-Lieberman as well as results in paper II of this series.

§1. Introduction

This paper is a postscript to two earlier papers [5, 6] in that it provides a new way of looking at the problems considered in those papers that allows the same methods to prove additional results.

To explain our results, we recall earlier theorems of Borg [1] (see also [8, 10-14]) and of Hochstadt-Lieberman [9] (see also [7, 15]). Throughout this paper assume $q \in L^{1}((0,1))$ to be real-valued and consider the operator $H=-\frac{d^{2}}{d x^{2}}+q$ in $L^{2}((0,1))$ with boundary conditions

$$
\begin{align*}
& u^{\prime}(0)+h_{0} u(0)=0, \tag{1.1}\\
& u^{\prime}(1)+h_{1} u(1)=0, \tag{1.2}
\end{align*}
$$

where $h_{j} \in \mathbb{R} \cup\{\infty\}, j=0,1$ (with $h_{0}=\infty$ shorthand for the boundary condition $u(0)=0)$. Fix $h_{1} \in \mathbb{R}$ but think of $H\left(h_{0}\right)$ as a family of operators depending on h_{0} as a parameter. Then Borg's and Hochstadt-Lieberman's results can be paraphrased as follows:

[^0]Borg [1]. The spectra of $H\left(h_{0}\right)$ for two values of h_{0} determine q.
Hochstadt-Lieberman [9]. The spectra of $H\left(h_{0}\right)$ for one value of h_{0} and q on [$0, \frac{1}{2}$] determine q.

In [6], two of us proved a result that can be paraphrased as
Theorem of [6]. Half the spectra of one $H\left(h_{0}\right)$ and q on $\left[0, \frac{3}{4}\right]$ determine q.
One of our goals in this note is to prove
New Result. The spectrum of one $H\left(h_{0}\right)$ and half the spectrum of another $H\left(h_{0}\right)$ and q on $\left[0, \frac{1}{4}\right]$ determine q.

We will also show that
New Result. Two-thirds of the spectra of three $H\left(h_{0}\right)$ determine q.
Our point is as much a new way of looking at the argument in [6] as these new results. Fundamental to our approach here and in [5, 6] is the Titchmarsh-Weyl m-function defined by

$$
m_{h_{1}}(z)=\frac{u_{h_{1}}^{\prime}(z, 0)}{u_{h_{1}}(z, 0)}
$$

where $u_{h_{1}}(z, x)$ solves $-u^{\prime \prime}(z, x)+q(x) u(z, x)=z u(z, x)$ with the boundary condition (1.2). $m_{h_{1}}$ is a meromorphic function on \mathbb{C} (in fact, a Herglotz function) with all its zeros and poles on the real axis. Since $h_{1} \in \mathbb{R}$ will be fixed throughout this paper, we will delete the subscript h_{1} from now on and simply write $m(z)$ instead. Moreover, due to the assumption $h_{1} \in \mathbb{R}$, we will index the eigenvalues of $H\left(h_{0}\right)$ by $\left\{\lambda_{n}\right\}_{n \in \mathbb{N}_{0}}, \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$.

A fundamental result of Marchenko [16] (see also [2, 3, 17]) says
Theorem 1.1. $m(z)$ uniquely determines q a.e. on $[0,1]$.
Our fundamental strategy can be described as follows:
(a) Note that λ is an eigenvalue of $H\left(h_{0}\right)$ if and only if $m(\lambda)=-h_{0}$.
(b) Prove a general theorem that knowing m at points $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}, \ldots$ determines m as long as $\left\{\lambda_{n}\right\}_{n \in \mathbb{N}_{0}}$ has sufficient density. Given (a), this will allow one to prove that if $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}, \ldots$ have sufficient density, an infinite sequence of pairs $\left\{\left(\lambda_{n}, \alpha_{n}\right)\right\}_{n \in \mathbb{N}_{0}}$ and the knowledge that $H\left(h_{0}=\alpha_{n}\right)$ has an eigenvalue at λ_{n} determines m (and so q a.e. on $[0,1]$ by Theorem 1.1).
(c) Use scaling covariance to extend the $[0,1]$ result to one for $[x, 1]$ for any $x \in(0,1)$.
(d) Note that a knowledge of q a.e. on $[0, x]$ allows one to update boundary conditions. Explicitly, let $H\left(h_{x}\right)$ be the operator in $L^{2}((x, 1))$ with boundary condition (1.2) but (1.1) replaced by

$$
\begin{equation*}
u^{\prime}(x)+h_{x} u(x)=0 \tag{1.3}
\end{equation*}
$$

Then λ_{n} is an eigenvalue of $H\left(h_{0}=\alpha_{n}\right)$ if and only if it is an eigenvalue of $H\left(h_{x_{0}}=\beta_{n}\right)$, where β_{n} is obtained by solving $m_{n}^{\prime}(x)=q(x)-\lambda_{n}-m_{n}^{2}$ on [$0, x_{0}$] with the boundary condition $m_{n}(x=0)=-\alpha_{n}$ and setting $\beta_{n}=-m_{n}\left(x=x_{0}\right)$.

We will present steps (b) and (c) in Sections 2 and 3 and then step (d) in Section 4.
We will not explicitly derive them, but the results in [6] that treat operators on $(0,1)$ and that allow one to trade $C^{2 k}$ conditions on q for k eigenvalues can be extended to the context we discuss here.

We also note that the ideas in this paper extend to Jacobi matrices.
Finally, while the present paper and $[5,6]$ concentrate on discrete spectra, we might point out that our m-function strategy also applies in certain cases involving absolutely continuous spectra, see [4].

$\S 2$. Zeros of the m-function

If $a \in \mathbb{R}$, let $a_{+}=\max (a, 0)$. Then
Theorem 2.1. Let $\left\{\lambda_{n}\right\}_{n \in \mathbb{N}_{0}}$ be a sequence of distinct positive real numbers satisfying

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\left(\lambda_{n}-\frac{1}{4} \pi^{2} n^{2}\right)_{+}}{n^{2}}<\infty \tag{2.1}
\end{equation*}
$$

Let m_{1}, m_{2} be the m-functions for two operators $H_{j}=-\frac{d^{2}}{d x^{2}}+q_{j}$ in $L^{2}((0,1))$ with boundary conditions

$$
u^{\prime}(1)+h_{1}^{(j)} u(1)=0
$$

and $h_{1}^{(j)} \in \mathbb{R}, j=1,2$. Suppose that $m_{1}\left(\lambda_{n}\right)=m_{2}\left(\lambda_{n}\right)$ for all $n \in \mathbb{N}_{0}$. Then $m_{1}=m_{2}$ (and hence $q_{1}=q_{2}$ a.e. on $[0,1]$ and $h_{1}^{(1)}=h_{1}^{(2)}$).
Remarks. 1. In our examples, $\lambda_{n} \sim \pi^{2} n^{2}+C$ as $n \rightarrow \infty$ (cf. (3.1)), so (2.1) is satisfied, for instance, by considering two distinct spectra of $H\left(h_{0}\right)$.
2. We allow the case $m_{1}\left(\lambda_{n}\right)=m_{2}\left(\lambda_{n}\right)=\infty$.

As a preliminary result we note the following
Lemma 2.2. Suppose $\left\{\lambda_{n}\right\}_{n \in \mathbb{N}_{0}}$ is a sequence of positive real numbers satisfying (2.1) and

$$
\begin{equation*}
\sum_{n=0}^{\infty} \lambda_{n}^{-1}<\infty \tag{2.2}
\end{equation*}
$$

Define $f(z):=\prod_{n=0}^{\infty}\left(1-\frac{z}{\lambda_{n}}\right)$, then

$$
\begin{equation*}
\varlimsup_{\substack{|y| \rightarrow \infty \\ y \in \mathbb{R}}} \frac{|y|^{1 / 2} \sinh \left(2|y|^{1 / 2}\right)}{|f(i y)|}<\infty \tag{2.3}
\end{equation*}
$$

Proof. Let $y \in \mathbb{R}$. Then $\sinh \left(2|y|^{1 / 2}\right) /|y|^{1 / 2}=\left|\sin \left(2 i|y|^{1 / 2}\right) /|y|^{1 / 2}\right|$ and

$$
\frac{\sin (2 \sqrt{z})}{2 \sqrt{z}}=\prod_{n=1}^{\infty}\left(1-\frac{4 z}{\pi^{2} n^{2}}\right)
$$

so (2.3) becomes

$$
\begin{equation*}
\varlimsup_{|y| \rightarrow \infty} \frac{|y|}{1+\frac{|y|}{\lambda_{0}}} \prod_{n=1}^{\infty}\left[\frac{\left(1+\frac{4|y|}{\pi^{2} n^{2}}\right)}{\left(1+\frac{|y|}{\lambda_{n}}\right)}\right]<\infty \tag{2.4}
\end{equation*}
$$

using $2^{-1 / 2}(1+|x|) \leq\left(1+x^{2}\right)^{1 / 2} \leq(1+|x|)$.
If $0 \leq a \leq b$, then $\left(\frac{1+a|y|}{1+b|y|}\right) \leq 1$, and if $a>b>0$, then

$$
\begin{gathered}
\frac{(1+a|y|)}{1+b|y|}=1+\frac{(a-b)|y|}{1+b|y|} \leq 1+\frac{a-b}{b}=\frac{a}{b} \\
\prod_{n=1}^{\infty} \frac{\left(1+\frac{4|y|}{\pi^{2} n^{2}}\right)}{\left(1+\frac{|y|}{\lambda_{n}}\right)} \leq \prod_{n: \lambda_{n}>\frac{1}{4} \pi^{2} n^{2}} \frac{4 \lambda_{n}}{\pi^{2} n^{2}}=\prod_{n=1}^{\infty}\left[1+\frac{\left(\lambda_{n}-\frac{1}{4} \pi^{2} n^{2}\right)_{+}}{\frac{1}{4} \pi^{2} n^{2}}\right]<\infty
\end{gathered}
$$

if (2.1) holds.
Proof of Theorem 2.1. We follow the arguments in [5, 6] fairly closely. One can write $m_{j}(z)=\frac{Q_{j}(z)}{P_{j}(z)}, j=1,2$, where
(1) P_{j}, Q_{j} are entire functions satisfying

$$
\begin{align*}
& \left|P_{j}(z)\right| \leq C \exp (\sqrt{|z|}) \tag{2.5a}\\
& \left|Q_{j}(z)\right| \leq C(1+\sqrt{|z|}) \exp (\sqrt{|z|}) \tag{2.5b}\\
& m_{j}(z)= \pm i \sqrt{z}+o(1) \text { as } z \rightarrow \pm i \infty \tag{2.6}
\end{align*}
$$

(We use the square root branch with $\operatorname{Im}(\sqrt{z}) \geq 0$.)
Suppose $m_{1} \neq m_{2}$. Then $P_{2}(z) Q_{1}(z)-P_{1}(z) Q_{2}(z):=H(z)$ is an entire function of order at most $\frac{1}{2}$ and not identically zero. Since $H\left(\lambda_{n}\right)=0$, we conclude that $\sum_{n \in \mathbb{N}_{0}} \lambda_{n}^{-a}<$ ∞ if $a>\frac{1}{2}$. In particular, (2.2) holds, and we can define $f(z)=\prod_{n=0}^{\infty}\left(1-\frac{z}{\lambda_{n}}\right)$. Next, define

$$
\begin{equation*}
G(z):=\frac{H(z)}{f(z)}=\frac{P_{1}(z) P_{2}(z)}{f(z)}\left(m_{1}(z)-m_{2}(z)\right) \tag{2.7}
\end{equation*}
$$

Since $H\left(\lambda_{n}\right)=0, G(z)$ is an entire function. By (2.3),

$$
\varlimsup_{|y| \rightarrow \infty} \frac{|y|^{1 / 2} \exp \left(2|y|^{1 / 2}\right)}{|f(i y)|}<\infty
$$

so by (2.5) and (2.6),

$$
|G(i y)| \leq \frac{\exp \left(2|y|^{1 / 2}\right)}{f(i y)}\left|m_{1}(i y)-m_{2}(i y)\right|=o\left(|y|^{-1 / 2}\right)
$$

goes to zero as $|y| \rightarrow \infty$. The Phragmén-Lindelöf argument of [6] then yields the contradiction $G(z) \equiv 0$, that is, $m_{1}=m_{2}$.
Remark. The above yields $o\left(|y|^{-1 / 2}\right)$ even though $o(1)$ would have been sufficient. We have thrown away half a zero. That means one can prove the following result.

Theorem 2.2. Let $\left\{\lambda_{n}\right\}_{n \in \mathbb{N}_{0}}$ and $\left\{\mu_{n}\right\}_{n \in \mathbb{N}_{0}}$ be two sequences of real numbers satisfying

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\left(\lambda_{n}-\pi^{2} n^{2}\right)_{+}}{n^{2}}<\infty \quad \text { and } \quad \sum_{n=0}^{\infty} \frac{\left(\mu_{n}-\pi^{2} n^{2}\right)_{+}}{n^{2}}<\infty \tag{2.8}
\end{equation*}
$$

with $\mu_{m} \neq \lambda_{n}$ for all $m, n \in \mathbb{N}_{0}$. Let m_{1}, m_{2} be the m-functions for two operators $H_{j}=-\frac{d^{2}}{d x^{2}}+q_{j}, j=1,2$ in $L^{2}((0,1))$ with boundary conditions

$$
u^{\prime}(1)+h_{1}^{(j)} u(1)=0
$$

and $h_{1}^{(j)} \in \mathbb{R}, j=1,2$. Suppose that $m_{1}(z)=m_{2}(z)$ for all z in $\left\{\lambda_{n}\right\}_{n=0}^{\infty} \cup\left\{\mu_{n}\right\}_{n=0}^{\infty}$ except perhaps for one. Then $m_{1}=m_{2}$ (and hence $q_{1}=q_{2}$ a.e. on $[0,1]$ and $\left.h_{1}^{(1)}=h_{1}^{(2)}\right)$.

By scaling, one sees the following analog of Theorem 2.1 holds (there is also an analog of Theorem 2.2):
Theorem 2.3. Let $a<b$ and $\left\{\lambda_{n}\right\}_{n \in \mathbb{N}_{0}}$ be a sequence of distinct positive real numbers satisfying

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\left(\lambda_{n}-\frac{\pi^{2} n^{2}}{4(b-a)^{2}}\right)_{+}}{n^{2}}<\infty . \tag{2.9}
\end{equation*}
$$

Let m_{1}, m_{2} be the m-functions for two operators $H_{j}=-\frac{d^{2}}{d x^{2}}+q_{j}, j=1,2$ in $L^{2}((a, b))$ with boundary conditions (1.3) at $x=a$ and

$$
u^{\prime}(b)+h_{b}^{(j)} u(b)=0
$$

where $h_{b}^{(j)} \in \mathbb{R}, j=1,2$. Suppose that $m_{1}\left(\lambda_{n}\right)=m_{2}\left(\lambda_{n}\right)$ for all $n \in \mathbb{N}_{0}$. Then $m_{1}=m_{2}$ (and hence $q_{1}=q_{2}$ a.e. on $[a, b]$ and $h_{b}^{(1)}=h_{b}^{(2)}$).

§3. Whole Interval Results

Fix $h_{1} \in \mathbb{R}$, let $H\left(h_{0}\right)$ be the operator on $L^{2}((0,1))$ with $u^{\prime}(1)+h_{1} u(1)=0$ and $u^{\prime}(0)+$ $h_{0} u(0)=0$ boundary conditions, and denote by $\lambda_{n}\left(h_{0}\right)$ the corresponding eigenvalues of $H\left(h_{0}\right)$. Then, for $h_{0} \in \mathbb{R}$, it is known (see, e.g., the references in [6]) that

$$
\begin{equation*}
\lambda_{n}=(n \pi)^{2}+2\left(h_{1}-h_{0}\right)+\int_{0}^{1} q(x) d x+o(1) \text { as } n \rightarrow \infty \tag{3.1}
\end{equation*}
$$

and for $h_{0}=\infty$,

$$
\begin{equation*}
\lambda_{n}=\left[\left(n+\frac{1}{2}\right) \pi\right]^{2}+2 h_{1}+\int_{0}^{1} q(x) d x+o(1) \text { as } n \rightarrow \infty \tag{3.2}
\end{equation*}
$$

To say that $H\left(h_{0}\right)$ has eigenvalue λ is equivalent to $m(\lambda)=-h_{0}$. Thus, Theorem 2.1 implies

Theorem 3.1. Let $H_{1}\left(h_{0}\right), H_{2}\left(h_{0}\right)$ be associated with two potentials q_{1}, q_{2} on $[0,1]$ and two potentially distinct boundary conditions $h_{1}^{(1)}, h_{1}^{(2)} \in \mathbb{R}$ at $x=1$. Suppose that $\left\{\left(\lambda_{n}, h_{0}^{(n)}\right)\right\}_{n \in \mathbb{N}_{0}}$ is a sequence of pairs with $\lambda_{0}<\lambda_{1}<\cdots \rightarrow \infty$ and $h_{0}^{(n)} \in \mathbb{R} \cup\{\infty\}$ so that both $H_{1}\left(h_{0}^{(n)}\right)$ and $H_{2}\left(h_{0}^{(n)}\right)$ have eigenvalues at λ_{n}. Suppose that (2.1) holds. Then $q_{1}=q_{2}$ a.e. on $[0,1]$ and $h_{1}^{(1)}=h_{1}^{(2)}$.

Given (3.1), (3.2) we immediately have Borg's theorem [1] as a corollary (this is essentially the usual proof), but more is true. For example, by using Theorem 2.2 one infers:

Corollary $3.2[\mathbf{1}]$. Fix $h_{0}^{(1)}, h_{0}^{(2)} \in \mathbb{R}$. Then all the eigenvalues of $H\left(h_{0}^{(1)}\right)$ and all the eigenvalues of $H\left(h_{0}^{(2)}\right)$, save one, uniquely determine q a.e. on $[0,1]$.
Corollary 3.3. Let $h_{0}^{(1)}, h_{0}^{(2)}, h_{0}^{(3)} \in \mathbb{R}$ and denote by $\sigma_{j}=\sigma\left(H\left(h_{0}^{(j)}\right)\right)$ the spectra of $H\left(h_{0}^{(j)}\right), j=1,2,3$. Assume $S_{j} \subseteq \sigma_{j}, j=1,2,3$ and suppose that for all sufficiently large $\lambda_{0}>0$ we have

$$
\#\left\{\lambda \in\left\{S_{1} \cup S_{2} \cup S_{3}\right\} \text { with } \lambda \leq \lambda_{0}\right\} \geq \frac{2}{3} \#\left\{\lambda \in\left\{\sigma_{1} \cup \sigma_{2} \cup \sigma_{3}\right\} \text { with } \lambda \leq \lambda_{0}\right\}-1 .
$$

Then q is uniquely determined a.e. on $[0,1]$.
In particular, two-thirds of three spectra determine q.

§4. Updating m

We are now able to understand why partial information on q - knowing it on $[0, a]$ lets us get away with less information on eigenvalues, a phenomenon originally discovered by Hochstadt-Lieberman [9] in the special case where $a=\frac{1}{2}$. We note that $m(z, x)$ satisfies the Ricatti-type equation

$$
\begin{equation*}
m^{\prime}(z, x)=q(x)-z-m^{2}(z, x) \tag{4.1}
\end{equation*}
$$

If we know that λ is an eigenvalue of $H\left(h_{0}\right)$, then $m(\lambda, 0)=-h_{0}$. If we know q on $[0, a]$, we can use (4.1) to compute $m(\lambda, a):=-h_{a}$ and so infer that λ is an eigenvalue of $H\left(h_{a}\right)$, the operator in $L^{2}((a, 1))$. By Theorem 2.3, that means we only need a lower density of eigenvalues of the various $H\left(h_{a}\right)$. A typical result is the following

Theorem 4.1. Let σ_{N} and σ_{D} be the eigenvalues of $H\left(h_{0}=0\right)$ and $H\left(h_{0}=\infty\right)$, respectively. Let $S_{N} \subseteq \sigma_{N}, S_{D} \subseteq \sigma_{D}$. Fix $a \in(0,1)$. Suppose for $\lambda_{0}>0$ sufficiently large that

$$
\#\left\{\lambda \in\left\{S_{N} \cup S_{D}\right\} \text { with } \lambda \leq \lambda_{0}\right\} \geq(1-a) \#\left\{\lambda \in\left\{\sigma_{N} \cup \sigma_{D}\right\} \text { with } \lambda \leq \lambda_{0}\right\} .
$$

Then S_{N}, S_{D} and q on $[0, a]$ uniquely determine q a.e. on $[0,1]$.
This follows immediately from the updating idea. For example, if $a=\frac{3}{4}$, we can recover Theorem 1.3 of [6] (it is essentially a reworking of the proof in [6]); but for
$a \in\left(0, \frac{1}{2}\right)$, the result is new and implies, for example, that q on $\left[0, \frac{1}{4}\right]$, all the Neumann eigenvalues, and half the Dirichlet eigenvalues determine q a.e. on $[0,1]$.

References

1. G. Borg, Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe, Acta Math. 78 (1946), 1-96.
2. G. Borg, Uniqueness theorems in the spectral theory of $y^{\prime \prime}+(\lambda-q(x)) y=0$, Proc. 11th Scandinavian Congress of Mathematicians, Johan Grundt Tanums Forlag, Oslo, 1952, 276-287.
3. I.M. Gel'fand and B.M. Levitan, On the determination of a differential equation from its special function, Izv. Akad. Nauk SSR. Ser. Mat. 15 (1951), 309-360 (Russian); English transl. in Amer. Math. Soc. Transl. Ser. (2) 1 (1955), 253-304.
4. F. Gesztesy and B. Simon, Inverse spectral analysis with partial information on the potential, I. The case of an a.c. component in the spectrum, Helv. Phys. Acta 70 (1997), 66-71.
5. F. Gesztesy and B. Simon, m-functions and inverse spectral analysis for finite and semi-infinite Jacobi matrices, preprint, 1996.
6. F. Gesztesy and B. Simon, Inverse spectral analysis with partial information on the potential, II. The case of discrete spectrum, preprint, 1997.
7. O.H. Hald, Inverse eigenvalue problem for the mantle, Geophys. J. R. Astr. Soc. 62 (1980), 41-48.
8. H. Hochstadt, The inverse Sturm-Liouville problem, Commun. Pure Appl. Math. 26 (1973), 715-729.
9. H. Hochstadt and B. Lieberman, An inverse Sturm-Liouville problem with mixed given data, SIAM J. Appl. Math. 34 (1978), 676-680.
10. N. Levinson, The inverse Sturm-Liouville problem, Mat. Tidskr. B (1949), 25-30.
11. B. Levitan, On the determination of a Sturm-Liouville equation by two spectra, Amer. Math. Soc. Transl. 68 (1968), 1-20.
12. B. Levitan, Inverse Sturm-Liouville Problems, VNU Science Press, Utrecht, 1987.
13. B.M. Levitan and M.G. Gasymov, Determination of a differential equation by two of its spectra, Russ. Math. Surv. 19:2 (1964), 1-63.
14. M.M. Malamud, Similarity of Volterra operators and related questions of the theory of differential equations of fractional order, Trans. Moscow Math. Soc. 55 (1994),
$57-122$.
15. M.M. Malamud, Spectral analysis of Volterra operators and inverse problems for systems of differential equations, preprint, 1997.
16. V.A. Marchenko, Some questions in the theory of one-dimensional linear differential operators of the second order, I, Trudy Moskov. Mat. Obšč. 1 (1952), 327-420 (Russian); English transl. in Amer. Math. Soc. Transl. (2) 101 (1973), 1-104.
17. B. Simon, A new approach to inverse spectral theory, I. The basic formalism, in preparation.

[^0]: ${ }^{1}$ IIMAS-UNAM, Apdo. Postal 20-726, Admon No. 20, 01000 Mexico D.F., Mexico. E-mail: delrio@servidor.unam.mx
 ${ }^{2}$ Department of Mathematics, University of Missouri, Columbia, MO 65211, USA. E-mail: fritz@math.missouri.edu
 ${ }^{3}$ Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasade-na, CA 91125, USA. E-mail: bsimon@caltech.edu

 This material is based upon work supported by CONACYT Project 05567P-E and the National Science Foundation under Grant Nos. DMS-9623121 and DMS-9401491.

 To be submitted to Intl. Math. Research Notes

