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Abstract. We discuss results where information on parts of the discrete spectra of one-

dimensional Schrödinger operators H = − d2

dx2 + q in L2((0, 1)) or of a finite Jacobi matrix

together with partial information on q uniquely determines q a.e. on [0, 1]. These extend

classical results of Borg and Hochstadt-Lieberman as well as results in paper II of this series.

§1. Introduction

This paper is a postscript to two earlier papers [5, 6] in that it provides a new way
of looking at the problems considered in those papers that allows the same methods to
prove additional results.

To explain our results, we recall earlier theorems of Borg [1] (see also [8, 10–14]) and of
Hochstadt-Lieberman [9] (see also [7, 15]). Throughout this paper assume q ∈ L1((0, 1))
to be real-valued and consider the operator H = − d2

dx2 + q in L2((0, 1)) with boundary
conditions

u′(0) + h0u(0) = 0, (1.1)

u′(1) + h1u(1) = 0, (1.2)

where hj ∈ R ∪ {∞}, j = 0, 1 (with h0 = ∞ shorthand for the boundary condition
u(0) = 0). Fix h1 ∈ R but think of H(h0) as a family of operators depending on h0

as a parameter. Then Borg’s and Hochstadt-Lieberman’s results can be paraphrased as
follows:
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Borg [1]. The spectra of H(h0) for two values of h0 determine q.

Hochstadt-Lieberman [9]. The spectra of H(h0) for one value of h0 and q on [0, 1
2 ]

determine q.

In [6], two of us proved a result that can be paraphrased as

Theorem of [6]. Half the spectra of one H(h0) and q on [0, 3
4 ] determine q.

One of our goals in this note is to prove

New Result. The spectrum of one H(h0) and half the spectrum of another H(h0) and
q on [0, 1

4 ] determine q.

We will also show that

New Result. Two-thirds of the spectra of three H(h0) determine q.

Our point is as much a new way of looking at the argument in [6] as these new results.
Fundamental to our approach here and in [5, 6] is the Titchmarsh-Weyl m-function
defined by

mh1(z) =
u′

h1
(z, 0)

uh1(z, 0)
,

where uh1(z, x) solves −u′′(z, x) + q(x)u(z, x) = zu(z, x) with the boundary condition
(1.2). mh1 is a meromorphic function on C (in fact, a Herglotz function) with all its zeros
and poles on the real axis. Since h1 ∈ R will be fixed throughout this paper, we will
delete the subscript h1 from now on and simply write m(z) instead. Moreover, due to the
assumption h1 ∈ R, we will index the eigenvalues of H(h0) by {λn}n∈N0, N0 = N ∪ {0}.

A fundamental result of Marchenko [16] (see also [2, 3, 17]) says

Theorem 1.1. m(z) uniquely determines q a.e. on [0, 1].

Our fundamental strategy can be described as follows:
(a) Note that λ is an eigenvalue of H(h0) if and only if m(λ) = −h0.
(b) Prove a general theorem that knowing m at points λ0, λ1, . . . , λn, . . . determines

m as long as {λn}n∈N0 has sufficient density. Given (a), this will allow one to prove that
if λ0, λ1, . . . , λn, . . . have sufficient density, an infinite sequence of pairs {(λn, αn)}n∈N0

and the knowledge that H(h0 = αn) has an eigenvalue at λn determines m (and so q
a.e. on [0, 1] by Theorem 1.1).

(c) Use scaling covariance to extend the [0, 1] result to one for [x, 1] for any x ∈ (0, 1).
(d) Note that a knowledge of q a.e. on [0, x] allows one to update boundary conditions.

Explicitly, let H(hx) be the operator in L2((x, 1)) with boundary condition (1.2) but (1.1)
replaced by

u′(x) + hxu(x) = 0. (1.3)

Then λn is an eigenvalue of H(h0 = αn) if and only if it is an eigenvalue of H(hx0 = βn),
where βn is obtained by solving m′

n(x) = q(x) − λn − m2
n on [0, x0] with the boundary

condition mn(x = 0) = −αn and setting βn = −mn(x = x0).



INVERSE SPECTRAL ANALYSIS: UPDATING BOUNDARY CONDITIONS 3

We will present steps (b) and (c) in Sections 2 and 3 and then step (d) in Section 4.
We will not explicitly derive them, but the results in [6] that treat operators on (0, 1)

and that allow one to trade C2k conditions on q for k eigenvalues can be extended to the
context we discuss here.

We also note that the ideas in this paper extend to Jacobi matrices.
Finally, while the present paper and [5, 6] concentrate on discrete spectra, we might

point out that our m-function strategy also applies in certain cases involving absolutely
continuous spectra, see [4].

§2. Zeros of the m-function

If a ∈ R, let a+ = max(a, 0). Then

Theorem 2.1. Let {λn}n∈N0 be a sequence of distinct positive real numbers satisfying

∞∑
n=0

(λn − 1
4
π2n2)+

n2
< ∞. (2.1)

Let m1,m2 be the m-functions for two operators Hj = − d2

dx2 + qj in L2((0, 1)) with
boundary conditions

u′(1) + h
(j)
1 u(1) = 0

and h
(j)
1 ∈ R, j = 1, 2. Suppose that m1(λn) = m2(λn) for all n ∈ N0. Then m1 = m2

(and hence q1 = q2 a.e. on [0, 1] and h
(1)
1 = h

(2)
1 ).

Remarks. 1. In our examples, λn ∼ π2n2 + C as n → ∞ (cf. (3.1)), so (2.1) is satisfied,
for instance, by considering two distinct spectra of H(h0).

2. We allow the case m1(λn) = m2(λn) = ∞.

As a preliminary result we note the following

Lemma 2.2. Suppose {λn}n∈N0 is a sequence of positive real numbers satisfying (2.1)
and ∞∑

n=0

λ−1
n < ∞. (2.2)

Define f(z) :=
∏∞

n=0(1 − z
λn

), then

lim
|y|→∞

y∈R

|y|1/2 sinh(2|y|1/2)
|f(iy)| < ∞. (2.3)

Proof. Let y ∈ R. Then sinh(2|y|1/2 )/|y|1/2 = | sin(2i|y|1/2)/|y|1/2| and

sin(2
√

z )
2
√

z
=

∞∏
n=1

(
1 − 4z

π2n2

)
,
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so (2.3) becomes

lim
|y|→∞

|y|
1 + |y|

λ0

∞∏
n=1

[
(1 + 4|y|

π2n2 )

(1 + |y|
λn

)

]
< ∞ (2.4)

using 2−1/2(1 + |x|) ≤ (1 + x2)1/2 ≤ (1 + |x|).
If 0 ≤ a ≤ b, then (1+a|y|

1+b|y| ) ≤ 1, and if a > b > 0, then

(1 + a|y|)
1 + b|y| = 1 +

(a − b)|y|
1 + b|y| ≤ 1 +

a − b

b
=

a

b
,

∞∏
n=1

(1 + 4|y|
π2n2 )

(1 + |y|
λn

)
≤

∏
n:λn> 1

4 π2n2

4λn

π2n2
=

∞∏
n=1

[
1 +

(λn − 1
4π2n2)+

1
4
π2n2

]
< ∞

if (2.1) holds. �
Proof of Theorem 2.1. We follow the arguments in [5, 6] fairly closely. One can write
mj(z) = Qj(z)

Pj(z)
, j = 1, 2, where

(1) Pj , Qj are entire functions satisfying

|Pj(z)| ≤ C exp(
√

|z| ), (2.5a)

|Qj(z)| ≤ C(1 +
√
|z| ) exp(

√
|z| ). (2.5b)

(2)
mj(z) = ±i

√
z + o(1) as z → ±i∞. (2.6)

(We use the square root branch with Im (
√

z) ≥ 0.)
Suppose m1 6= m2. Then P2(z)Q1(z)−P1(z)Q2(z) := H(z) is an entire function of or-

der at most 1
2

and not identically zero. Since H(λn) = 0, we conclude that
∑

n∈N0
λ−a

n <

∞ if a > 1
2
. In particular, (2.2) holds, and we can define f(z) =

∏∞
n=0(1 − z

λn
). Next,

define

G(z) :=
H(z)
f(z)

=
P1(z)P2(z)

f(z)
(m1(z) − m2(z)). (2.7)

Since H(λn) = 0, G(z) is an entire function. By (2.3),

lim
|y|→∞

|y|1/2 exp (2|y|1/2)
|f(iy)| < ∞,

so by (2.5) and (2.6),

|G(iy)| ≤ exp (2|y|1/2)
f(iy)

|m1(iy) −m2(iy)| = o(|y|−1/2)

goes to zero as |y| → ∞. The Phragmén-Lindelöf argument of [6] then yields the contra-
diction G(z) ≡ 0, that is, m1 = m2. �
Remark. The above yields o(|y|−1/2) even though o(1) would have been sufficient. We
have thrown away half a zero. That means one can prove the following result.
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Theorem 2.2. Let {λn}n∈N0 and {µn}n∈N0 be two sequences of real numbers satisfying

∞∑
n=0

(λn − π2n2)+
n2

< ∞ and
∞∑

n=0

(µn − π2n2)+
n2

< ∞, (2.8)

with µm 6= λn for all m,n ∈ N0. Let m1,m2 be the m-functions for two operators
Hj = − d2

dx2 + qj, j = 1, 2 in L2((0, 1)) with boundary conditions

u′(1) + h
(j)
1 u(1) = 0

and h
(j)
1 ∈ R, j = 1, 2. Suppose that m1(z) = m2(z) for all z in {λn}∞n=0 ∪ {µn}∞n=0

except perhaps for one. Then m1 = m2 (and hence q1 = q2 a.e. on [0, 1] and h
(1)
1 = h

(2)
1 ).

By scaling, one sees the following analog of Theorem 2.1 holds (there is also an analog
of Theorem 2.2):

Theorem 2.3. Let a < b and {λn}n∈N0 be a sequence of distinct positive real numbers
satisfying

∞∑
n=0

(λn − π2n2

4(b−a)2
)+

n2
< ∞. (2.9)

Let m1,m2 be the m-functions for two operators Hj = − d2

dx2 + qj, j = 1, 2 in L2((a, b))
with boundary conditions (1.3) at x = a and

u′(b) + h
(j)
b u(b) = 0,

where h
(j)
b ∈ R, j = 1, 2. Suppose that m1(λn) = m2(λn) for all n ∈ N0. Then m1 = m2

(and hence q1 = q2 a.e. on [a, b] and h
(1)
b = h

(2)
b ).

§3. Whole Interval Results

Fix h1 ∈ R, let H(h0) be the operator on L2((0, 1)) with u′(1)+h1u(1) = 0 and u′(0)+
h0u(0) = 0 boundary conditions, and denote by λn(h0) the corresponding eigenvalues of
H(h0). Then, for h0 ∈ R, it is known (see, e.g., the references in [6]) that

λn = (nπ)2 + 2(h1 − h0) +
∫ 1

0

q(x)dx + o(1) as n → ∞ (3.1)

and for h0 = ∞,

λn = [(n + 1
2 )π]2 + 2h1 +

∫ 1

0

q(x)dx + o(1) as n → ∞. (3.2)

To say that H(h0) has eigenvalue λ is equivalent to m(λ) = −h0. Thus, Theorem 2.1
implies
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Theorem 3.1. Let H1(h0),H2(h0) be associated with two potentials q1, q2 on [0, 1] and
two potentially distinct boundary conditions h

(1)
1 , h

(2)
1 ∈ R at x = 1. Suppose that

{(λn, h
(n)
0 )}n∈N0 is a sequence of pairs with λ0 < λ1 < · · · → ∞ and h

(n)
0 ∈ R ∪ {∞} so

that both H1(h
(n)
0 ) and H2(h

(n)
0 ) have eigenvalues at λn. Suppose that (2.1) holds. Then

q1 = q2 a.e. on [0, 1] and h
(1)
1 = h

(2)
1 .

Given (3.1), (3.2) we immediately have Borg’s theorem [1] as a corollary (this is
essentially the usual proof), but more is true. For example, by using Theorem 2.2 one
infers:

Corollary 3.2 [1]. Fix h
(1)
0 , h

(2)
0 ∈ R. Then all the eigenvalues of H(h(1)

0 ) and all the
eigenvalues of H(h(2)

0 ), save one, uniquely determine q a.e. on [0, 1].

Corollary 3.3. Let h
(1)
0 , h

(2)
0 , h

(3)
0 ∈ R and denote by σj = σ(H(h(j)

0 )) the spectra of
H(h(j)

0 ), j = 1, 2, 3. Assume Sj ⊆ σj, j = 1, 2, 3 and suppose that for all sufficiently
large λ0 > 0 we have

#{λ ∈ {S1 ∪ S2 ∪ S3} with λ ≤ λ0} ≥ 2
3#{λ ∈ {σ1 ∪ σ2 ∪ σ3} with λ ≤ λ0} − 1.

Then q is uniquely determined a.e. on [0, 1].

In particular, two-thirds of three spectra determine q.

§4. Updating m

We are now able to understand why partial information on q — knowing it on [0, a] —
lets us get away with less information on eigenvalues, a phenomenon originally discovered
by Hochstadt-Lieberman [9] in the special case where a = 1

2 . We note that m(z, x)
satisfies the Ricatti-type equation

m′(z, x) = q(x) − z − m2(z, x). (4.1)

If we know that λ is an eigenvalue of H(h0), then m(λ, 0) = −h0. If we know q on
[0, a], we can use (4.1) to compute m(λ, a) := −ha and so infer that λ is an eigenvalue
of H(ha), the operator in L2((a, 1)). By Theorem 2.3, that means we only need a lower
density of eigenvalues of the various H(ha). A typical result is the following

Theorem 4.1. Let σN and σD be the eigenvalues of H(h0 = 0) and H(h0 = ∞),
respectively. Let SN ⊆ σN , SD ⊆ σD. Fix a ∈ (0, 1). Suppose for λ0 > 0 sufficiently
large that

#{λ ∈ {SN ∪ SD} with λ ≤ λ0} ≥ (1 − a)#{λ ∈ {σN ∪ σD} with λ ≤ λ0}.
Then SN , SD and q on [0, a] uniquely determine q a.e. on [0, 1].

This follows immediately from the updating idea. For example, if a = 3
4 , we can

recover Theorem 1.3 of [6] (it is essentially a reworking of the proof in [6]); but for
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a ∈ (0, 1
2
), the result is new and implies, for example, that q on [0, 1

4
], all the Neumann

eigenvalues, and half the Dirichlet eigenvalues determine q a.e. on [0, 1].
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