INVERSE SPECTRAL ANALYSIS WITH PARTIAL INFORMATION ON THE POTENTIAL, III. UPDATING BOUNDARY CONDITIONS

RAFAEL DEL RIO¹, FRITZ GESZTESY², AND BARRY SIMON³

June 3, 1997

ABSTRACT. We discuss results where information on parts of the discrete spectra of onedimensional Schrödinger operators $H = -\frac{d^2}{dx^2} + q$ in $L^2((0,1))$ or of a finite Jacobi matrix together with partial information on q uniquely determines q a.e. on [0,1]. These extend classical results of Borg and Hochstadt-Lieberman as well as results in paper II of this series.

§1. Introduction

This paper is a postscript to two earlier papers [5, 6] in that it provides a new way of looking at the problems considered in those papers that allows the same methods to prove additional results.

To explain our results, we recall earlier theorems of Borg [1] (see also [8, 10–14]) and of Hochstadt-Lieberman [9] (see also [7, 15]). Throughout this paper assume $q \in L^1((0,1))$ to be real-valued and consider the operator $H = -\frac{d^2}{dx^2} + q$ in $L^2((0,1))$ with boundary conditions

$$u'(0) + h_0 u(0) = 0, (1.1)$$

$$u'(1) + h_1 u(1) = 0, (1.2)$$

where $h_j \in \mathbb{R} \cup \{\infty\}$, j = 0, 1 (with $h_0 = \infty$ shorthand for the boundary condition u(0) = 0). Fix $h_1 \in \mathbb{R}$ but think of $H(h_0)$ as a family of operators depending on h_0 as a parameter. Then Borg's and Hochstadt-Lieberman's results can be paraphrased as follows:

To be submitted to Intl. Math. Research Notes

¹ IIMAS-UNAM, Apdo. Postal 20-726, Admon No. 20, 01000 Mexico D.F., Mexico. E-mail: delrio@servidor.unam.mx

² Department of Mathematics, University of Missouri, Columbia, MO 65211, USA. E-mail: fritz@math.missouri.edu

³ Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasade-na, CA 91125, USA. E-mail: bsimon@caltech.edu

This material is based upon work supported by CONACYT Project 05567P-E and the National Science Foundation under Grant Nos. DMS-9623121 and DMS-9401491.

Borg [1]. The spectra of $H(h_0)$ for two values of h_0 determine q.

Hochstadt-Lieberman [9]. The spectra of $H(h_0)$ for one value of h_0 and q on $[0, \frac{1}{2}]$ determine q.

In [6], two of us proved a result that can be paraphrased as

Theorem of [6]. Half the spectra of one $H(h_0)$ and q on $[0, \frac{3}{4}]$ determine q.

One of our goals in this note is to prove

New Result. The spectrum of one $H(h_0)$ and half the spectrum of another $H(h_0)$ and q on $[0, \frac{1}{4}]$ determine q.

We will also show that

New Result. Two-thirds of the spectra of three $H(h_0)$ determine q.

Our point is as much a new way of looking at the argument in [6] as these new results. Fundamental to our approach here and in [5, 6] is the Titchmarsh-Weyl m-function defined by

$$m_{h_1}(z) = \frac{u'_{h_1}(z,0)}{u_{h_1}(z,0)},$$

where $u_{h_1}(z,x)$ solves -u''(z,x) + q(x)u(z,x) = zu(z,x) with the boundary condition (1.2). m_{h_1} is a meromorphic function on \mathbb{C} (in fact, a Herglotz function) with all its zeros and poles on the real axis. Since $h_1 \in \mathbb{R}$ will be fixed throughout this paper, we will delete the subscript h_1 from now on and simply write m(z) instead. Moreover, due to the assumption $h_1 \in \mathbb{R}$, we will index the eigenvalues of $H(h_0)$ by $\{\lambda_n\}_{n \in \mathbb{N}_0}$, $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$.

A fundamental result of Marchenko [16] (see also [2, 3, 17]) says

Theorem 1.1. m(z) uniquely determines q a.e. on [0,1].

Our fundamental strategy can be described as follows:

- (a) Note that λ is an eigenvalue of $H(h_0)$ if and only if $m(\lambda) = -h_0$.
- (b) Prove a general theorem that knowing m at points $\lambda_0, \lambda_1, \ldots, \lambda_n, \ldots$ determines m as long as $\{\lambda_n\}_{n\in\mathbb{N}_0}$ has sufficient density. Given (a), this will allow one to prove that if $\lambda_0, \lambda_1, \ldots, \lambda_n, \ldots$ have sufficient density, an infinite sequence of pairs $\{(\lambda_n, \alpha_n)\}_{n\in\mathbb{N}_0}$ and the knowledge that $H(h_0 = \alpha_n)$ has an eigenvalue at λ_n determines m (and so q a.e. on [0,1] by Theorem 1.1).
 - (c) Use scaling covariance to extend the [0,1] result to one for [x,1] for any $x \in (0,1)$.
- (d) Note that a knowledge of q a.e. on [0, x] allows one to update boundary conditions. Explicitly, let $H(h_x)$ be the operator in $L^2((x, 1))$ with boundary condition (1.2) but (1.1) replaced by

$$u'(x) + h_x u(x) = 0. (1.3)$$

Then λ_n is an eigenvalue of $H(h_0 = \alpha_n)$ if and only if it is an eigenvalue of $H(h_{x_0} = \beta_n)$, where β_n is obtained by solving $m'_n(x) = q(x) - \lambda_n - m_n^2$ on $[0, x_0]$ with the boundary condition $m_n(x = 0) = -\alpha_n$ and setting $\beta_n = -m_n(x = x_0)$.

We will present steps (b) and (c) in Sections 2 and 3 and then step (d) in Section 4. We will not explicitly derive them, but the results in [6] that treat operators on (0,1) and that allow one to trade C^{2k} conditions on q for k eigenvalues can be extended to the context we discuss here.

We also note that the ideas in this paper extend to Jacobi matrices.

Finally, while the present paper and [5, 6] concentrate on discrete spectra, we might point out that our m-function strategy also applies in certain cases involving absolutely continuous spectra, see [4].

$\S 2$. Zeros of the *m*-function

If $a \in \mathbb{R}$, let $a_+ = \max(a, 0)$. Then

Theorem 2.1. Let $\{\lambda_n\}_{n\in\mathbb{N}_0}$ be a sequence of distinct positive real numbers satisfying

$$\sum_{n=0}^{\infty} \frac{(\lambda_n - \frac{1}{4}\pi^2 n^2)_+}{n^2} < \infty. \tag{2.1}$$

Let m_1, m_2 be the m-functions for two operators $H_j = -\frac{d^2}{dx^2} + q_j$ in $L^2((0,1))$ with boundary conditions

$$u'(1) + h_1^{(j)}u(1) = 0$$

and $h_1^{(j)} \in \mathbb{R}$, j = 1, 2. Suppose that $m_1(\lambda_n) = m_2(\lambda_n)$ for all $n \in \mathbb{N}_0$. Then $m_1 = m_2$ (and hence $q_1 = q_2$ a.e. on [0,1] and $h_1^{(1)} = h_1^{(2)}$).

Remarks. 1. In our examples, $\lambda_n \sim \pi^2 n^2 + C$ as $n \to \infty$ (cf. (3.1)), so (2.1) is satisfied, for instance, by considering two distinct spectra of $H(h_0)$.

2. We allow the case $m_1(\lambda_n) = m_2(\lambda_n) = \infty$.

As a preliminary result we note the following

Lemma 2.2. Suppose $\{\lambda_n\}_{n\in\mathbb{N}_0}$ is a sequence of positive real numbers satisfying (2.1) and

$$\sum_{n=0}^{\infty} \lambda_n^{-1} < \infty. \tag{2.2}$$

Define $f(z) := \prod_{n=0}^{\infty} (1 - \frac{z}{\lambda_n})$, then

$$\overline{\lim_{\substack{|y|\to\infty\\y\in\mathbb{R}}}} \frac{|y|^{1/2}\sinh(2|y|^{1/2})}{|f(iy)|} < \infty. \tag{2.3}$$

Proof. Let $y \in \mathbb{R}$. Then $\sinh(2|y|^{1/2})/|y|^{1/2} = |\sin(2i|y|^{1/2})/|y|^{1/2}|$ and

$$\frac{\sin(2\sqrt{z})}{2\sqrt{z}} = \prod_{n=1}^{\infty} \left(1 - \frac{4z}{\pi^2 n^2}\right),$$

so (2.3) becomes

$$\frac{\overline{\lim}}{|y| \to \infty} \frac{|y|}{1 + \frac{|y|}{\lambda_0}} \prod_{n=1}^{\infty} \left[\frac{\left(1 + \frac{4|y|}{\pi^2 n^2}\right)}{\left(1 + \frac{|y|}{\lambda_n}\right)} \right] < \infty$$
(2.4)

using $2^{-1/2}(1+|x|) \le (1+x^2)^{1/2} \le (1+|x|)$. If $0 \le a \le b$, then $(\frac{1+a|y|}{1+b|y|}) \le 1$, and if a > b > 0, then

$$\frac{(1+a|y|)}{1+b|y|} = 1 + \frac{(a-b)|y|}{1+b|y|} \le 1 + \frac{a-b}{b} = \frac{a}{b},$$

$$\prod_{n=1}^{\infty} \frac{(1+\frac{4|y|}{\pi^2 n^2})}{(1+\frac{|y|}{\lambda_n})} \le \prod_{n:\lambda_n > \frac{1}{4}\pi^2 n^2} \frac{4\lambda_n}{\pi^2 n^2} = \prod_{n=1}^{\infty} \left[1 + \frac{(\lambda_n - \frac{1}{4}\pi^2 n^2)_+}{\frac{1}{4}\pi^2 n^2} \right] < \infty$$

if (2.1) holds. \square

Proof of Theorem 2.1. We follow the arguments in [5, 6] fairly closely. One can write $m_j(z) = \frac{Q_j(z)}{P_i(z)}, j = 1, 2$, where

(1) P_i, Q_i are entire functions satisfying

$$|P_j(z)| \le C \exp(\sqrt{|z|}), \tag{2.5a}$$

$$|Q_j(z)| \le C(1 + \sqrt{|z|}) \exp(\sqrt{|z|}).$$
 (2.5b)

(2)
$$m_j(z) = \pm i\sqrt{z} + o(1) \text{ as } z \to \pm i\infty.$$
 (2.6)

(We use the square root branch with $\operatorname{Im}(\sqrt{z}) \geq 0$.)

Suppose $m_1 \neq m_2$. Then $P_2(z)Q_1(z) - P_1(z)Q_2(z) := H(z)$ is an entire function of order at most $\frac{1}{2}$ and not identically zero. Since $H(\lambda_n) = 0$, we conclude that $\sum_{n \in \mathbb{N}_0} \lambda_n^{-a} < 0$ ∞ if $a > \frac{1}{2}$. In particular, (2.2) holds, and we can define $f(z) = \prod_{n=0}^{\infty} (1 - \frac{z}{\lambda_n})$. Next, define

$$G(z) := \frac{H(z)}{f(z)} = \frac{P_1(z)P_2(z)}{f(z)} \left(m_1(z) - m_2(z) \right). \tag{2.7}$$

Since $H(\lambda_n) = 0$, G(z) is an entire function. By (2.3),

$$\overline{\lim}_{|y|\to\infty} \frac{|y|^{1/2} \exp\left(2|y|^{1/2}\right)}{|f(iy)|} < \infty,$$

so by (2.5) and (2.6),

$$|G(iy)| \le \frac{\exp(2|y|^{1/2})}{f(iy)} |m_1(iy) - m_2(iy)| = o(|y|^{-1/2})$$

goes to zero as $|y| \to \infty$. The Phragmén-Lindelöf argument of [6] then yields the contradiction $G(z) \equiv 0$, that is, $m_1 = m_2$. \square

Remark. The above yields $o(|y|^{-1/2})$ even though o(1) would have been sufficient. We have thrown away half a zero. That means one can prove the following result.

Theorem 2.2. Let $\{\lambda_n\}_{n\in\mathbb{N}_0}$ and $\{\mu_n\}_{n\in\mathbb{N}_0}$ be two sequences of real numbers satisfying

$$\sum_{n=0}^{\infty} \frac{(\lambda_n - \pi^2 n^2)_+}{n^2} < \infty \qquad and \qquad \sum_{n=0}^{\infty} \frac{(\mu_n - \pi^2 n^2)_+}{n^2} < \infty, \tag{2.8}$$

with $\mu_m \neq \lambda_n$ for all $m, n \in \mathbb{N}_0$. Let m_1, m_2 be the m-functions for two operators $H_j = -\frac{d^2}{dx^2} + q_j$, j = 1, 2 in $L^2((0,1))$ with boundary conditions

$$u'(1) + h_1^{(j)}u(1) = 0$$

and $h_1^{(j)} \in \mathbb{R}$, j = 1, 2. Suppose that $m_1(z) = m_2(z)$ for all z in $\{\lambda_n\}_{n=0}^{\infty} \cup \{\mu_n\}_{n=0}^{\infty}$ except perhaps for one. Then $m_1 = m_2$ (and hence $q_1 = q_2$ a.e. on [0, 1] and $h_1^{(1)} = h_1^{(2)}$).

By scaling, one sees the following analog of Theorem 2.1 holds (there is also an analog of Theorem 2.2):

Theorem 2.3. Let a < b and $\{\lambda_n\}_{n \in \mathbb{N}_0}$ be a sequence of distinct positive real numbers satisfying

$$\sum_{n=0}^{\infty} \frac{(\lambda_n - \frac{\pi^2 n^2}{4(b-a)^2})_+}{n^2} < \infty.$$
 (2.9)

Let m_1, m_2 be the m-functions for two operators $H_j = -\frac{d^2}{dx^2} + q_j$, j = 1, 2 in $L^2((a,b))$ with boundary conditions (1.3) at x = a and

$$u'(b) + h_b^{(j)}u(b) = 0,$$

where $h_b^{(j)} \in \mathbb{R}$, j = 1, 2. Suppose that $m_1(\lambda_n) = m_2(\lambda_n)$ for all $n \in \mathbb{N}_0$. Then $m_1 = m_2$ (and hence $q_1 = q_2$ a.e. on [a, b] and $h_b^{(1)} = h_b^{(2)}$).

§3. Whole Interval Results

Fix $h_1 \in \mathbb{R}$, let $H(h_0)$ be the operator on $L^2((0,1))$ with $u'(1)+h_1u(1)=0$ and $u'(0)+h_0u(0)=0$ boundary conditions, and denote by $\lambda_n(h_0)$ the corresponding eigenvalues of $H(h_0)$. Then, for $h_0 \in \mathbb{R}$, it is known (see, e.g., the references in [6]) that

$$\lambda_n = (n\pi)^2 + 2(h_1 - h_0) + \int_0^1 q(x) \, dx + o(1) \text{ as } n \to \infty$$
 (3.1)

and for $h_0 = \infty$,

$$\lambda_n = \left[(n + \frac{1}{2})\pi \right]^2 + 2h_1 + \int_0^1 q(x) \, dx + o(1) \text{ as } n \to \infty.$$
 (3.2)

To say that $H(h_0)$ has eigenvalue λ is equivalent to $m(\lambda) = -h_0$. Thus, Theorem 2.1 implies

Theorem 3.1. Let $H_1(h_0)$, $H_2(h_0)$ be associated with two potentials q_1, q_2 on [0,1] and two potentially distinct boundary conditions $h_1^{(1)}, h_1^{(2)} \in \mathbb{R}$ at x = 1. Suppose that $\{(\lambda_n, h_0^{(n)})\}_{n \in \mathbb{N}_0}$ is a sequence of pairs with $\lambda_0 < \lambda_1 < \cdots \to \infty$ and $h_0^{(n)} \in \mathbb{R} \cup \{\infty\}$ so that both $H_1(h_0^{(n)})$ and $H_2(h_0^{(n)})$ have eigenvalues at λ_n . Suppose that (2.1) holds. Then $q_1 = q_2$ a.e. on [0,1] and $h_1^{(1)} = h_1^{(2)}$.

Given (3.1), (3.2) we immediately have Borg's theorem [1] as a corollary (this is essentially the usual proof), but more is true. For example, by using Theorem 2.2 one infers:

Corollary 3.2 [1]. Fix $h_0^{(1)}$, $h_0^{(2)} \in \mathbb{R}$. Then all the eigenvalues of $H(h_0^{(1)})$ and all the eigenvalues of $H(h_0^{(2)})$, save one, uniquely determine q a.e. on [0,1].

Corollary 3.3. Let $h_0^{(1)}, h_0^{(2)}, h_0^{(3)} \in \mathbb{R}$ and denote by $\sigma_j = \sigma(H(h_0^{(j)}))$ the spectra of $H(h_0^{(j)}), j = 1, 2, 3$. Assume $S_j \subseteq \sigma_j, j = 1, 2, 3$ and suppose that for all sufficiently large $\lambda_0 > 0$ we have

$$\#\{\lambda \in \{S_1 \cup S_2 \cup S_3\} \text{ with } \lambda \leq \lambda_0\} \geq \frac{2}{3} \#\{\lambda \in \{\sigma_1 \cup \sigma_2 \cup \sigma_3\} \text{ with } \lambda \leq \lambda_0\} - 1.$$

Then q is uniquely determined a.e. on [0,1].

In particular, two-thirds of three spectra determine q.

$\S 4$. Updating m

We are now able to understand why partial information on q — knowing it on [0, a] — lets us get away with less information on eigenvalues, a phenomenon originally discovered by Hochstadt-Lieberman [9] in the special case where $a = \frac{1}{2}$. We note that m(z, x) satisfies the Ricatti-type equation

$$m'(z,x) = q(x) - z - m^{2}(z,x).$$
(4.1)

If we know that λ is an eigenvalue of $H(h_0)$, then $m(\lambda,0) = -h_0$. If we know q on [0,a], we can use (4.1) to compute $m(\lambda,a) := -h_a$ and so infer that λ is an eigenvalue of $H(h_a)$, the operator in $L^2((a,1))$. By Theorem 2.3, that means we only need a lower density of eigenvalues of the various $H(h_a)$. A typical result is the following

Theorem 4.1. Let σ_N and σ_D be the eigenvalues of $H(h_0 = 0)$ and $H(h_0 = \infty)$, respectively. Let $S_N \subseteq \sigma_N$, $S_D \subseteq \sigma_D$. Fix $a \in (0,1)$. Suppose for $\lambda_0 > 0$ sufficiently large that

$$\#\{\lambda \in \{S_N \cup S_D\} \text{ with } \lambda \leq \lambda_0\} \geq (1-a)\#\{\lambda \in \{\sigma_N \cup \sigma_D\} \text{ with } \lambda \leq \lambda_0\}.$$

Then S_N, S_D and q on [0, a] uniquely determine q a.e. on [0, 1].

This follows immediately from the updating idea. For example, if $a = \frac{3}{4}$, we can recover Theorem 1.3 of [6] (it is essentially a reworking of the proof in [6]); but for

 $a \in (0, \frac{1}{2})$, the result is new and implies, for example, that q on $[0, \frac{1}{4}]$, all the Neumann eigenvalues, and half the Dirichlet eigenvalues determine q a.e. on [0, 1].

References

- 1. G. Borg, Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe, Acta Math. 78 (1946), 1–96.
- 2. G. Borg, Uniqueness theorems in the spectral theory of $y'' + (\lambda q(x))y = 0$, Proc. 11th Scandinavian Congress of Mathematicians, Johan Grundt Tanums Forlag, Oslo, 1952, 276–287.
- 3. I.M. Gel'fand and B.M. Levitan, On the determination of a differential equation from its special function, Izv. Akad. Nauk SSR. Ser. Mat. 15 (1951), 309–360 (Russian); English transl. in Amer. Math. Soc. Transl. Ser. (2) 1 (1955), 253–304.
- 4. F. Gesztesy and B. Simon, Inverse spectral analysis with partial information on the potential, I. The case of an a.c. component in the spectrum, Helv. Phys. Acta 70 (1997), 66–71.
- 5. F. Gesztesy and B. Simon, m-functions and inverse spectral analysis for finite and semi-infinite Jacobi matrices, preprint, 1996.
- 6. F. Gesztesy and B. Simon, Inverse spectral analysis with partial information on the potential, II. The case of discrete spectrum, preprint, 1997.
- 7. O.H. Hald, Inverse eigenvalue problem for the mantle, Geophys. J. R. Astr. Soc. **62** (1980), 41–48.
- 8. H. Hochstadt, *The inverse Sturm-Liouville problem*, Commun. Pure Appl. Math. **26** (1973), 715–729.
- 9. H. Hochstadt and B. Lieberman, An inverse Sturm-Liouville problem with mixed given data, SIAM J. Appl. Math. **34** (1978), 676–680.
- 10. N. Levinson, The inverse Sturm-Liouville problem, Mat. Tidskr. B (1949), 25–30.
- 11. B. Levitan, On the determination of a Sturm-Liouville equation by two spectra, Amer. Math. Soc. Transl. **68** (1968), 1–20.
- 12. B. Levitan, *Inverse Sturm-Liouville Problems*, VNU Science Press, Utrecht, 1987.
- 13. B.M. Levitan and M.G. Gasymov, Determination of a differential equation by two of its spectra, Russ. Math. Surv. 19:2 (1964), 1–63.
- 14. M.M. Malamud, Similarity of Volterra operators and related questions of the theory of differential equations of fractional order, Trans. Moscow Math. Soc. **55** (1994),

57-122.

- 15. M.M. Malamud, Spectral analysis of Volterra operators and inverse problems for systems of differential equations, preprint, 1997.
- 16. V.A. Marchenko, Some questions in the theory of one-dimensional linear differential operators of the second order, I, Trudy Moskov. Mat. Obšč. 1 (1952), 327–420 (Russian); English transl. in Amer. Math. Soc. Transl. (2) 101 (1973), 1–104.
- 17. B. Simon, A new approach to inverse spectral theory, I. The basic formalism, in preparation.