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Abstract. We study inverse spectral analysis for finite and semi-infinite Jacobi matrices H.

Our results include a new proof of the central result of the inverse theory (that the spectral

measure determines H). We prove an extension of Hochstadt’s theorem (who proved the

result in the case n = N) that n eigenvalues of an N × N Jacobi matrix, H, can replace the
first n matrix elements in determining H uniquely. We completely solve the inverse problem

for (δn, (H − z)−1δn) in the N < ∞ case.

§1. Introduction

There is an enormous literature on inverse spectral problems for − d2

dx2 + V (x) (see [1,
29, 56–60, 64] and references therein), but considerably less for their discrete analog, the
infinite and semi-infinite Jacobi matrices (see, e.g., [3, 4, 6–8, 13–22, 24, 26–28, 30, 32,
37, 38, 42–44, 50–52, 61–63, 66, 67, 69–71]) and even less for finite Jacobi matrices (where
references include, e.g., [9, 10, 23, 25, 39, 40, 41, 45–48]). Our goal in this paper is to
study the last two problems using one of the most powerful tools from the spectral theory
of − d2

dx2 + V (x), the m-functions of Weyl.
Explicitly, we will study finite N ×N matrices of the form:

H =


b1 a1 0 0 · · ·
a1 b2 a2 0 · · ·
0 a2 b3 a3 · · ·
· · · · · · ·
· · · · · · ·
· · · · 0 aN−1 bN

 (1.1)

and the semi-infinite analog H defined on

�2(N ) =
{
u = (u(1), u(2), . . . )

∣∣∣∣ ∞∑
n=1

|u(n)|2 <∞
}
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given by
(Hu)(n) = anu(n+ 1) + bnu(n) + an−1u(n− 1), n ≥ 2

= a1u(2) + b1u(1), n = 1.
(1.2)

In both cases, the a’s and b’s are real numbers with an > 0.
To avoid inessential technical complications, we will only consider the case where supn[|an|+

|bn|] <∞ in which case H is a map from �2 to �2 and defines a bounded self-adjoint oper-
ator.

In the semi-infinite case, we will set N = ∞. At times to have unified notation, we will
use something like 1 ≤ j < N + 1 to indicate 1 ≤ j ≤ N in the finite case and 1 ≤ j < ∞
in the semi-infinite case.

It will sometimes be useful to consider the b’s and a’s as a single sequence b1, a1, b2, a2, · · · :=
c1, c2, . . . , that is,

c2n−1 = bn, c2n = an, n = 1, 2, . . . . (1.3)

What makes Jacobi matrices special among all matrices is that the eigenvalue condition
Hu = λu is a second-order difference equation. The n = 1 case of (1.2) can be thought of
as forcing the Dirichlet boundary condition u(0) = 0. Thus, any possible non-zero solution
of Hu = λu must have u(1) 	= 0, which implies

(i) Eigenvalues of H must be simple (or else a linear combination would vanish at
n = 1).

(ii) Eigenfunctions must be non-vanishing at n = 1.
Thus for N < ∞, H has eigenvalues λ1 < · · · < λN and associated orthonormal

eigenvectors ϕ1, . . . , ϕN with ϕj(1) 	= 0. For N = ∞, the proper way of encompassing (i),
(ii) is that δ1 is a cyclic vector for H (δj is the vector in �2 with δj(n) = 1 (resp. 0) if n = j
(resp. n 	= j)).

The spectral measure dρ for the pair (H, δ1) is defined by (δ1,H�δ1) =
∫
λ� dρ(λ). Since

our H’s are bounded, dρ is a measure of bounded support. In case N <∞,

dρ(λ) =
N∑
j=1

|ϕj(1)|2δ(λ− λj)dλ (ϕj , ϕk) = δj,k. (1.4)

The central fact of the inverse theory is that dρ determines the a’s and b’s and any dρ
can occur for a unique H. (If N < ∞, dρ has support at exactly N points. If N = ∞,
dρ must have infinite support.) The usual proof of this central fact is via orthogonal
polynomials, and has been rediscovered by many people (see references in the appendix).
For the reader’s convenience, we have a brief appendix presenting this approach.

One purpose of this paper is to present in Section 3 a new approach to the central result
based on m-functions and trace formulas. Given ρ, one forms m(z) =

∫
dρ(λ) (λ − z)−1.

m(z) has an asymptotic expansion at infinity given by

m(z) ∼ −1
z
− b1
z2

− a2
1 + b21
z3

+O(z−4). (1.5)

Thus, one easily recovers b1 and a1 (recall a1 > 0) from m(z). Now define m1(z) by

(−m(z))−1 = z − b1 + a2
1m1(z). (1.6)
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It turns out that m1(z) is the spectral measure for the Jacobi matrix obtained by
removing the top row and left-most column of H. An obvious inductive procedure obtains
b2, a2, . . . .

The m-functions defined by this method, which we call m+(z, n) (so m(z) := m+(z, 0),
m1(z) := m+(z, 1), etc.), is one class of m-functions defined by

m+(z, n) = (δn+1, (H[n+1,N ] − z)−1δn+1), (1.7)

where H[n+1,N ] is the matrix with the top n rows and left n columns removed and thought
of as acting on �2({n+ 1, n+ 2, . . . , N}). There is a second m-function that plays a role,

m−(z, n) = (δn−1, (H[1,n−1] − z)−1δn−1), (1.8)

where H[1,n] is the n× n upper left corner of H.
Section 2 relates these m-functions to solutions of the second-order difference equation

and obtains relations between m±(z, n) and m±(z, n+ 1) (of which (1.6) is a special case).
Section 2 also contains some critical formulas expressing the diagonal Green’s functions
G(z, n, n) := (δn, (H − z)−1δn) in terms of m+(z) and m−(z).

Section 4 contains one of the most intriguing results of this paper. In [48], Hochstadt
proved the remarkable result that for a finite Jacobi matrix, a knowledge of all but the first
N c’s and the N -eigenvalues, that is, of cN+1, cN+2, . . . , c2N−1 and λ1, . . . , λN , determines
H uniquely. In Section 4, we extend this by showing that cn+1, . . . , c2N−1 and any n
eigenvalues of H determine H uniquely for any n = 1, 2, . . . , N .

After a brief interlude in Section 5 obtaining the straightforward analog of Borg’s two-
spectra theorem [11] (see also [12, 54, 55, 57, 59]) first considered in the Jacobi context
by Hochstadt [46, 47] (see also [10, 27, 40, 41, 45, 48, 69]), we turn in Section 6 to the
question of determiningH from a diagonal Green’s function element (δn, (H−z)−1δn) when
N < ∞. If n = 1 or N , the central inverse spectral theory result says G(z, n, n) uniquely
determines H. For other n, there are always at least

(
N−1
n−1

)
different H’s compatible with a

given G(z, n, n). Generically, there are precisely that many H’s. Section 6 has a complete
analysis.

In a final Section 7 we present some results and conjectures about the inverse problem
when an ≡ 1.

§2. m-Function Formulas

Let H be a finite or semi-infinite Jacobi matrix of the type described in Section 1.
We begin by defining some special functions of a complex variable z which we will call
{P (z, n)}N+1

n=1 and {ψ+(z, n)}Nn=0. The P (z, n)’s are polynomials of degree n − 1 defined
by the pair of conditions

anP (z, n + 1) + bnP (z, n) + an−1P (z, n − 1) = zP (z, n), 1 ≤ n < N + 1, (2.1)

P (z, 0) = 0, P (z, 1) = 1.
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(For convenience, we define aN := 1 in order to define P (z,N+1) in case N < ∞.) Clearly,
(2.1) defines P (z, n) inductively as a polynomial of the claimed degrees. Again, inductively
it is clear that

P (z, j + 1) =
1

a1 . . . aj
zj + lower degree in z. (2.2)

As explained in the appendix, the P ’s are intimately related to the spectral measure for
H (as defined in Section 1).

Proposition 2.1. ([7], p. 542)

P (z, j + 1) = (a1 . . . aj)−1 det(z −H[1,j]), j ≥ 1, (2.3)

where H[1,j] is the j × j matrix in the upper left corner of H.

Proof. By (2.2), a1 . . . ajP (z, j + 1) and det(z−H[1,j]) are monic polynomials of degree j.
Thus, it suffices to show they have the same zeros and multiplicities. But P (z, j + 1) = 0
if and only if there is a vector v = (v1, . . . , vj) with v1 = 1 so that (H[1,j] − z)v = 0. As
explained in Section 1, every eigenvector of H[1,j] has v1 	= 0. Thus, the zeros of P (z, j+1)
are precisely the eigenvalues of H[1,j]. Since the eigenvalues are simple, the multiplicities
are all one.

In case N <∞, ψ+(z, n) is defined via

anψ+(z, n + 1) + bnψ+(z, n) + an−1ψ+(z, n − 1) = zψ+(z, n), n = 0, . . . , N − 1,(2.4)

ψ+(z,N) = 1, ψ+(z,N + 1) = 0,

where again for convenience we define a0 = 1 to enable us to define ψ+(z, 0). ψ+ is just
like P but run from the other end. By the same reasoning,

ψ+(z,N − j) =
1

aN−1 . . . aN−j
det(z −H[N−j+1,N ]) (2.5)

is a polynomial of degree j.
In case N = ∞, ψ+(z, n) initially is only defined in the region Im (z) 	= 0 by requiring

(2.4) and

ψ+(z, 0) = 1,
∞∑
n=0

|ψ+(z, n)|2 < ∞. (2.6)

It is a standard argument that when H is bounded and self-adjoint, there is a solution that
is �2 at infinity unique up to constant multiples (and everywhere non-vanishing so one can
normalize it by ψ+(z, 0) = 1).

Given any two sequences u(n), v(n), define the (modified) Wronskian W (u, v) by

W (u, v)(n) = an[u(n)v(n+ 1) − u(n+ 1)v(n)].

For any two solutions of (2.1), W is constant. The Green’s function is defined by (1 ≤
m,n < N + 1)

G(z,m, n) = (δm, (H − z)−1δn) (2.7)

for Im (z) 	= 0. We will also sometimes use (j ≤ m,n ≤ k)

G[j,k](z,m, n) = (δm, (H[j,k] − z)−1δn).

We have the following standard formula:
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Proposition 2.2.

G(z,m, n) = [W (P (z, · ), ψ+(z, · ))]−1P (z,min(m,n))ψ+(z,max(m,n)). (2.8)

Proof. One easily checks that if G(z,m, n) is defined by (2.8), then∑
k

(Hm,k − zδm,k)G(z, k, n) = δm,n.

In the finite case, the choice of P , ψ+ ensures that the equation holds at the points where
n or m equals 1 or N . In the infinite case, the choice of P ensures the equation holds at n
or m equals 1, and the choice of ψ+ ensures that

∑
nG(z, k, n)fn is �2 in k for any finite

support sequence {fn}. In either case, it follows that G(z,m, n) is indeed the matrix of
the resolvent.

We can now define the most basic m-function (there will be more later),

m(z) = (δ1, (H − z)−1δ1). (2.9)

By (2.8), we claim

Proposition 2.3.

m(z) = − ψ+(z, 1)
a0ψ+(z, 0)

. (2.10)

Remark. By our convention, a0 = 1, but we carry it along for the general definition of
m(z, n) later (cf. (2.14)).

Proof. P (z, 0) = 0, P (z, 1) = 1 so (2.8) becomes

G(z, 1, 1) =
ψ+(z, 1)

−a0ψ+(z, 0)
.

In terms of the spectral measure dρ,

m(z) =
∫

dρ(λ)
λ − z

. (2.11)

Theorem 2.4. If N is finite, then

m(z) = −
∏N−1
�=1 (z − ν�)∏N
j=1(z − λj)

, (2.12)

where λ1 < · · · < λN are the eigenvalues of H and ν1 < · · · < νN−1 are the eigenvalues of
H[2,N ].

Proof. By (2.5) and (2.10),

m(z) = −det(z −H[2,N ])
det(z −H)

.

This can be viewed as a cofactor formula for the matrix elements of (H − z)−1 .
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Corollary 2.5. If N is finite, {λj}Nj=1 ∪ {ν�}N−1
�=1 uniquely determine H. Any set of real

λ’s and ν’s are allowed as long as

λ1 < ν1 < λ2 < ν2 < · · · < λN . (2.13)

Proof. By (2.12), the λ’s and ν’s determine m, and then by (2.11), they determine dρ.
By Theorem A.6 (in the appendix), dρ determines the a’s and b’s. That any ν’s, λ’s are
allowed follows from the fact that if

m(z) =
N∑
j=1

αj
λj − z

,

then αj > 0 for all j is equivalent to (2.13).

Remark. The result (proven, e.g., in [10, 40, 41, 45–48]) is an analog of Borg’s result for
Sturm-Liouville operators that two spectra determine the potential. Its analog for N = ∞
(see [27]) is that Krein’s spectral shift function for the pair (H,H[2,∞)) determines m(z)
(cf. [34, 69]).

Definition 2.6. m+(z, n) = (δn+1, (H[n+1,N ] − z)−1δn+1), n = 0, 1, . . . , N − 1, where
H[n+1,N ] is interpreted as H[n+1,∞) if N = ∞.

Thus, m(z) := m+(z, 0), and by the same calculation that led to (2.10),

m+(z, n) = −ψ+(z, n + 1)
/

[anψ+(z, n)]. (2.14)

¿From (2.4), we deduce the following Ricatti equation (more precisely, an analog of
what is a Ricatti equation in the continuum case),

a2
nm+(z, n) +

1
m+(z, n− 1)

= bn − z. (2.15)

It is also useful to have an analog of the m-function but starting at 1 instead of at N
or ∞.

Definition 2.7. m−(z, n) = (δn−1, (H[1,n−1] − z)−1δn−1), n = 2, 3, . . . , N + 1.

We immediately have analogs of (2.14) and (2.15), viz.,

m−(z, n) = −P (z, n − 1)
/

[an−1P (z, n)], (2.16)

a2
n−1m−(z, n) +

1
m−(z, n+ 1)

= bn − z. (2.17)

The usefulness of having both m+(z) and m−(z) is that we can use them to express
G(z, n, n). We claim
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Theorem 2.8.

G(z, n, n) =
−1

a2
nm+(z, n) + a2

n−1m−(z, n) + z − bn
(2.18)

=
−1

a2
n−1m−(z, n) − 1

m+(z,n−1)

(2.19)

=
−1

a2
nm+(z, n) − 1

m−(z,n+1)

, n = 1, 2, . . . . (2.20)

Proof. It suffices to prove (2.19), for then (2.18) follows from (2.15) and then (2.20) follows
from (2.17).

To prove (2.19), use (2.8) evaluating the Wronskian at n− 1 to see that

G(z, n, n) =
1

an−1

(
P(z,n−1)
P(z,n)

− ψ+(z,n−1)
ψ+(z,n)

)
=

1
−a2

n−1m−(z, n) + (m+(z, n − 1))−1

by (2.14) and (2.16).

Theorem 2.9. Let N ∈ N . At any eigenvalue λj of H we infer that

m−(λj , n+ 1) = [a2
nm+(λj , n)]−1, 1 ≤ n ≤ N − 1, (2.21)

where equality in (2.21) includes the case that both sides equal infinity.

Proof. At first sight, this would seem to be a triviality. For G(z, n, n) has poles at λj and
thus the denominator in (2.20) must vanish. But there is a subtlety. It can happen that at
an eigenvalue λj of H, P (λj , n) = ψ+(λj , n) = 0 and G(z, n, n) then also vanishes at λj .

Thus we consider two cases: First ϕj(n) 	= 0 (ϕj the eigenvector of H associated with
λj). In that case G(z, n, n) has a pole as z → λj and so by (2.20), (2.21) must hold
(although both sides will be infinite if ϕj(n+ 1) = 0).

In the second case, ϕj(n) = 0. Then both sides of (2.21) are zero, and so (2.21) holds.
(However, the denominator of (2.20) is ∞ − ∞ and happens to be ∞ so that G(z, n, n)
vanishes, but (2.21) still holds.)

§3. Trace Formulas and a New Approach to the Inverse Problem

In this section, we will use m-functions to show how to recover a Jacobi matrix from
the spectral function dρ. The more usual approach via orthogonal polynomials is sketched
in the appendix. Our approach is new, although iterated m-functions are equivalent to a
continued fraction expansion of m(z), and so the work of Masson and Repka [61] is not
unrelated to our approach.

We begin with
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Theorem 3.1. Near z = ∞,

m(z) = −1
z
− b1
z2

− a2
1 + b21
z3

+O(z−4). (3.1)

First Proof. By the basic definition of m(z) (see (2.9)) and the norm convergent expansion
(since H is bounded):

(H − z)−1 = −z−1(1 − z−1H)−1

= −z−1 − z−2H − z−3H2 +O(z−4).

We have
m(z) = −z−1 − z−2(δ1,Hδ1) − z−3‖Hδ1‖2 +O(z−4).

Clearly, (δ1,Hδ1) = b1 and ‖Hδ1‖2 = ‖a1δ2 + b1δ1‖2 = a2
1 + b21.

Second Proof. By (2.15),

m(z) =
1

b1 − z − a2
1m+(z, 1)

.

But m+(z, 1) = − 1
z +O(z−2). Thus,

m(z) = −1
z

(
1 − b1

z
− a2

1

z2
+O(z−3)

)−1

= −1
z

(
1 +

b1
z

+
a2
1

z2
+
(
b1
z

)2

+O(z−3)
)
.

In terms of the spectral measure dρ, (3.1) becomes

b1 =
∫
λdρ(λ), (3.2)

a2
1 =
∫
λ2 dρ(λ) −

(∫
λdρ(λ)

)2

, (3.3)

formulas implicit in the orthogonal polynomial approach.
In case N <∞, there is a direct way to interpret (3.1) as generating trace formulas:

Theorem 3.2. AssumeN ∈ N and let λ1, . . . , λN be the eigenvalues ofH and ν1, . . . , νN−1,
the eigenvalues of H[2,N ]. Then

b1 =
N∑
j=1

λj −
N−1∑
�=1

ν�, (3.4)

2a2
1 + b21 =

N∑
j=1

λ2
j −

N−1∑
�=1

ν2
� . (3.5)
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Proof. Write (see (2.12))

m(z) = −
∏N−1
�=1 (z − ν�)∏N
j=1(z − λj)

= −1
z

N−1∏
�=1

(
1 − ν�

z

) N∏
j=1

(
1 − λj

z

)−1

= −1
z
− α

z2
− β

z3
+O(z−4),

where

α =
N∑
j=1

λj −
N−1∑
�=1

ν�, (3.6)

β =
N∑
j=1

λ2
j +

N∑
j<k

λjλk +
N−1∑
�<m

ν�νm −
N∑
j=1

λj

N−1∑
�=1

ν�. (3.7)

(3.6) is just (3.4), and using (3.6), (3.7) becomes

β =
1
2

N∑
j=1

λ2
j −

1
2

N−1∑
�=1

ν2
� +

1
2
α2.

Thus,
N∑
j=1

λ2
j −

N−1∑
�=1

ν2
� = 2β − α2 = 2a2

1 + b21

by (3.1).

Of course, (3.4), (3.5) have direct proofs in terms of traces since they just say that

Tr(H) − Tr(H[2,N ]) = b1, (3.8)

Tr(H2) − Tr(H2
[2,N ]) = 2a2

1 + b21 (3.9)

and is one reason why (3.1) should be thought of as generating trace formulas. In the case
of periodic Jacobi matrices, this strategy has been employed in [62].

There is another way to write (3.1) that doesn’t require us to analyze m(z) for large z.
Define the ξ function [33] by

ξ(λ) =
1
π

Arg (m(λ + i0)) for a.e. λ ∈ R . (3.10)

Then if supp(dρ) = spec(H) ⊂ [α, β], we infer that ξ(λ) = 0 for λ ≤ α and ξ(λ) = 1 for
λ ≥ β. We claim
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Theorem 3.3.

b1 = α +
∫ β

α

(1 − ξ(λ))dλ, (3.11)

2a2
1 + b21 = α2 +

∫ β

α

2λ(1 − ξ(λ))dλ. (3.12)

Remark. (3.11) is proven in [33] and the method used to prove it also proves (3.12). The
proof below is not unrelated to that in [33].

Proof. By Theorem 3.1, the function −zm(z) has the asymptotics near ∞

−zm(z) = 1 +
b1
z

+
a2
1 + b21
z2

+O(z−3).

Using ln(1 + x) = x− 1
2x

2 +O(x3) for |x| sufficiently small, we see that

Q(z) := ln(−zm(z))

has the asymptotics,

Q(z) =
b1
z

+
2a2

1 + b21
2z2

+O(z−3) as z → ∞. (3.13)

Notice that the right sides of (3.11), (3.12) are unchanged if β is increased or α is
decreased (since ξ(λ) = 1 if λ > β and ξ(λ) = 0 if λ < α), so we can assume that
0 ∈ (α, β). Then Q(z) is analytic in C\[α, β] and on (α, β):

1
π

Im (Q(λ + i0)) = ξ(λ), λ < 0

= ξ(λ) − 1, λ > 0.

By (3.13), for R sufficiently large,

b1 =
1

2πi

∮
|z|=R

Q(z)dz = −
∫ β

α

1
π

Im (Q(λ + i0))dλ

= −
∫ 0

α

dλ+
∫ β

α

(1 − ξ(λ))dλ = (3.11)

and

2a2
1 + b21 =

1
2πi

∮
|z|=R

2zQ(z)dz = −
∫ β

α

1
π

2λ Im (Q(λ + i0))dλ

= −
∫ 0

α

2λdλ+
∫ β

α

2λ(1 − ξ(λ))dλ = (3.12).
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(3.2)–(3.5), (3.8), (3.9), (3.11), (3.12), etc. clearly underscore that one can derive an
infinite sequence of such trace formulas which are precisely the well-known invariants of
the hierarchy of Toda lattices. A systematic approach to these trace formulas can be found,
for instance, in [13, 19, 31, 69].

We can now describe the scheme for recovering H from dρ, or equivalently, from m(z) =∫
dρ(λ) (λ − z)−1:

(i) Use the trace formulas (via (3.1) or (3.11), (3.12)) to recover b1 and a2
1.

(ii) Use (2.15), viz.,

m+(z, 1) = a−2
1

(
b1 − z − 1

m(z)

)
to find m+(z, 1) which is the m-function for H[2,∞).

(iii) Use the trace formulas to find b2, a
2
2 and then (2.15) to find m+(z, 2), . . . , etc.

This clearly shows a given dρ can come from at most one H, since we have just described
how to compute the bj and a2

j from dρ. We want to prove existence via this method, that
is, given any dρ of compact support, this method yields an H which is bounded and whose
spectral measure is precisely dρ.

Lemma 3.4. Suppose that m(z) =
∫
dρ(λ) (λ − z)−1, where dρ is a probability measure

on [−C,C ] whose support contains more than one point. Define

b1 =
∫
λdρ(λ), a2

1 =
∫
λ2 dρ(λ) − b21 (3.14)

(a2
1 is always strictly positive by the support hypothesis on dρ). Define m1(z) by

m1(z) = a−2
1

[
b1 − z − 1

m(z)

]
.

Then

m1(z) =
∫

dρ1(λ)
λ− z

, (3.15)

where dρ1 is a probability measure also supported on [−C,C ]. Moreover, ρ is supported
on exactly N points if and only if ρ1 is supported on exactly (N − 1) points.

Proof. By (3.14) and an expansion of a geometric series, (3.1) holds, so

m̂(z) := (−m(z))−1 = z − b1 − a2
1

z
+O(z−2). (3.16)

Since m(z) has Im (m(z)) > 0 when Im (z) > 0 (we recall that m is a Herglotz function),
m̂(z)= (−m(z))−1 has the same property. Moreover, m̂(z) is analytic on C\[−C,C ] since
m(λ) > 0 for λ < −C and m(λ) < 0 for λ > C . Thus, by the Herglotz representation
theorem,

m̂(z) = ĉ+ d̂z +
∫

dρ̂(λ)
λ− z
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for a measure dρ̂. By (3.16), ĉ = −b1, d̂ = 1, and
∫
dρ̂(λ) = a2

1. Thus,

m1(z) =
∫

dρ1(λ)
λ− z

and dρ1 = a−2
1 dρ̂ is also a probability measure.

Since dρ is supported on N points if and only if m(z) is a ratio PN−1(z)/QN (z) of poly-
nomials with deg(PN−1(z)) = N − 1, deg(QN (z)) = N , we obtain the last assertion.

Theorem 3.5. (≡ Theorem A.6) Every N -point probability measure arises as the spec-
tral measure of a unique N ×N Jacobi matrix. Every probability measure of bounded and
infinite support arises as the spectral measure of a unique semi-infinite bounded Jacobi
matrix.

Proof. By iterating the ρ→ ρ1 procedure of the lemma, we can find suitable a2
j , bj induc-

tively. If dρ has N -point support, the process terminates after N − 1 steps where dρN has
a single point, and we define bN to be that point. If dρ has infinite support, the process
continues indefinitely. Because supp(dρ) ⊆ [−C,C ], we infer supp(dρ1) ⊆ [−C,C ], |a1|
and |b1| are bounded by C , and so H is bounded.

Let dρ̃ be the spectral measure for the H that has just been constructed. We will show
dρ = dρ̃, thereby completing the proof.

Let m̃(z) =
∫
dρ̃(λ) (λ − z)−1. Then by construction,

m̃(z) =
−1

z − b1 + a2
1

[
−1

z−b2+a2
2...

] .
That is, m and m̃ have identical partial fraction expansions although a priori the remain-
ders could be different. This means that the Taylor series for m̃(z) near z = ∞ agrees
with that for m near z = ∞ so m(z) = m̃(z), and hence dρ = dρ̃.

Remark. The Taylor series for m(z) only converges in the region |z| > C , where C =
max(supp(dρ)). But H[1,N ] → H strongly, so (δ1, (H[1,N ] − z)−1δ1) := mN (z) → m(z) as
N → ∞ for all z /∈ supp(dρ), where mN (z) = PN−1(z)/QN (z) is a ratio of polynomials of
degree N −1 and N . By the above argument, the Taylor series agree near infinity to order
2N , that is, mN is the [N − 1, N ] Padé approximant, which we see converges everywhere
outside of supp(dρ). See Baker and Graves-Morris [5] for further discussion of the Padé
approximants.

The continuum analog of the orthogonal polynomial approach of the appendix is the
Gel’fand-Levitan [29] inverse spectral theory which is a kind of continuum orthonormaliza-
tion. It would be very interesting to find a continuum analog of the m-function approach
to inverse problems that we discussed in this section.

As an application of the m-function approach to inverse problems, we prove the following
(which can also be obtained via orthogonal polynomials):
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Theorem 3.6. Fix N ∈ N . Consider the following parametrizations of N × N Jacobi
matrices:

(i) {an}N−1
n=1 ∪ {bn}Nn=1, (an > 0).

(ii) {λj}Nj=1 ∪ {ν�}N−1
�=1 , (λ1 < ν1 < λ2 < · · · < νN−1 < λN ).

(iii) {λj}Nj=1 ∪ {αj}Nj=1,

(
λ1 < · · · < λN , αj > 0,

N∑
k=1

αk = 1
)
.

Here λj are the eigenvalues of H, ν� are the eigenvalues of H[2,n], and the α’s are the

residues of the poles in m so m(z) =
∑N
j=1 αj(λj − z)−1 (or dρ(λ) =

∑
αjδ(λ − λj)dλ).

The maps between these parameters are real bianalytic diffeomorphisms.

Remark. There are 2N − 1 parameters. These appear to be 2N in (iii) but the fact that∑N
j=1 αj = 1 eliminates one parameter.

Proof. It is well known and elementary (the determinant of the Jacobian matrix is just
±∏j<k(λj − λk)−1) that the map from the N coefficients of a monic polynomial PN (λ)
of degree N to the roots λ1, . . . , λN of that polynomial is a bianalytic diffeomorphism
in the region where the roots are all real and distinct. This immediately implies that
the map from (i) to (ii) is real analytic. The map from (ii) to (iii) is rational since
αj =

∏N−1
�=1 (λj − ν�)

∏N
k �=j(λj −λk)−1. That means we need only show that the map from

(iii) to (i) is real analytic.
Since b1 =

∑N
j=1 αjλj and a2

1 = (
∑N

j=1 αjλ
2
j) − b21, those are analytic functions. More-

over, the ν� are the roots of the polynomial
∑N

j=1 αj
∏
k �=j(z − λk) and so real analytic in

(λj , αj) by the first sentence in this proof. m+(z, 1) has the form
∑N−1

�=1 β�(ν�−z)−1, where
β� = [a2

1m
′(ν�)]−1 is clearly analytic in the λ’s and α’s. Thus following the m-function

reconstruction shows that the a’s and b’s are real analytic functions of the λ’s and α’s.

§4. Recovery of a Matrix From Parts of the Matrix and Additional Spectral
Information

In [48], Hochstadt proved the following remarkable theorem (see (1.3)) for the definition
of cj):

Theorem 4.1. (≡ Theorem A.7) Let N ∈ N . Suppose that cN+1, . . . , c2N−1 are known,
as well as the eigenvalues λ1, . . . , λN of H. Then c1, . . . , cN are uniquely determined.

Hochstadt’s proof is sketched in the appendix (but in “reflected” coordinates, i.e.,
c1, . . . , cN−1 are assumed to be known). Our goal in this section is to prove

Theorem 4.2. Suppose that 1 ≤ j ≤ N and cj+1, . . . , c2N−1 are known, as well as j of
the eigenvalues. Then c1, . . . , cj are uniquely determined.

Remarks. 1. One need not know which of the j eigenvalues one has.
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2. Hochstadt-Lieberman [49] proved an analog of Hochstadt’s theorem in the continuum
case. In [36], we will prove continuum analogs of Theorem 4.2; [35] contains an application
of our m-function technique to uniqueness theorems for Schrödinger operators H on R
in terms of the reflection coefficient for right incidence under the assumption that H,
restricted to the half-line (0,∞), has an absolutely continuous (a.c.) component in its
spectrum.

3. In some sense, Hochstadt’s proof [48] goes from the edge inward and ours goes from
the inside toward the edge.

We will need some elementary facts about rational functions. Let f = P/Q be a ratio
of polynomials. We define the degree deg(f) of f to be deg(P ) + deg(Q). If P and Q are
both monic, we will say that f is monic.

Lemma 4.3. Suppose f1 = P1/Q1, f2 = P2/Q2, where deg(P1) = deg(P2) and deg(Q1) =
deg(Q2), and d = deg(fi).

(i) If f1 and f2 agree at d+ 1 points in C , then f1 = f2.
(ii) If f1 and f2 are both monic and they agree at d points in C , then f1 = f2.

Remark. “agree” here allows the possibility that both are infinite at the same point.

Proof. If f1(z) = f2(z), then P1(z)Q2(z)−P2(z)Q1(z) = 0 (even if both values are infinite,
since then Q1 = Q2 = 0). In case (i), P1Q2 −Q1P2 has degree d. In case (ii), the leading
terms cancel and P1Q2 −Q1P2 has degree d− 1. The lemma follows from the fact that if
a polymonial Rd0 of degree d0 vanishes at d0 + 1 points, then Rd0 ≡ 0.

Proof of Theorem 4.2. Suppose first that j is odd so j = 2n− 1, and b1, . . . , an−1, bn are
unknown, but an, bn+1, . . . , bN are known, as well as j eigenvalues which we will denote
λ1, . . . , λ2n−1. By (2.21)

−m−(λj , n+ 1) = [−a2
nm+(λj , n)]−1.

By definition, m+(z, n) is determined by H[n+1,N ] and so by bn+1, an+1, . . . , bN . Thus,
[−a2

nm+(λj , n)]−1 are known numbers.
By the analog of Theorem 2.4 (see also (2.16)), −m−(n+1, z) is a ratio Pn−1(z) / Qn(z)

of polynomials, where deg(Pn−1(z)) = n− 1 and deg(Qn(z)) = n, and each is monic. By
part (ii) of Lemma 4.3, the values of such a monic rational function of degree 2n − 1 is
determined by its values at the 2n− 1 points λ1, . . . , λ2n−1. Once we know m−(z, n + 1),
b1, a1, . . . , bn are determined by Corollary 2.5.

Suppose next that j is even so j = 2n, and an moves from the known group to the
unknown group. We can use

−a2
nm−(λj , n+ 1) = [−m+(λj , n)]−1

to conclude that we know f(z) := −a2
nm−(z, n + 1) at the 2n points λ1, . . . , λ2n. f(z)

is no longer monic, but it is of degree 2n − 1 and so its values at 2n points determine it
uniquely by part (i) of Lemma 4.3. Once we know −a2

nm−(z, n+ 1), we can obtain a2
n by

lim|z|→∞[−zm−(z, n+ 1)] = 1 and then b1, a1, . . . , bn by Corollary 2.5.
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Example 4.4. (j = 1) We use m−(z, 2) = (δ1, (H[1,1] − z)−1δ1) = (b1 − z)−1. Then

b1 = λ1 + a2
1m+(λ1, 1).

This has a solution as long as m+(λ1, 1) 	= ∞. The only forbidden values for λ1 are the
obvious ones, namely, the eigenvalues ν� of H[2,N ] which we know must be unequal to the
λj ’s.

Example 4.5. (j = 2) We get

b1 = λj + a2
1m+(λj , 1), j = 1, 2.

m+(λj , 1) 	= ∞ is still required, but we also need that

−m+(λ2, 1) −m+(λ1, 1)
λ2 − λ1

,

which equals a−2
1 , must be positive. This avoids two eigenvalues between a single pair of

eigenvalues of H[2,N ] but requires a lot more. There are severe restrictions in the λj ’s for
existence (see, e.g., the discussion in [23]). As j increases, these become more complicated.

§5. Reconstruction of a Finite Jacobi Matrix From Two Spectra

Borg [11] proved a famous theorem that the spectra for two boundary conditions of
a bounded interval regular Schrödinger operator uniquely determine the potential. Later
refinements (see, e.g., [12, 54, 55, 57, 59]) imply that they even determine the two boundary
conditions.

In this section, we consider analogs of this result for a finite Jacobi matrix. Such analogs
were first considered by Hochstadt [46, 47] (see also [10, 27, 40, 41, 45, 48]). In one sense,
the fact that the eigenvalues ofH[1,N ] andH[2,N ] determineH is such a two-spectrum result
and, indeed, it can be viewed as Theorem 5.2 below for b = ∞. Our results in this section
are straightforward adaptations of known results for the continuum or the semi-infinite
case, but the ability to determine parameters by counting sheds light on facts like the one
that the lowest eigenvalue in the Borg result is not needed under certain circumstances.

Given H, an N × N Jacobi matrix, define H(b) to be the Jacobi matrix where all a’s
and b’s are the same as H, except b1 is replaced by b1 + b, that is,

H(b) = H + b(δ1 , · )δ1. (5.1)

Theorem 5.1. The eigenvalues λ1, . . . , λN of H, together with b and N − 1 eigenvalues
λ(b)1 , . . . , λ(b)N−1 of H(b), determine H uniquely.

Remark. Again it is irrelevant which N − 1 eigenvalues of the N eigenvalues of H(b) are
known.
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Proof. Choosing a0 = 1, we have

m(z) = −ψ+(z, 1)/ψ+(z, 0)

and
ψ+(z, 0) + (b1 − z)ψ+(z, 1) + a1ψ+(z, 2) = 0.

It follows that z is an eigenvalue of H(b) if and only if

ψ+(z, 0) = bψ+(z, 1),

that is, if and only if

m(z) = −1
b

(5.2)

(a standard result in the general theory of rank-one perturbations [65]).
Write m(z) = −PN−1(z)/QN (z), where PN−1(z) and QN (z) are monic polynomials of

degree N − 1 and N , respectively. QN (z) =
∏N
j=1(z − λj) is known and

PN−1(λ(b)k) = b−1
N∏
j=1

(λ(b)k − λj), 1 ≤ k ≤ N − 1

are also known. Since the values of a monic polynomial Pd(z) of degree d at d points
uniquely determine Pd(z) by Lagrange interpolation, λ(b)1, . . . , λ(b)N−1 uniquely deter-
mine PN−1(z). The solution of the inverse problem, given −PN−1(z)/QN (z), and hence
m(z), then determines H uniquely.

Theorem 5.2. The eigenvalues λ1, . . . , λN ofH, together with theN eigenvalues λ(b)1 , . . . , λ(b)N
of some H(b) (with b unknown), determine H and b.

Proof. Following the proof of Theorem 5.1, we have a monic polynomial PN−1(z), an
unknown β := 1

b , and

PN−1(λ(b)k) = β
N∏
j=1

(λ(b)k − λj).

Let

RN(z) = β
N∏
j=1

(z − λj) − PN−1(z).

Since RN (z) = βzN+ lower-order terms and RN(λ(b)k) = 0, 1 ≤ k ≤ N , we have

RN (z) = β
N∏
j=1

(z − λ(b)j).

Since PN−1(z) is monic of degree N − 1,

RN(z) = βzN −
(
β

N∑
j=1

λj + 1
)
zN−1 + · · ·
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on the one hand and

RN (z) = βzN −
(
β

N∑
j=1

λ(b)j

)
zN−1 + · · ·

on the other. It follows that

β =
1∑N

j=1(λ(b)j − λj)
= b−1. (5.3)

Once β is known, RN (z) determines PN−1(z), and thus m(z) and H. (5.3) then determines
b.

Remark. Since

b = Tr(H(b) −H) =
N∑
j=1

(λ(b)j − λj),

we can a priori deduce b from the λ(b)’s and λ’s and so deduce Theorem 5.2 from The-
orem 5.1. Of course, (5.3) is just an expression of this trace formula. Notice that the
parameter counting works out. In Theorem 5.1, 2n − 1 eigenvalues determine 2n − 1
parameters; and in Theorem 5.2, 2n eigenvalues determine 2n parameters.

§6. The Interior Inverse Problem (N <∞)

The basic inverse spectral theorems (Theorem 3.5 resp. A.6) show that (δ1, (H−z)−1δ1)
determines H uniquely. In this section, we take N ∈ N , 1 ≤ n ≤ N , and ask whether
(δn, (H − z)−1δn) determines H uniquely. For notational convenience, we occasionally
allude to G(z, n, n) as the nn Green’s function in the remainder of this section. The n = 1
result can be summarized via:

Theorem 6.1. (δ1, (H − z)−1δ1) has the form
∑N

j=1 αj(λj − z)−1 with λ1 < · · · <
λN ,
∑N

j=1 αj = 1 and each αj > 0. Every such sum arises as the 11 Green’s function
of an H and of exactly one such H.

For general n, define ñ = min(n,N +1−n). Then we will prove the following theorems:

Theorem 6.2. (δn, (H − z)−1δn) has the form
∑k
j=1 αj(λj − z)−1 with k one of N,N −

1, . . . , N − ñ+ 1 and λ1 < · · · < λk,
∑k

j=1 αj = 1 and each αj > 0. Every such sum arises
as the nn Green’s function of at least one H.

Theorem 6.3. If k = N , then precisely
(
N−1
n−1

)
H’s yield the given nn Green’s function.

Theorem 6.4. If k < N , then infinitely many H’s yield the given nn Green’s function.
Indeed, the inverse spectral family is a collection of

(
k−1
N−k
)(
k−1−N+k
n−1−N+k

)
disjoint manifolds,

each of dimension N − k and diffeomorphic to an (N − k)-dimensional open ball.

Proofs. Consider first the case k = N (which is generic; k < N occurs in a set of Ja-
cobi matrices of codimension 1). Let µ1 < · · · < µN−1 be the zeros of G(z, n, n) :=
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j=1 αj(λj − z)−1 . Then

−G(z, n, n)−1 = z − b+
N−1∑
�=1

β�
µ� − z

, (6.1)

where b, µ� ∈ R , and β� > 0 are determined by the α’s and λ’s. By (2.18),

−G(z;n, n)−1 = z − bn + a2
nm+(z, n) + a2

n−1m−(z, n). (6.2)

m−(z, n) = (δn−1, (H[1,n−1] − z)−1δn−1) determines H[1,n−1] uniquely (by Theorem 3.5)
and has the form

m−(z, n) =
n−1∑
j=1

γj
ej − z

, γj > 0, (6.3)

where
∑n−1
j=1 γj = 1 and the ej ’s are the eigenvalues of H[1,n−1]. Similarly, m+(z, n)

= (δn+1, (H[n+1,N ] − z)−1δn+1) determines H[n+1,N ] uniquely and has the form

m+(z, n) =
N−n∑
j=1

κj
fj − z

, κj > 0, (6.4)

where
∑N−n

j=1 κj = 1 and the fj ’s are the eigenvalues of H[n+1,N ]. Comparing (6.1)–(6.4),
we see that {µ�}N−1

�=1 = {ej}n−1
j=1 ∪{fj}N−n

j=1 . We can choose which µ� are to be ej in
(
N−1
n−1

)
ways. Once we make the choice,

a2
n−1 =

∑
� so µ� is an ej

β� and a2
n =

∑
� so µ� is an fj

β�

and m±(z, n) are determined. But H[1,n−1], H[n+1,N ], and an−1, bn, an determine H. Thus
for each choice, we can uniquely determine H. Moreover, since any sums of the form (6.3),
(6.4) are legal for m±(z, n), we have existence for each of the

(
N−1
n−1

)
choices.

k = N if and only if all the eigenfunctions ϕj(n) are non-vanishing at n. Eigenfunctions
obey the boundary conditions at both ends, so if ϕj(n) vanishes, so do P (z, n) and ψ+(z, n),
which are polynomials of degree n − 1 and N − n; so at most min(n− 1, N − n) := ñ− 1
eigenvalues of H can fail to contribute to G(z, n, n), that is, at least N − ñ+ 1 eigenvalues
must contribute, that is, k is one of N,N − 1, . . . , N − ñ + 1. Eigenvalues that don’t
contribute are zeros of G(z, n, n) and simultaneously eigenvalues of H[1,n−1] and H[n+1,N ].

Thus if k < N , the k − 1 poles of −G(z, n, n)−1 are in three sets. n0 := N − k are
eigenvalues of both H[1,n−1], and H[n+1,N ], n1 := n−1−(N−k) are eigenvalues of H[1,n−1]

alone, and n2 := (N − n) − (N − k) = k − n are eigenvalues of H[n+1,N ] alone. Notice
that N > k ≥ N − ñ + 1 implies n0 > 0, n1 ≥ 0, n2 ≥ 0 and that n0 + n1 + n2 = k − 1,
n0 + n1 = n− 1, and n0 + n2 = N − n. To reconstruct m±(z, n) given −G(z, n, n)−1, we
have to make two sets of choices:

(i) Figure out which of µ1, . . . , µk−1 lie in each of the three sets. This yields
(
k−1
n0

)(
k−1−n0
n1

)
=

(k−1)!
n0!n1!n2!

discrete choices.
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(ii) For each of the n0 µ�’s in the set of common eigenvalues, we must pick a decom-
position

β� = β
(1)
� + β

(2)
� , β

(j)
� > 0

and then take

a2
nm+(z, n) =

∑
� so that

µ� is solely an
H[n+1,N ] eigenvalue

β�
µ� − z

+
∑

� so that
µ� is a

common eigenvalue

β
(1)
�

µ� − z

and

a2
n−1m−(z, n) =

∑
� so that

µ� is solely an
H[1,n−1] eigenvalue

β�
µ� − z

+
∑

� so that
µ� is a

common eigenvalue

β
(2)
�

µ� − z
.

Every such choice yields an acceptable H. Since the map from poles and residues
to matrices is a diffeomorphism (Theorem 3.6), the (k−1)!

n0!n1!n2! disjoint sets of poles and
×

n0 �’s
(0, β�) residues lead to that number of manifolds diffeomorphic to the n0-dimensional

open ball.

§7. The Discrete Schrödinger Inverse Spectral Problem

A Jacobi matrix with all an = 1 is called a discrete Schrödinger operator. The inverse
problem for such operators is open, that is, there are no effective conditions on a spectral
measure dρ that tell us that its associated Jacobi matrix has all an = 1. (The isospectral
manifold of general Jacobi matrices with an ∈ R is discussed in [70].)

Consider the finite case, N ∈ N . The number N of free parameters {bn}Nn=1 equals
exactly the number of eigenvalues {λj}Nj=1. The natural inverse problem is from λ’s to
b’s. We do not have a complete solution, but have a number of conjectures and comments
which we make in this section. λ1 < λ2 < · · · < λN are the eigenvalues of H. For
any b = (b1, . . . bN ) ∈ RN , define Λ(b) = (λ1, . . . , λN ) ∈ RN as the eigenvalues. Let
SN = Ran(Λ).

Main Conjecture 7.1. SN is a closed set in RN whose interior S int
N is dense in SN . For

any λ ∈ S int
N , Λ−1(λ) contains N ! points. For any λ ∈ ∂SN , Λ−1(λ) contains fewer than

N ! points.
Thus, we believe that Λ−1[S int

N ] is anN !-fold cover of S int
N , but it is likely an uninteresting

one.

Conjecture 7.2. Λ−1[S int
N ] is a union of N ! disjoint sets. On each of them, Λ is a diffeo-

morphism to S int
N .

In the complex domain, things are more interesting. There is a small neighborhood, D,
of RN in CN to which Λ can be analytically continued and on which λj 	= λk still holds.
Introduce

S̃N = Λ[D] and B = {λ ∈ S̃N | Λ−1[λ] has ordinality less than N !}.
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Conjecture 7.3. B has real codimension 2. Λ−1[S̃N\B] is connected and is an N !-cover
of S̃N\B.

Thus, Λ−1 is a ramified cover of S̃N . We begin with an analysis of the case N = 2, so
H =

(
b1 1

1 b2

)
. Then

Λ(b) =
(
b1 + b2

2
−
√(

b1 − b2
2

)2

+ 1 ,
b1 + b2

2
+

√(
b1 − b2

2

)2

+ 1
)
. (7.1)

Then S2 = {(λ1, λ2) ∈ R 2 | λ2 ≥ λ1 + 2}. ∂S2 = {(λ1, λ2) ∈ R 2 | λ2 = λ1 + 2} and
Λ−1(α − 1, α+ 1) =

{(
α 1

1 α

)}
, otherwise Λ−1((λ1, λ2)) has two points

(
x 1

1 y

)
and
(
y 1

1 x

)
.

Λ−1(S int
2 ) has two connected components where b1 > b2 and where b2 > b1. If one continues

into the complex domain, Λ−1[S̃2\B] is connected.
Thus, our conjectures are true in the not quite trivial case N = 2.

At first sight, it may seem surprising that SN is closed. After all, the eigenvalue image
of all Jacobi matrices {λ ∈ RN | λ1 < λ2 < · · · < λN} is open and not closed. The
existence of strict inequalities is a reflection of the condition an > 0. Once an ≡ 1, they
disappear.

Theorem 7.4. SN is closed.

Proof. Let λm ∈ SN and pick bm ∈ RN so that Λ(bm) = λm. Suppose λm → λ∞ ∈ RN

as m → ∞. Let H(b) be the N ×N Schrödinger matrix with the components of b along
the diagonal. Then

|Λ(b)|2 = Tr(H(b)2) = 2(N − 1) + ‖b‖2,

so {bm} is a bounded subset of RN . Thus, we can find a subsequence {mp} such that
bmp → b∞ as p→ ∞. By continuity of Λ, Λ(b∞) = λ∞, that is, λ∞ ∈ Sn.

This theorem implies that if ‖b‖ ≤ R, then there is a minimum distance between
eigenvalues. One might think there are global bounds on eigenvalue splittings (i.e., N -
dependent but independent of R), but that is false if N ≥ 3, as is seen by the following
example motivated by tunneling considerations. Let H(β) be the N × N Schrödinger
matrix with b1 = bN = β and b2 = · · · = bN−1 = 0. Then for β large, the two largest
eigenvalues E±(β) satisfy

E±(β) = β ±O(β−(N−2)) (7.2)

and if N ≥ 3, |E+(β) − E−(β)| → 0 as β → ∞.

An important open question is finding some kind of effective description of SN . We note
that if ϕ+ = ( 1√

N
, . . . , 1√

N
) and ϕ− = ( 1√

N
,− 1√

N
, 1√

N
, . . . , (−1)N+1

√
N

), then (ϕ+,Hϕ+) −
(ϕ−,Hϕ−) = 4(1 − 1

N ) so λN − λ1 ≥ 4(1 − 1
N ).

The N ! in our main conjecture comes from the following
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Theorem 7.5. For β large, λβ := (β, 2β, 3β, . . . , Nβ) ∈ SN and Λ−1(λβ) has N ! points.

Proof. Consider the N ! Hamiltonians

Hπ(β) = β

π(1) 0
. . .

0 π(N)

+


0 1 0

1
. . . . . .
. . . 1

0 1 0

 , (7.3)

where π is an arbitrary permutation on {1, . . . , N}. Then A(β) = β−1Hπ(β) at β = 0
has N eigenvalues (1, 2, . . . , N) and it is easy to see that for β small, the Jacobian of Λ
is invertible. It follows by the inverse function theorem that for β large, there is a unique
H̃π(β) = Hπ(β) +O(β)−1) so that the eigenvalues of H̃π(β) are precisely (β, 2β, . . . , Nβ).

A separate and easy argument shows that for β large, any Schrödinger matrix with
eigenvalues (β, . . . , Nβ) must have bn = βπ(n) +O(β−1) for some permutation π, and so
must be one of the H̃π(β).

The evidence for the strong forms of the conjectures here is not overwhelming. We make
them as much to stimulate further research as because we are certain they are true.
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Appendix: Orthogonal Polynomials and the Inverse Problem

Let H be a Jacobi matrix on N or on {1, . . . , N}, that is,

(Hu)(n) = anu(n+ 1) + bnu(n) + an−1u(n− 1), n 	= 1, (N)

= a1u(2) + b1u(1), n = 1

= bNu(N) + aN−1u(N − 1), n = N

(A.1)

where the (N) refers to the finite matrix case. Here an > 0, bn ∈ R , and we will suppose
an, bn are bounded.

It will sometimes be useful to refer to a single sequence c1, c2, . . . := b1, a1, b2, a2, . . . ,
that is,

an = c2n, bn = c2n−1, n = 1, 2, . . . .

Let dρ denote the spectral measure for the vector δ1 = (1, 0, . . . ), that is,

(δ1, e−itHδ1) =
∫
e−itλ dρ(λ).
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In the finite case, H has N eigenvectors ϕ1, . . . , ϕN with

(ϕj , ϕk) = δj,k , Hϕj = λjϕj (A.2)

and

dρ(λ) =
N∑
j=1

|ϕj(1)|2δ(λ− λj)dλ. (A.3)

Obviously, given {an}, {bn}, dρ is uniquely determined (H is bounded by the hypotheses
on an, bn and so self-adjoint). It is an important fact that dρ determines {an}, {bn}, that
any dρ of bounded support is allowed (in the finite case, any N -point measure is allowed;
in the semi-infinite case, supp(dρ) must be infinite).

Indeed, there is an elegant formalism for finding the a’s and b’s given dρ. This formalism
involves orthogonal polynomials. It has been discussed, for instance, in [2, 7, 14–21, 53,
61]. We summarize it here for the reader’s convenience and to fix notation.

We begin by analyzing the direct problem, that is, we suppose the a’s and b’s are given.
Define functions {P (z, n)}Nn=1 in the finite case and {P (z, n)}∞n=1 in the N case by requiring

P (z, n + 1) = a−1
n [(z − bn)P (z, n) − an−1P (z, n − 1)], n ≥ 2,

P (z, 1) = 1, P (z, 2) = a−1
1 (z − b1).

(A.4)

The P (z, n) for z fixed and n variable satisfy (H − z)P (z) = 0 in the sense that if ψ has
finite support in the N case and if ψ is supported on [1, 2, . . . , N − 1] in the finite case,
then

N or ∞∑
n=1

P (z, n)((H − z)ψ)(n) = 0.

Clearly, by induction P (z, n) is a polynomial of degree n− 1. Moreover,

P̃ (z, n) = a1 . . . an−1P (z, n) (A.5)

are monic polynomials.

Proposition A.1. Define P (H,n) using the functional calculus. Then

P (H,n)δ1 = δn. (A.6)

Proof. Clearly, (A.6) holds for n = 1. Suppose it holds for n = 1, . . . , n0. Then

δn+1 = a−1
n [Hδn − bnδn − an−1δn−1]

= a−1
n [(H − bn)P (H,n)δ1 − an−1P (H,n − 1)δ1]

= P (H,n + 1)δ1

by the definition of P . Here we used the induction hypothesis in the second equality.
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Corollary A.2. The spectral measure for δn is P (λ, n)2 dρ(λ).

Corollary A.3. ∫
P (λ,m)P (λ, n)dρ(λ) = δm,n. (A.7)

Proof. This just says that (δm, δn) = δm,n.

Thus, the P ’s are the orthonormal polynomials defined by dρ via Gram-Schmidt on the
functions 1, λ, λ2, . . . . The P̃ are the more conventional orthogonal polynomials [2, 68]
(orthogonal and monic rather than orthogonal and normalized). The defining relation of
the P ’s,

zP (z, n) = anP (z, n+ 1) + bnP (z, n) + an−1P (z, n − 1), (A.8)

or equivalently,

zP̃ (z, n) = P̃ (z, n + 1) + bnP̃ (z, n) + a2
n−1P̃ (z, n − 1), (A.9)

are the standard three-term recursion relations for orthogonal polynomials.

Proposition A.4. The following determine each other
(i) {P (z, n)}n0+1

n=1 .
(ii)
∫
λj dρ(λ), j = 1, 2, . . . , 2n0.

(iii) {cj}2n0
j=1.

Proposition A.5. The following determine each other
(i) {P̃ (z, n)}n0+1

n=1 .
(ii)
∫
λj dρ(λ), j = 1, 2, . . . , 2n0 − 1.

(iii) {cj}2n0−1
j=1 .

Proofs. (A.8), (A.9) show that the claimed c’s determine the P ’s (or P̃ ’s) and vice-versa.
The P ’s and P̃ ’s are a basis for polynomials up to zn0 , so one can write {zj}n0

j=0 in
terms of the P ’s or P̃ ’s. In the P case, the orthogonality relations (A.7) then determine
the integral

∫
λjλk dρ(λ) for j, k = 0, 1, . . . , n0 and so the stated moments. Conversely, by

Gram-Schmidt, these moments determine the P ’s.
In the P̃ case, we argue as follows. The P̃ determine a1, . . . , an0−1, and so by (A.5),

{P (z, j)}n0
j=1. The orthonormality relations then determine the moments up to order 2n0−

2. The orthogonality relation
∫
λn0−1P (λ, n0 +1)dρ(λ) determines the final

∫
λ2n0−1dρ(λ)

moment. Conversely, Gram-Schmidt and the moments determine the P̃ ’s. Since we don’t
normalize P̃ (z, n0 + 1), we don’t need the

∫
λ2n0 dρ(λ) moment.

Theorem A.6. Every N -point probability measure dρ(λ) arises as the spectral measure
of a unique N × N Jacobi matrix. Every probability measure of bounded and infinite
support arises as the spectral measure of a unique Jacobi matrix on N .

Proof. Because a polynomial of degree k has at most k zeros, if dρ is supported on N
points, the monomials {λn}N−1

n=0 are linearly independent in L2(dρ). If dρ has infinite
support, {λn}∞n=0 are linearly independent in L2(dρ).
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Thus given dρ, we can use unnormalized Gram-Schmidt to construct monic polynomials
{P̃ (z, n)}N−1

n=0 (with N = ∞ if dρ has infinite support). By construction, {P̃ (z, n)}pn=0 is
a basis for the polynomials of degree p− 1. Thus,

zP̃ (z, n) = P̃ (z, n + 1) + linear combination of P̃ (z, 1), . . . , P̃ (z, n).

The coefficient in front of P̃ (z, n+1) is one because P̃ (z, n) and P̃ (z, n+1) are monic. Since
zP̃ (z, �) is a linear combination of {P̃ (z,m)}�+1

m=0, orthogonality implies
∫
P̃ (λ, k)[λP̃ (λ, �)] dρ(λ) =

0 if �+ 1 < k, and thus zP̃ (z, n) is orthogonal to {P̃ (z,m)}n−2
m=0, so

zP̃ (z, n) = P̃ (z, n + 1) + βnP̃ (z, n) + αnP̃ (z, n − 1), (A.10)

the standard three-term recursion relation.
Suppose supp(dρ) ⊆ [−C,C ]. Then

βn =
∫
λP̃ (λ, n)2 dρ(λ)

/∫
P̃ (λ, n)2 dρ(λ) (A.11)

and

αn =
∫
P̃ (z, n)2 dρ(λ)

/
P̃ (z, n − 1)2 dρ(λ) (A.12)

(since
∫
λP̃ (λ, n)P̃ (λ, n− 1)dρ(λ) =

∫
P̃ (λ, n)[λP̃ (λ, n− 1)]dρ(λ) =

∫
P̃ (λ, n)2dρ(λ) using

zP̃ (z, n− 1) = P̃ (z, n) +βn−1P̃ (z, n− 1) +αn−2P̃ (z, n− 2)). Moreover, by (A.10), (A.12),∫
λ2P̃ (λ, n)2 dρ(λ)∫
P̃ (λ, n)2 dρ(λ)

≥ β2
n + α2

n

1
αn

= β2
n + αn. (A.13)

Thus,
0 < αn ≤ C2, |βn| ≤ C. (A.14)

Comparing (A.10) and (A.9), we see that

bn = βn , an =
√
αn (A.15)

so that there is at most one Jacobi matrix that can have dρ as spectral measure (we recall
the requirement an > 0).

Given dρ of bounded support, define an, bn by (A.15). By (A.14), the Jacobi matrix is
bounded. Let dρ̃ be its spectral measure. By construction, the orthogonal polynomials for
dρ and dρ̃ are the same. Thus, their moments are the same by Propositions A.4 and A.5.
But the moments uniquely determine a measure of finite support by Weierstrass’ theorem
on the density of polynomials in the continuous functions. Thus, dρ = dρ̃.

As an application of the formalism, we can translate Hochstadt’s theorem [48] and proof
into this language:
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Theorem A.7. (Hochstadt [48]) Given the eigenvalues λ1 < · · · < λN and the numbers
{cj}N−1

j=1 of an N ×N Jacobi matrix, there is at most one set of {cj}2N−1
j=N consistent with

the data.

Proof ([48]). Let dρ(λ) =
∑N
j=1 αjδ(λ− λj)dλ. We have to show the αj are uniquely de-

termined, since by Theorem A.6, they uniquely determine {cj}2N−1
j=1 . By Propositions A.4

and A.5, the {cj}N−1
j=1 determine the moments mk =

∫
λk dρ(λ) for k = 1, . . . , N − 1 and,

of course, m0 = 1. Thus we have
N∑
j=1

λkjαj = mk (A.16)

for k = 0, 1, . . . , N − 1. By the non-vanishing of van der Monde determinants,

det((λkj )0≤k≤N−1,1≤j≤N ) =
∏
r<s

(λr − λs) 	= 0,

(A.16) has a unique solution. Thus, {cj}N−1
j=1 determines the moments {mk}N−1

k=0 , the latter
determines the {αj}Nj=1, which in turn determines the {cj}2N−1

j=1 .

Remark. That there may be no matrix consistent with the data (see [23] for further dis-
cussion) comes from the fact that αj ’s determined by (A.16) may not be strictly positive.
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43. G.S̆. Gusěinov, The inverse problem of scattering theory for a second-order difference
equation of the whole axis, Sov. Math. Dokl. 17 (1976), 1684–1688.

44. G.Sh. Guseinov, Determination of an infinite non-self-adjoint Jacobi matrix from its
generalized spectral function, Math. Notes 23 (1978), 130–136.

45. O. Hald, Inverse eigenvalue problems for Jacobi matrices, Lin. Algebra Appl. 14 (1976),
63–85.

46. H. Hochstadt, On some inverse problems in matrix theory, Arch. Math. 18 (1967),
201–207.

47. H. Hochstadt, On the construction of a Jacobi matrix from spectral data, Lin. Algebra
Appl. 8 (1974), 435–446.

48. H. Hochstadt, On the construction of a Jacobi matrix from mixed given data, Lin. Al-
gebra Appl. 28 (1979), 113–115.

49. H. Hochstadt and B. Lieberman, An inverse Sturm-Liouville problem with mixed given
data, SIAM J. Appl. Math. 34 (1978), 676–680.

50. M. Kac and P. van Moerbeke, On some periodic Toda lattices, Proc. Nat. Acad. Sci. USA
72 (1975), 1627–1629.

51. M. Kac and P. van Moerbeke, A complete solution of the periodic Toda problem, Proc.
Nat. Acad. Sci. USA 72 (1975), 2879–2880.

52. M. Kac and P. van Moerbeke, On an explicitly soluble system of nonlinear differential
equations related to certain Toda lattices, Adv. Math. 16 (1975), 160–169.

53. H.J. Landau, The classical moment problem: Hilbertian proofs, J. Funct. Anal. 38
(1980), 255–272.

54. N. Levinson, The inverse Sturm-Liouville problem, Mat. Tidskr. B (1949), 25–30.

55. B. Levitan, On the determination of a Sturm-Liouville equation by two spectra, Amer.
Math. Soc. Transl. 68 (1968), 1–20.

56. B. Levitan, Inverse Sturm-Liouville Problems, VNU Science Press, Utrecht, 1987.

57. B.M. Levitan and M.G. Gasymov, Determination of a differential equation by two of its
spectra, Russ. Math. Surv. 19:2 (1964),1–63.

58. B. Levitan and I. Sargsjan, Sturm-Liouville and Dirac Operators, Kluwer, Dordrecht,
1991.

59. V.A. Marchenko, Some questions in the theory of one-dimensional linear differential
operators of the second order, I, Trudy Moskov. Mat. Obs̆c̆. 1 (1952), 327-420 (Russian);
English transl. in Amer. Math. Soc. Transl. (2)101 (1973), 1–104.

60. V. Marchenko, Sturm-Liouville Operators and Applications, Birkhäuser, Basel, 1986.
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