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Abstract. We study the eigenvalue spectrum of Dirichlet Laplacians which model quantum

waveguides associated with tubular regions outside of a bounded domain. Intuitively, our
principal new result in two dimensions asserts that any domain Ω obtained by adding an

arbitrarily small “bump” to the tube Ω0 = R × (0, 1) (i.e., Ω � Ω0, Ω ⊂ R2 open and

connected, Ω = Ω0 outside a bounded region) produces at least one positive eigenvalue

below the essential spectrum [π2 ,∞) of the Dirichlet Laplacian −∆D
Ω . For |Ω\Ω0| sufficiently

small (| . | abbreviating Lebesgue measure), we prove uniqueness of the ground state EΩ of
−∆D

Ω and derive the “weak coupling” result EΩ = π2 − π4 |Ω\Ω0|2 + O(|Ω\Ω0|3). As a
corollary of these results we obtain the following surprising fact: Starting from the tube Ω0

with Dirichlet boundary conditions at ∂Ω0, replace the Dirichlet condition by a Neumann

boundary condition on an arbitrarily small segment (a, b) × {1}, a < b of ∂Ω0. If H(a, b)

denotes the resulting Laplace operator in L2(Ω0), then H(a, b) has a discrete eigenvalue in

[π2/4, π2) no matter how small |b − a| > 0 is.

§1. Introduction

Our goal in this paper is to study the bound state spectra of the Dirichlet Laplacian−∆D
Ω

for open regions Ω ⊂ Rn which are tubes outside of a bounded region (quantum waveg-
uides). (Following the traditional notation in quantum physics, we denote the Laplacian
by −∆ as opposed to ∆ in the following.) In particular, let Ω0 ⊂ R 2 be defined by

Ω0 = R × (0, 1).

Consider open connected sets Ω such that:
(i) For some R > 0, Ω ∩ {x ∈ R 2 | |x| > R} = Ω0 ∩ {x ∈ R 2 | |x| > R}.
(ii) Ω0 ⊂ Ω, Ω0 
= Ω.

Because of condition (i),

σess(−∆D
Ω ) = σess(−∆D

Ω0
) = [π2,∞). (1)

Then one of our main goals will be to prove
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Theorem 1.1. If Ω obeys (i), (ii), then −∆D
Ω has at least one eigenvalue in (0, π2).

Actually, the eigenvalue lies in [ π2

4R2 , π
2) since Ω ⊂ R × (−R,R) implies

inf spec(−∆D
Ω ) ≥ inf spec(−∆D

R×(−R,R)) =
π2

4R2 .
We will focus especially on the particular case

Ω = Ωλ,

where
Ωλ = {(x, y) ∈ R 2 | 0 < y < 1 + λf(x)} (2)

and where f is a C∞(R ) function of compact support with f ≥ 0. Since
2 inf spec(−∆D

Ω ) decreases as Ω increases and every Ω obeying (i), (ii) has Ω0 ⊂ Ωλ ⊂ Ω
for some f , it suffices to prove Theorem 1.1 for Ωλ of the form (2). Indeed, it suffices to
prove the result for λ sufficiently small.
We will prove a much more detailed result in these Ωλ regions for λ small enough.

Actually, we can replace f ≥ 0 by the weaker requirement that
∫
R f(x)dx > 0.

Theorem 1.2. Let Ωλ be given by (2) where f is a C∞
0 (R ) function with∫

R f(x)dx > 0. Then for all small positive λ, −∆D
Ωλ

has a unique eigenvalue E(λ) in

(0, π2), it is simple, E(λ) is analytic at λ = 0, and

E(λ) = π2 − π4λ2

(∫
R
f(x)dx

)2

+O(λ3). (3)

This is the main result of this paper, which we’ll prove in Section 2 using a calculation
in the appendix. The technique used in our proof is closely patterned after the theory of
bound states of − d2

dx2 + λV (x) for λ small as developed in [2],[9],[10],[13]. The key idea
there is that (− d2

dx2 + k2)−1 has a well-behaved limit as k ↓ 0 except for a divergent rank
one piece. In exactly the same way, (−∆D

Ω0
− π2 + k2)−1 has a nice limit as k ↓ 0 except

for a rank one piece.

Theorem 1.1 (or 1.2) leads to the following remarkable result which, roughly speaking,
asserts that if on an arbitrarily small segment in the boundary ∂Ω0 of Ω0 the original
Dirichlet boundary condition is replaced by a Neumann boundary condition, at least one
additional eigenvalue is instantly created in the interval (0, π2).

Corollary 1.3. Let Ω0 = R × (0, 1) and denote by H(a, b) in L2(Ω0) the Laplacian on
Ω0 with a Neumann boundary condition on the segment (a, b) × {1}, −∞ < a < b < ∞,
and Dirichlet boundary conditions on ∂Ω0\{(a, b) × {1}}. Then H(a, b) has a discrete

eigenvalue in [π
2

4 , π
2) no matter how small |b − a| > 0 is.

Proof. Clearly H(a, b) ≥ 0 and σess(H(a, b)) = [π2,∞). Enlarge Ω0 to Ωλ of the type (2)
with λ > 0 sufficiently small and some 0 ≤ f ∈ C∞(R ) with supp(f) = [a, b], f > 0 on
(a, b). By Theorem 1.1, −∆D

Ωλ
has at least one eigenvalue Eλ ∈ (0, π2). Next, decouple Ω0

and Ωλ\Ω0 by a Neumann boundary condition along the segment (a, b) × {1}. Denoting
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the resulting Laplace operator by ĤΩλ , we obtain the direct sum decomposition ĤΩλ =
H(a, b) ⊕ −∆̃(a, b) with respect to L2(Ωλ) = L2(Ω0) ⊕ L2(Ωλ\Ω0), where −∆̃(a, b) has
Dirichlet (resp. Neumann) boundary conditions on ∂Ωλ\∂Ω0 (resp. (a, b) × {1}). By
Neumann decoupling (see, e.g., [11], p.270)

0 ≤ inf spec(ĤΩλ ) ≤ inf spec(−∆D
Ωλ
) ≤ Eλ < π2.

Choosing f appropriately such that inf spec(−∆̃(a, b)) > π2 (e.g., choose f such that
Ωλ\Ω0 is a smoothed out rectangle of the type (a, b)× (1, 1+ c) with 0 < c � |b− a|), one
obtains

0 ≤ inf spec(H(a, b)) ≤ inf spec(−∆D
Ωλ
) ≤ Eλ < π2.

That actually inf spec(H(a, b)) ≥ π2

4
follows as in the proof of Corollary 1.4.

We have a number of remarks concerning Theorem 1.2:
(1) λ

∫
R f(x)dx is exactly the area of Ωλ\Ω0.

(2) In thinking about the higher-dimensional analogs, one needs to realize there are two
independent dimensions in the above examples: the dimension of the cross section and
the number of unbounded dimensions. In general, one can consider K ⊂ Rn, a bounded
connected open set and Ω0 = R 	×K. With minor changes, our analysis extends to general
(n,K) so long as � = 1, that is, for Ω0 a long tube.
(3) In the notation of point (2), the results are � dependent. For � = 2, that is, Ω0 a

long slab, there are still weakly coupled states, but as in [13], the binding is only O(e−c/λ).
For � ≥ 3, there will be no bound state if too small a bump is added.
(4) If one uses the one-dimensional Schrödinger operator [13] as a guide, one might guess

that if
∫
R f(x)dx = 0, then −∆D

Ωλ
has a bound state for all sufficiently small λ but since

−∆D
Ωλ

has second-order terms not found in the one-dimensional case, that is not totally
clear.
(5) However, if

∫
R f(x)dx < 0, then by our analysis, −∆D

Ωλ
has no spectrum in [0, π2)

if λ is too small.
(6) Since Ωλ isn’t monotone if f isn’t positive, we cannot be sure that if f is somewhere

negative then Ωλ=1 has bound states even if
∫
R f(x)dx > 0. Indeed, if f is very close to

−1 on a long region, we expect that −∆D
Ωλ=1

has no bound states.
(7) We owe to Mark Ashbaugh the following observation:

Corollary 1.4. Let Ω̃ = {R × (0, 2)}\{R ×{1}}∪{(a, b)×{1}}, −∞ < a < b <∞ (i.e., Ω̃
consists of two copies of Ω0 with the boundary between them removed in (a, b)×{1}) and

denote by −∆D
Ω̃

the associated Dirichlet Laplacian in L2(Ω̃). Then −∆D
Ω̃

has a discrete

eigenvalue in [π
2

4 , π
2) independently of the size |b− a| > 0 of the slit (a, b) × {1}.

Proof. Ω̃ has reflection symmetry under y → 2−y. Thus, −∆D
Ω̃
is a direct sum of operators

even and odd under this symmetry and so −∆D
Ω̃
∼= H(a, b)⊕−∆D

Ω0
, whereH(a, b) is the op-

erator in Corollary 1.3 (since even is equivalent to Neumann and odd to Dirichlet boundary
conditions) and ∼= abbreviates unitary equivalence. Since σess(H(a, b)) = σess(−∆D

Ω0
) =

[π2,∞) = σess(−∆D
Ω̃
), it suffices to prove that −∆D

Ω̃
has spectrum in [π

2

4 , π
2).
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Let Ω̂ = Ω0 ∪ {(x, y) ∈ R 2 | a < x < b, 0 < y < 2}. Then Ω̂ ⊂ Ω̃ so inf spec(−∆D
Ω̃
) ≤

inf spec(−∆D
Ω̂
) < π2 by Theorem 1.1. The lower bound then follows from Ω̃ ⊂ R ×

(0, 2).

As is obvious from −∆D
Ω̃

∼= H(a, b) ⊕ −∆D
Ω0
, either one of Corollaries 1.3 and 1.4 can

be used to prove the other given the result of Theorem 1.1 (or 1.2). It seems difficult,
however, to prove Corollary 1.3 (or 1.4) directly, i.e., without the trick of enlarging (or
doubling) the domain and appealing to Theorem 1.1 (or 1.2).

Remark 1.5. An alternative proof of Theorem 1.1 can be based on the following trial func-
tion argument. Without loss of generality assume that Ω contains a small neighbourhood
of the point (0, 1). Thus there are a, b > 0 such that the triangle spanned by the points
(−a, 1), (a, 1) and (0, 1 + b) is in Ω. Define on Ω

ψ̂β,δ(x, y) =



sin(πy)e−δ(|x|−a), |x| > a, 0 < y < 1

sin( πy

1+β(1− |x|
a )
), |x| ≤ a, 0 < y < 1 + β(1− |x|

a ),

0, otherwise

(4)

where 0 < β < b and δ > 0. This trial function certainly vanishes on ∂Ω and at ∞ and it
is in the form domain Q(−∆D

Ω ). By a straightforward calculation we obtain

E(ψ̂β,δ) =
(∇ψ̂β,δ,∇ψ̂β,δ)

(ψ̂β,δ, ψ̂β,δ)
= π2(1− 2aδβ) +O(β2δ) +O(δ2).

If we first choose β and then δ small enough we get

E(ψ̂β,δ) < π2 = inf σess(−∆D
Ω ).

Since inf spec(−∆D
Ω ) < E(ψ̂β,δ) and −∆D

Ω > 0 this proves Theorem 1.1. Note that sin(πy)
in (4) represents the function u(x, y) in (7) used prominently in Lemma 2.2 and in the
proof of Theorem 1.2.

Spectral properties of quantum waveguides received considerable attention recently.
While a complete bibliography is beyond the scope of this paper, the interested reader is
referred to [1],[3]–[7],[12] and the literature cited therein. In particular, a weak coupling
mechanism different from the one discussed in the present paper, based on arbitrarily small
bending of tubes, has been studied in detail in [4] and[12].

Without entering into further details we remark that Theorem 1.1 admits a variety of
extensions. For instance, Ω and Ω0 need not coincide outside a sphere of radius R as
assumed in our condition (i), Ω only needs to approach Ω0 asymptotically (still assuming
condition (ii)) since equality of the essential spectra of −∆D

Ω and −∆D
Ω0

as recorded in
(1) is the crucial property in question. In addition, Ω could have various further branches
running off to infinity as long as the asymptotic width of these branches is less than or
equal to one in order to guarantee the validity of (1). Moreover, combining our results with
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the ones in [4] and [12] produces the same ground state effect for a bent tube of constant
width one (and again additional bent branches running off to infinity of asymptotic widths
not larger than one can be accommodated).

§2. Weak Coupling Analysis

We’ll study −∆D
Ωλ

by a perturbation method. Since L2(Ωλ) is λ dependent, it is difficult
to use perturbation theory directly, so we’ll map all the operators onto the same space.
Let Uλ : L2(Ωλ)→ L2(Ω0) by

(Uλψ)(x, y) =
√
1 + λf(x)ψ(x, (1 + λf(x))y).

Then Uλ is unitary and
Hλ = Uλ(−∆D

λ )U
−1
λ − π2

acts in L2(Ω0). We subtract π2 so that σess(Hλ) = [0,∞).
A straightforward calculation found in the appendix (cf. (A.6)) proves that

Hλ = H0 + λ
3∑

i=1

A∗
iBi + λ2

8∑
i=4

A∗
iBi , (5)

where each Ai and Bi is a first-order differential operator with coefficients which have
compact support and (g is a C∞ function chosen such that g ≡ 1 on suppf)

(i) A∗
1 = 2f(x)

∂

∂y
, B1 = g(x)

∂

∂y
,

(ii) A∗
2 = f ′′(x), B2 = g(x)

(
y
∂

∂y
+
1
2

)
,

(iii) A∗
3 =

(
2y

∂

∂y
+ 1

)
g(x), B3 = f ′(x)

∂

∂x

(we’ll see below that to leading order only A∗
1B1 matters).

Rewrite (5) as follows. Define C(λ), D : L2(Ω0)→ L2(Ω0)⊗ C 8 by

(Cϕ)i =
{
Aiϕ i = 1, 2, 3
λAiϕ, i = 4, . . . , 8

(Dϕ)i = Biϕ, i = 1, . . . , 8.

Then (5) becomes
Hλ = H0 + λC∗(λ̄)D.
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Lemma 2.1. Let k ∈ C , Re k > 0 and λ ∈ R . Then −k2 is an eigenvalue of Hλ if and
only if

λD(H0 + k2)−1C∗ ≡ Qλ

has −1 as an eigenvalue.

Proof. If Qλψ ≡ −ψ, then −λ(H0 + k2)−1C∗ψ ≡ ϕ is seen to satisfy Hλϕ = −k2ϕ.
Conversely, if Hλϕ = −k2ϕ, then ϕ ∈ Q(Hλ) ⊂ D(D) so ψ = Dϕ is in L2(Ω0) and
Qλψ = −ψ.
Lemma 2.2. Let h be a C∞ function of compact support in R . Then

h(H0 + k2)−1h =
(hu, · )hu

2k
+ A(k), (6)

where u is the function

u(x, y) = 2
1
2 sin(πy) (7)

and A(k) is a bounded operator–valued function of k, which can be analytically continued
from {k ∈ C | Re k > 0} to a region that includes k = 0. Indeed, even (H0+1)1/2A(k)(H0+
1)1/2 has an analytic continuation into such a region.

Moreover, (H0 + 1)1/2A(k)(H0 + 1)1/2 is bounded uniformly in {k ∈ C | |Arg k| <
π/3}∪{a small disk about k = 0} (π

3
can be replaced by any number strictly less than π

2
).

Proof. Let H0 ⊂ L2(Ω0) be the space of L2(Ω0) functions of the form ϕ(x) sin(πy), sin(πy)
being chosen as the lowest eigenfunction of (− d2

dy2 )D . Let P0 be the projection onto H0.
Then (H0 + k2)−1(1 − P0) has an analytic continuation into the region {k ∈ C | −k2 ∈
C\[3π2,∞)} since the lowest point in the spectrum of H0(1−P0) (1−P0)L2(Ω0) is 3π2.
On the other hand, h(H0 + k2)−1P0h has the explicit integral kernel:

(2k)−1h(x)h(x′)u(y)u(y′)e−k|x−x′| = a1(k) + a2(k),

where a1(k) is obtained by replacing e−k|x−x′| by 1 and a2(k) by using e−k|x−x′| − 1 in its
place. The first term is the explicit rank one piece in (6) and the second term is analytic
as a Hilbert-Schmidt kernel at k = 0.
It is easy to modify this argument to accommodate the extra factors of (H0+1)1/2 and

prove the boundedness.

Proof of Theorem 1.2. Consider first the operator on

L2(Ω0)⊗ C 8 : L0 = (C(λ = 0)u, · )Du,

where u is given by (7). Then L0 is a rank one operator, so it has a single eigenvalue at

e0 = Tr(L0). (8)
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But Ci(0) = 0 for i = 4, . . . , 8, B3u = 0, and (A2u,B2u) = 0 since
∫
R f

′′(x)dx = 0. It
follows that

e0 = (A1u,B1u) = −2
(∫

R
f(x)dx

) ∫ 1

0

2π2 cos2(πy)dy

= −2π2

∫
R

f(x)dx.

Let k = λ�. Then by Lemma 2.2,

λD(H0 + k2)−1C∗ = Q(λ, �)

has the form:

Q(λ, �) =
1
2�

Lλ + λM(λ, �),

where

(i) Lλ is rank one and Lλ = L0 + λL̃.
(ii) M(λ, �) = DA(λ, �)C∗, where A is given by Lemma 2.2 and h is chosen such that

h ≡ 1 in a neighborhood of suppf .

By Lemma 2.2, we are interested in when Q(λ, �) has −1 as an eigenvalue for λ > 0 and
� > 0. SinceM is uniformly bounded in λ on a sector about (0,∞), this can happen where
λ is small if e0

2	
is near −1, that is, � is near −e0

2
> 0 since

∫
R f(x)dx > 0 by hypothesis.

For such � and λ small, Q(λ, �) has exactly one eigenvalue near −1, call it E(λ, �), which
by eigenvalue perturbation theory ([8], Ch.2, [11], Ch.XII) is jointly analytic in λ, �. Let

F (λ, �) = 2�(E(λ, �) + 1).

Since 2�Q(λ, �)|λ=0 is independent of �, ∂(2	E(λ,	))
∂	

∣∣∣
λ=0

= 0 and so
∂F (λ,	)

∂	

∣∣∣
λ=0,	=−e0/2

= 2 
= 0. It follows by the implicit function theorem that for λ suf-

ficiently small, there is an analytic function �(λ) = − e0
2 + O(λ) so that for λ > 0 and �

in the sector |Arg �| < π
3 , −1 is an eigenvalue of Q(λ, �) if and only if � = �(λ). Since Hλ

for λ real has only real eigenvalues, �(λ) must be real for λ > 0. Thus Hλ has a unique
eigenvalue, e(λ), in (−∞, 0) given by e(λ) = −λ2(− e0

2
)2 +O(λ3) as claimed.
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Appendix: Calculating H̃λ = Uλ(−∆D
Ωλ
)U−1

λ .

We use coordinates (x, y) on Ω0 and (s, u) on Ωλ. Thus Uλ becomes

Uλ : L2(Ωλ) → L2(Ω0)

ψ̃(s, u) �→ ψ(x, y) =
√
1 + λf(x) ψ̃(x, (1 + λf(x))y). (A.1)

The coordinate transformation is

x = s, y = (1 + λf(s))−1u. (A.2)

The form associated with −∆D
Ωλ

is given by

qD
Ωλ

: Q(−∆D
Ωλ
)×Q(−∆D

Ωλ
) → C

(ϕ,ψ) �→ (∇ϕ,∇ψ), (A.3)

where Q(−∆D
Ωλ
) = H1,2

0 (Ωλ) is the local Sobolev space (i.e., the completion of C∞
0 under

the norm ‖·‖∇ = (‖∇·‖2+‖·‖2)1/2). By unitary equivalence, the quadratic form associated
with H̃λ is

qH̃λ
: UλQ(−∆D

Ωλ
)× UλQ(−∆D

Ωλ
) → C

(ϕ,ψ) �→ qD
Ωλ
(U−1

λ ϕ,U−1
λ ψ). (A.4)

The form domain of H̃λ is UλH
1,2
0 (Ωλ) = UλC∞

0 (Ωλ), where the bar denotes completion
under the norm ‖ · ‖q = (qH̃λ

( · , · ) + ‖ · ‖2)1/2.
Next we calculate the quadratic form qH̃λ

(ϕ,ψ) for ϕ,ψ ∈ C∞
0 (Ω0). We use the short-

hand c(x) = 1 + λf(x) and use subscripts to denote partial derivatives.

qH̃λ
(ϕ,ψ) = qD

Ωλ
(U−1

λ ϕ,U−1
λ ψ)

=
∫
Ωλ

(∂sc(s)−1/2 ϕ(s, u
c(s)

) )(∂sc(s)−1/2ψ(s, u
c(s)

))dsdu

+
∫
Ωλ

(∂uc(s)−1/2 ϕ(s, u
c(s)

) )(∂uc(s)−1/2ψ(s, u
c(s)

))dsdu

=
∫
Ω0

{[
−1
2
c′(x)
c(x)

ϕ(x, y) + ϕx(x, y) − yc′(x)
c(x)

ϕy(x, y)
]

[
−1
2
c′(x)
c(x)

ψ(x, y) + ψx(x, y)− yc′(x)
c(x)

ψy(x, y)
]

+
1

c(x)2
ϕy(x, y)ψy(x, y)

}
dxdy
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=
∫
Ω0

{
ϕx(x, y)ψx(x, y) +

1 + y2c′(x)2

c(x)2
ϕy(x, y)ψy(x, y)

− yc′(x)
c(x)

(ϕx(x, y)ψy(x, y) + ϕy(x, y)ψx(x, y))

− c′(x)
2c(x)

(ϕx(x, y)ψ(x, y) + ϕ(x, y)ψx(x, y))

+
yc′(x)2

2c(x)2
(ϕy(x, y)ψ(x, y) + ϕ(x, y)ψy(x, y))

+
c′(x)2

4c(x)2
ϕ(x, y)ψ(x, y)

}
dxdy. (A.5)

By partial integration we get the operator

H̃λ = − ∂2

∂x2
− 1 + y2λ2f ′(x)2

c(x)2
∂2

∂y2
+

(
yλf ′′(x)
c(x)

− 3yλ2f ′(x)2

c(x)2

)
∂

∂y

+
2yλf ′(x)
c(x)

∂

∂x

∂

∂y
+
λf ′(x)
c(x)

∂

∂x
+
λf ′′(x)
2c(x)

− 3λ2f ′(x)2

4c(x)2

= −∆D
Ω0
+ λ

[
2f(x)

∂2

∂y2
+ yf ′′(x)

∂

∂y
+ 2yf ′(x)

∂

∂x

∂

∂y
+ f ′(x)

∂

∂x
+
f ′′(x)
2

]

− λ2

[
3f(x)2 + 2λf(x)3 + y2f ′(x)2

(1 + λf(x))2
∂2

∂y2
+

(
yf(x)f ′′(x)
(1 + λf(x))

+
3yf ′(x)2

(1 + λf(x))2

)
∂

∂y

+
2yf(x)f ′(x)
(1 + λf(x))

∂

∂x

∂

∂y
+

f(x)f ′(x)
(1 + λf(x))

∂

∂x
+

f(x)f ′ ′(x)
2(1 + λf(x))

+
3f ′(x)2

4(1 + λf(x))2

]
.

(A.6)

Since we assumed f ∈ C∞
0 (R ), clearly C∞

0 (Ω0) ⊂ D(H̃λ) = UλD(−∆D
Ωλ
).

Actually, UλC
∞
0 (Ωλ) = C∞

0 (Ω0). From (A.5) we infer that the norm ‖ · ‖q is equivalent
to the norm ‖ · ‖∇, i.e.,

Q(H̃λ) = UλC∞
0 (Ωλ) = H1,2

0 (Ω0). (A.7)
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