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§1. Introduction

Although concrete operators with singular continuous spectrum have proliferated re-
cently [7,11,13,17,34,35,37,39], we still don’t really understand much about singular con-
tinuous spectrum. In part, this is because it is normally defined by what it isn’t — neither
pure point nor absolutely continuous. An important point of view, going back in part to
Rodgers and Taylor [27,28], and studied recently within spectral theory by Last [22] (also
see references therein), is the idea of using Hausdorff measures and dimensions to classify
measures. Our main goal in this paper is to look at the singular spectrum produced by
rank one perturbations (and discussed in [7,11,33]) from this point of view.

A Borel measure µ is said to have exact dimension α ∈ [0, 1] if and only if µ(S) =
0 if S has dimension β < α and if µ is supported by a set of dimension α. If 0 <
α < 1, such a measure is, of necessity, singular continuous. But, there are also singular
continuous measures of exact dimension 0 and 1 which are “particularly close” to point
and a.c. measures, respectively. Indeed, as we’ll explain, we know of “explicit” Schrödinger
operators with exact dimension 0 and 1, but, while they presumably exist, we don’t know
of any with dimension α ∈ (0, 1).

While we’re interested in the abstract theory of rank one perturbations, we’re especially
interested in those rank one perturbations obtained by taking a random Jacobi matrix and
making a Baire generic perturbation of the potential at a single point. It is a disturbing fact
that the strict localization (dense point spectrum with ‖xe−itHδ0‖2 = (e−itHδ0, x2e−itHδ0)
bounded in t), that holds a.e. for the random case, can be destroyed by arbitrarily small
local perturbations [7,11]. We’ll ameliorate this discovery in the present paper in three
ways: First, we’ll see that, in this case, the spectrum is always of dimension zero, albeit
sometimes pure point and sometimes singular continuous. Second, we’ll show that not
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only does the set of couplings with singular continuous spectrum has Lebesgue measure
zero, it has Hausdorff dimension zero. Third, we’ll also see that while ‖xe−itHδ0‖ may be
unbounded after the local perturbation, it never grows faster than C ln(t).

Appendix 2 contains an example of a Jacobi matrix which sheds light on the proper
definition of localization: It has a complete set of exponentially decaying eigenfunctions,
but, nevertheless, lim

t→∞ ‖xeitHδ0‖2/tα = ∞ for any α < 2. Section 7 discusses further the
connection between eigenfunction localization and transport.

In Section 2, we’ll review some basic facts about Hausdorff measures that we’ll use later.
In Section 3, we relate these to boundary behavior of Borel transforms. In Section 4, we use
these ideas to present relations between spectra produced by rank one perturbations and
the behavior of the spectral measure of the unperturbed operator. In Section 5, we’ll relate
Hausdorff dimensions of some energy sets to the dimensions of some coupling constant sets.
In Section 6, we use the results of Sections 4 and 5 to present examples (some related to
those in [40]) that show that the Hausdorff dimension under perturbation can be anything.

In Section 7, we turn to systems with exponentially localized eigenfunctions, and show
that under local perturbations the spectrum remains of Hausdorff dimension zero. Some of
the lemmas in this section on the nature of localization are of independent interest. Finally,
in Section 8, we prove that “physical” localization is “almost stable,” that is, suitable decay
of (δn, e−itHδm) in |n − m| uniform in t implies that ‖x exp(−it(H + λδ0))δ0‖ grows at
worst logarithmically.

Appendix 1 provides a proof of a variant of a theorem of Aizenman relating Green’s
function estimates to dynamics and Appendix 2 is an example with interesting pathologies.
Appendix 3 shows that our notion of “semi-uniform” localization introduced in Section 7
cannot be replaced by uniform localization for the Anderson model. Appendix 4 extends
a lemma of Howland to allow consideration of dimension and Appendix 5 provides the
technical details of one class of examples in Section 6.

R.d.R. would like to thank M. Aschbacher and C. Peck for the hospitality of Caltech
where some of this work was completed. We’d like to thank M. Aizenman, J. Avron,
A. Klein, and G. Stolz for useful discussions.

§2. Hausdorff Measures and Spectra

Given a Borel set S in R and α ∈ [0, 1], we define

Qα,δ(S) = inf
{ ∞∑
ν=1

|bν |α
∣∣∣∣ |bν | < δ; S ⊂

∞⋃
ν=1

bν

}
,

the inf over all δ-covers by intervals bν of size at most δ. Obviously, as δ decreases, Q
increases since the set of covers becomes fewer, and

hα(S) = lim
δ↓0

Qα,δ(S)

is called α-dimensional Hausdorff measure. It is a non-sigma-finite measure on the Borel
sets. Note that h0 coincides with the counting measure (i.e., assigns to each set the number
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of points in it), and h1 coincides with Lebesgue measure. Clearly, if β < α < γ,

δα−γQγ,δ(S) ≤ Qα,δ(S) ≤ δα−βQβ,δ(S),

so if hα(S) < ∞, then hγ(S) = 0 for γ > α and if hα(S) > 0, then hβ(S) = ∞ for β < α.
Thus, for any S, there is a unique α0, called its Hausdorff dimension, dim(S), so hα(S) = 0
if α > α0 and hα(S) = ∞ if α < α0. hα0(S) can be zero, finite, infinite, or so infinite S
isn’t even hα0 -sigma-finite.

In what follows, we shall use Hausdorff measures and dimensions to classify measures.
Unless pointed otherwise, by “a measure” (equivalently, “a measure on R”; usually denoted
by µ) we mean a positive sigma-finite Borel measure on R . Note, however, that some parts
of the paper only discuss more restricted classes of measures, such as finite measures.

Definition. A measure µ on R is said to be of exact dimension α for α ∈ [0, 1] if and only
if

(1) For any β ∈ [0, 1] with β < α and S a set of dimension β, µ(S) = 0.
(2) There is a set S0 of dimension α which supports µ in the sense that µ(R\S0) = 0.

Remarks. 1. One might think that the proper condition (2) is that for any β > α, there is
a set Sβ of dimension β so µ(R\Sβ) = 0. But if so, then S0 ≡ ∞∩

n=1
Sα+1/n is of dimension

α and supports µ.
2. Of special interest are the end points α = 0 where only (2) is required, and α = 1

where only (1) is required. Obviously, α = 0 includes point measures and α = 1 includes
a.c. measures.

3. The definition is due to Rodgers-Taylor [27].

Not every measure is of some exact dimension; indeed, the sum of measures of exact
distinct dimensions is not of any exact dimension. But in this paper, most of our examples
will involve measures of some exact dimension. Last [22], following Rodgers-Taylor [27,28],
discusses many different decompositions of any measure into a part of dimension less than
α, equal to α, and larger than α. The piece of exact dimensionα can be further decomposed
in terms of its relation to hα.

Definition. Given any measure µ and any α ≥ 0, we define

Dαµ(x) = lim
δ↓0

µ(x− δ, x + δ)
δα

. (2.1)

Note that if Dα0
µ (x0) < ∞ for some x, then Dβµ(x0) = 0 for all β < α0 and if Dα0

µ (x0) > 0
for some x0, then Dβµ(x0) = ∞ for all β > α0. In particular, for each x0, there is an α(x0)
so Dαµ(x0) = 0 if α < α(x0) and = ∞ if α > α(x0). Indeed,

α(x0) = lim
δ↓0

lnµ(x0 − δ, x0 + δ)
ln δ

. (2.2)

We’ll sometimes write αµ(x0) if we want to be explicit about the µ involved; and if we
have a one-parameter family µλ, we’ll use αλ for αµλ .

The following is a result of Rodgers-Taylor [27,28] (also see [26]):
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Theorem 2.1. Let µ be any measure and α ∈ [0, 1]. Let Tα = {x | Dαµ(x) = ∞} and let
χα be its characteristic function. Let dµαs = χα dµ and dµαc = (1 − χα)dµ. Then dµαs
is singular with respect to hα (i.e., supported on a set of hα-measure zero) and dµαc is
continuous with respect to hα (i.e., gives zero weight to any set of hα-measure zero).

Remark. The following is also true: µ {x | Dαµ(x) > 0} is supported on an hα-sigma
finite set, and µ {x | Dαµ(x) = 0} gives zero weight to hα-sigma-finite sets. Moreover,
µ {x | 0 < Dαµ(x) < ∞} is absolutely continuous with respect to hα, in the sense that it
is given by f(x)dhα(x) for some f ∈ L1(R , dhα).

Corollary 2.2. A measure µ is of exact dimension α0 ∈ [0, 1] if and only if

(1) For any β > α0, D
β
µ(x) = ∞ a.e. x w.r.t. µ.

(2) For any β < α0, D
β
µ(x) = 0 a.e. x w.r.t. µ.

(Equivalently, if α(x) = α0 a.e. x w.r.t. µ). More generally, if (1) holds (equivalently,
α(x) ≤ α0 a.e. w.r.t. µ), then µ is supported on a set of dimension α and if (2) holds
(equivalently, α(x) ≥ α0 a.e. w.r.t. µ), then µ gives zero weight to any set S of dimension
β < α0.

Corollary 2.3. Let µ be a measure on R , let S ⊂ R be a Borel set with µ(S) > 0, and
suppose that α0 ∈ [0, 1] and

Dα0
µ (x) < ∞

for µ-a.e. x in S. Then dim(S) ≥ α0.

Remark. In fact, hα0(S) > 0.

Proof. α0 = 0 is trivial, so suppose α0 > 0. Let ν be the measure µ(S ∩ · ). Then, since
ν ≤ µ, the hypothesis implies that

Dα0
ν (x) < ∞

for a.e. x w.r.t. ν. Thus, by Theorem 2.1, ν gives zero weight to sets of hα0-measure zero,
and so, since ν(S) �= 0, we must have hα0(S) > 0, which implies dim(S) ≥ α0.

It is often easier to deal with power integrals, so we note:

Proposition 2.4. Let µ be a finite measure, and let G̃α(x0) =
∫ dµ(y)

|x0−y|α . Then

(i) G̃α(x0) < ∞ implies Dαµ(x0) < ∞.

(ii) Dαµ(x0) < ∞ implies G̃β(x0) < ∞ for any 0 ≤ β < α.

Proof. (i) Looking at the contribution to the integral of the set where |x0 − y| < δ, we see
that

µ(x0 − δ, x0 + δ) ≤ δαG̃α(x0)

so
Dαµ(x0) ≤ G̃α(x0).
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(ii) Let Mδ
µ(x0) = µ(x0 − δ, x0 + δ). Then (with λ = Lebesgue measure)

G̃β(x0) = (µ ⊗ λ)((y, t) | 0 ≤ t ≤ |x0 − y|−β)

=

∞∫
0

M t−1/β

µ (x0)dt

= β

∫ ∞

0

Mδ
µ(x0)δ−β−1 dδ.

The integral always converges for δ large since Mδ
µ is bounded; and if β < α, and Dαµ(x0) <

∞, then it converges for small δ.

Consider the set

Wα =
{
x

∣∣∣∣ lim
δ↓0

µ(x− δ, x + δ)
δα

�= lim
δ↓0

µ(x− δ, x + δ)
δα

}
. (2.3)

For α = 0, Wα is empty; and for α = 1, the theorem of de la Vallée-Poussin (see [30] or
Theorem 7.15 of [29]) says that µ(W1) = 0. For 0 < α < 1, however, the situation is quite
different: A result going back to Besicovitch [5] (also see Theorem 5.2 of [10]) is that if µ
is the restriction of hα to a set of finite positive hα-measure, then µ is supported on Wα.
Moreover, there are even examples of µ’s where for a.e. x w.r.t. µ,

lim
δ↓0

lnµ(x− δ, x + δ)
ln(δ)

= 1 and lim
δ↓0

lnµ(x− δ, x + δ)
ln(δ)

= 0.

Appendix 5 in this paper has such examples.

§3. Borel Transforms and Hausdorff Spectra

Given a measure µ with
∫

(|x| + 1)−1 dµ(x) < ∞, we define its Borel transform by

Fµ(z) =
∫

dµ(x)
x− z

for Im z > 0. These play a crucial role in the theory of rank one perturbations as originally
noticed by Aronszajn-Donoghue [3,9]; see [33] for their properties and this theory. In this
section, we’ll translate Theorem 2.1 into Borel transform language.

Definition. Fix γ ≤ 1 and x. Let

Qγµ(x) = lim
ε↓0

εγ ImFµ(x + iε)

Rγµ(x) = lim
ε↓0

εγ |Fµ(x + iε)|.

Our goal in this section is to prove:
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Theorem 3.1. Fix µ and x0. Fix α ∈ [0, 1) and let γ = 1 − α. Then Dαµ(x0), Qγµ(x0),
and Rγµ(x0) are either all infinite, all zero, or all in (0,∞).

Remarks. 1. In particular, Qγµ(x0) = Rγµ(x0) = ∞ if γ < 1 − αµ(x0) and Qγµ(x0) =
Rγµ(x0) = 0 if γ > 1 − αµ(x0) for any αµ(x0) ∈ [0, 1].

2. In particular,

lim
ε↓0

ln(ImFµ(x + iε))
/

ln(ε−1) = lim
ε↓0

ln |Fµ(x + iε)|/ ln(ε−1) = 1 − αµ(x).

so long as αµ(x) ≤ 1.
3. The relation between Dαµ(x0) and Qγµ(x0) also extends to the range 1 ≤ α < 2. This

follows from Lemma 3.2 below along with Lemma 5.4 of Section 5.
4. J. Bellissard informed us that he, R. Mosseri, and J. Zhong also have related results.

Lemma 3.2. For any γ ≤ 1,

D1−γ
µ (x0) ≤ 2Qγµ(x0) ≤ 2Rγµ(x0).

Proof. Let Mδ
µ(x0) = µ(x0 − δ, x0 + δ). Then looking at the contribution of (x0 − ε, x0 + ε)

to ImFµ(x0 + iε), we see that

ImFµ(x0 + iε) = ε

∞∫
−∞

dµ(y)
(y − x0)2 + ε2

≥ 1
2ε

Mε
µ(x0), (3.1)

so

εγ ImFµ(x0 + iε) ≥ 1
2

1
ε1−γ

Mε
µ(x0),

so the first inequality in the lemma holds. Qγµ(x0) ≤ Rγµ(x0) is, of course, trivial.

Lemma 3.3. Let α < 1. If Dαµ(x0) < ∞ (resp. = 0), R1−α
µ (x0) < ∞ (resp. = 0).

Proof. Suppose first that Dαµ(x0) < ∞. Let Mδ
µ(x0) = µ(x0 − δ, x0 + δ). The case α = 0

is trivial so we’ll suppose α > 0. By hypothesis,

Mδ
µ(x0) ≤ Cδα, (3.2)
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so with γ = 1 − α:

lim
ε↓0

εγ |Fµ(x0 + iε)| ≤ lim
ε↓0

εγ
∞∫

−∞

dµ(y)
[(x0 − y)2 + ε2]1/2

= lim
ε↓0

εγ
1∫

0

1
(ε2 + δ2)1/2

[dδMδ
µ(x0)]

= lim
ε↓0

εγ
1∫

0

δ

(ε2 + δ2)3/2
Mδ
µ(x0)dδ

≤ lim
ε↓0

Cεγ
1∫

0

δα+1

(ε2 + δ2)3/2
dδ

= lim
ε↓0

C

ε−1∫
0

δα+1

(δ2 + 1)3/2
dδ

< ∞.

The first equality comes from noting that since γ > 0,

lim
ε↓0

εγ
∫

|y−x0|>1

dµ(y)
/|x0 − y − iε| = 0.

The second equality is an integration by parts. The boundary term at zero vanishes since
α > 0. The term at 1 has a zero limit since γ > 0. The final equality comes by noting that
since α < 1, the integral is finite as ε−1 → ∞.

If Dαµ(x0) = 0, then (3.2) holds for δ ≤ δ0 where C can be taken arbitrarily small (by
taking δ0 small). The above calculation (with 1 as the upper integrand replaced by δ0)
shows that

R1−α
µ (x0) ≤ C

∞∫
0

δα+1

(δ2 + 1)3/2
dδ.

Since C is arbitrarily small, R is zero.

Proof. Theorem 3.1 is a direct consequence of Lemmas 3.2 and 3.3.

Corollary 3.4. Let γ ∈ [0, 1]. Let S ⊂ R be a Borel set with µ(S) > 0. Suppose
Qγµ(x) < ∞ for µ-a.e. x ∈ S. Then, dim(S) ≥ 1 − γ.

Remark. In fact, h1−γ(S) > 0.

Proof. An immediate consequence of Corollary 2.3 and Lemma 3.2.

The following criterion won’t be used in this paper but is an interesting result on its
own.



8 R. DEL RIO, S. JITOMIRSKAYA, Y. LAST, AND B. SIMON

Theorem 3.5. Suppose that

sup
ε>0

εs
b∫
a

|ImFµ(x + iε)|2 dx < ∞

for some s < 1. Then µ (a, b) gives zero weight to sets of dimension less than 1 − s.

Remark. The s = 0 result is stronger [36]; in that case µ is purely absolutely continuous
on (a, b).

Proof. We’ll prove that for any β < 1 − s and any closed interval I ⊂ (a, b), we have∫
x∈I
y∈I

dµ(x)dµ(y)
|x− y|β < ∞. (3.3)

This implies G̃β(x) =
∫ dµ(y)

|x−y|β < ∞ for µ-a.e. x ∈ I, and the theorem thus follows from
Proposition 2.4 and Corollary 2.3.

Replacing µ by µ I and noting that Im(
∫
x∈I

dµ(x)
x−z ) ≤ ImFµ(z), we can suppose µ is

supported in I. Since I ⊂ (a, b) and |ImFµ I(z)| ≤ C|Im z|
dist(z,I)2

, we can suppose that

sup
ε>0

εs
∞∫

−∞
|ImFµ(x + iε)|2 dx < ∞. (3.4)

By a straightforward calculation,

∞∫
−∞

|ImFµ(x + iε)|2 dx = 2πε
∫
x∈I
y∈I

dµ(x)dµ(y)
(x− y)2 + 4ε2

so (3.4) says that ∫
x∈I
y∈I

dµ(x)dµ(y)
(x− y)2 + ε2

≤ Cε−1−s . (3.5)

Let
M (2)
µ (δ) =

∫
|x−y|<δ
x∈I
y∈I

dµ(x)dµ(y).

Then (3.5) with ε = δ says that

M (2)
µ (δ) ≤ 2Cδ1−s.
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Thus, if β < 1 − s, ∫
|x−y|≤1
x∈I
y∈I

dµ(x)dµ(y)
|x− y|β ≤

∞∑
n=0

M (2)
µ (2−n)2(n+1)β < ∞

and (3.3) is proven.

§4. Rank One Perturbations: A General Criterion

Let µ be a normalized finite measure. Let A be the operator of multiplication by x on
L2(R , dµ). Let ϕ be the unit vector ϕ(x) ≡ 1. Let Aλ = A + λ(ϕ, · )ϕ, and let dµλ be the
spectral measure for ϕ and the operator Aλ. Let Fλ(z) =

∫ dµλ(x)
x−z , and denote F (z) for

F0(z). Then [33]

Fλ(z) =
F (z)

1 + λF (z)
(4.1)

ImFλ(z) =
ImF (z)

|1 + λF (z)|2 (4.2)

dµλ(x) = lim
ε↓0

1
π

ImFλ(x + iε)dx (4.3)

µλ,sing is supported by {x | F (x + i0) = − 1
λ}. (4.4)

Theorem 4.1. Let α ∈ [0, 1]. Let Sα = {x | lim ε−(1−α)ImF (x+iε) > 0}. If µλ([a, b]\Sα)
= 0 for some λ �= 0, then µλ gives zero weight to any subset of [a, b] of dimension β < α.

Remarks. 1. The proof actually shows that µλ Sα is continuous w.r.t. hα (i.e., gives zero
weight to sets of zero hα-measure).

2. By a simple variant of the proof below and the remark to Theorem 2.1, one can also
show that if Šα = {x | lim ε−(1−α)ImF (x + iε) = ∞}, then µλ Šα gives zero weight to
hα-sigma-finite sets.

Theorem 4.2. Let 0 ≤ α < 1. Suppose µ is purely singular. Let Ŝα = {x | lim ε−(1−α)

ImF (x + iε) < ∞}. If µλ(R\Ŝα) = 0 for some λ �= 0, then µλ is supported on a set of
dimension α.

Remarks. 1. By the remark to Theorem 2.1, the proof below actually shows that µλ Ŝα
is supported on an hα-sigma-finite set.

2. By a simple variant of the proof below, one can also show that if S̃α = {x | lim ε−(1−α)

ImF (x + iε) = 0}, then µλ S̃α is singular w.r.t. hα (i.e., supported on a set of zero hα-
measure).

Proof of Theorem 4.1. Suppose lim ε−(1−α)ImF (x0 + iε) > 0 (i.e., x0 ∈ Sα). By (4.2),

ImFλ(x0 + iε) ≤ 1
λ2ImF (x0 + iε)
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so
Q1−α
µλ

(x0) = lim ε(1−α)ImFλ(x0 + iε) < ∞.

Thus, the result follows from Corollary 3.4.

Proof of Theorem 4.2. Suppose lim ε−(1−α)ImF (x0 + iε) < ∞ (i.e., x0 ∈ Ŝα) and that
F (x0 + i0) = − 1

λ . By (3.1),
Mε
µ(x0) ≤ Cε2−α

and

|1 + λReF (x0 + iε)| = |λ| |ReF (x0 + iε) − ReF (x0 + i0)|

= |λ|
∣∣∣∣∫ [ (y − x0)

(y − x0)2
− (y − x0)

(y − x0)2 + ε2

]
dµ(y)

∣∣∣∣
= |λ|

∣∣∣∣∫ ε2

(y − x0)[(y − x0)2 + ε2]
dµ(y)

∣∣∣∣
≤ |λ|

∫
ε2

δ(δ2 + ε2)
[dδMδ

µ(x0)].

We can integrate by parts, use the bound on Mε
µ, and integrate by parts again to bound

this last integral by

|λ|(2 − α)

∞∫
0

ε2δ1−α dδ
δ(δ2 + ε2)

= |λ|(2 − α)ε1−α
∞∫
0

dy

yα(y2 + 1)

and note the integrand is finite.
Thus, |1+λF (x0 + iε)| ≤ Cε1−α and so lim ε1−α|1+λF (x0 + iε)|−1 > 0. Thus, by (4.1),

if x0 ∈ Ŝα ∩ {x | F (x0 + iε) = − 1
λ}, lim ε(1−α)|Fλ(x0 + iε)| > 0. Since µλ is supported on

{x | F (x0 + iε) = − 1
λ}, if µλ(R\Ŝα) = 0, then by Theorem 3.1, αλ(x) ≤ α a.e. and so by

Corollary 2.2, µ is supported on a set of dimension α.

§5. Rank One Perturbations: Coupling Constant Dimensions

In addition to the functions Fλ(z), F (z) of (4.1), an important role is played by

G(x) =
∫

dµ(y)
(x− y)2

(5.1)

in that
{x | G(x) < ∞, F (x + i0) = −λ−1} = set of eigenvalues of Aλ. (5.2)

Note that G(x) = lim ε−1ImF (x+ iε), so (5.2) follows from (4.4) and the α = 0 case of the
second remark to Theorem 4.1 and the first remark to Theorem 4.2. Moreover, if λ < ∞
(see [33]):

dµpp
λ (y) =

∑
{x|G(x)<∞,F (x+i0)=−λ−1}

1
λ2G(x)

dδx(y). (5.3)
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Note that G(x) < ∞ implies F (x + iε) has a real limit so

M = {x | G(x) < ∞} =
⋃

0<|λ|≤∞
{eigenvalues of Aλ}.

In [7] del Rio, Makarov, and Simon prove that

M =
∞⋃
n=1

Mn

where Mn is such that there exists Cn with

C−1
n (x− y) ≤ F (x + i0) − F (y + i0) ≤ Cn(x− y) (5.4)

for all x < y both in Mn. Let Ln = {λ | −λ−1 ∈ F [Mn]}. It follows from (5.4) that
dim(Mn) = dim(Ln). Thus, since dim(

∞∪
n=1

An) = sup dim(An), we see that

Theorem 5.1. Fix a Borel set I. Then the Hausdorff dimension of the set of λ’s where
Aλ has some eigenvalues in I is the same as the Hausdorff dimension of the set of x ∈ I
where G(x) < ∞.

Remarks. 1. (5.4) actually implies the following stronger result: If, for some α ∈ [0, 1],
{x | G(x) < ∞}∩ I has zero hα-measure, or positive hα-measure, or is hα-sigma-finite, or
is not hα-sigma-finite, then the set of (nonzero) λ’s where Aλ has some eigenvalues in I
has the same property.

2. Examples in the next section show that {x | G(x) < ∞} can have any dimension and
illustrate the difference between some point spectrum and only point spectrum.

There is also a result on the other side:

Theorem 5.2. Suppose µ is purely singular. Let S = {λ | Aλ has some continuous
spectrum}. Let T = {x | G(x) = ∞}. Then

dim(S) ≤ dim(T ).

In particular, if T has Hausdorff dimension zero, so does S.

Remarks. 1. The proof actually shows that for any α ∈ [0, 1], hα(S) > 0 implies hα(T ) > 0.
In particular, this generalizes the known fact [33,40] that if G(x) < ∞ a.e. then for a.e. λ,
Aλ has only pure point spectrum. Moreover, for 0 ≤ α < 1 we get the stronger result:
hα(S) > 0 implies that T is not hα-sigma finite. This shows that the inequality in Theorem
5.2 is, in some sense, strict. Note that for α = 0 it becomes the obvious fact: S �= ∅ implies
T is uncountable.

2. While we have formulated Theorem 5.2 in a global way, the result is actually local.
That is, fix a Borel set I and let S(I) = {λ | µsc

λ (I) > 0}, where µsc
λ is the singular

continuous part of µλ, then hα(S(I)) > 0 implies hα(T ∩ I) > 0, and, in particular,
dim(S(I)) ≤ dim(T ∩ I). To prove this, just replace S by S(I) and T1 by T1 ∩ I in the
proof below.

3. Appendix 4 explores the relation between dim{x | G(x) = ∞} and the dimension of
supports of µ.

We’ll need a lemma that could have many other applications to the theory of rank one
perturbations:
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Lemma 5.3. Let η be a finite measure on R and define a measure ν on R by

ν(A) =
∫

µλ(A)dη(λ). (5.4)

Let Fκ(z) =
∫
dκ(x)/x− z be the Borel transform of the measure κ. Then

Fν(z) = Fη(−1
/
Fµ(z)). (5.5)

Proof. By the definition (5.4):

Fν(z) =
∫

dη(λ)Fµλ (z).

Equation (4.1) implies the result.

We also need the following lemma:

Lemma 5.4. Let 0 ≤ α < 2 and let µ be a measure obeying µ(x − δ, x + δ) ≤ Cδα for
some C and x and all δ > 0. Then there exists C1 so that ImFµ(x + iε) ≤ C1ε

−(1−α) for
all ε > 0. Moreover, if µ(x− δ, x + δ) ≤ Cδα holds for some fixed C and all x and δ > 0,
then there exists C1 so that ImFµ(x + iε) ≤ C1ε

−(1−α) for all x and ε > 0.

Proof.

ImFµ(x + iε) =
∫

ε dµ(y)
(x− y)2 + ε2

=
∫

|x−y|<ε

ε dµ(y)
(x− y)2 + ε2

+
∞∑
n=0

∫
2nε≤|x−y|<2n+1ε

ε dµ(y)
(x− y)2 + ε2

≤ Cεα

ε
+

∞∑
n=0

εC(2n+1ε)α

(2nε)2 + ε2

≤ Cεα

ε

(
1 + 2α

∞∑
n=0

2n(α−2)

)

so we see that the claim holds.

Proof of Theorem 5.2. The α = 0 case is trivial, so suppose 0 < α ≤ 1 and hα(S) > 0.
Let T1 = {x | G(x) = ∞, lim

ε↓0
F (x + iε) exists and is finite and nonzero}. We’ll show

hα(T1) > 0, so we can conclude that hα(T ) > 0. For each λ ∈ S1 ≡ S\{0,±∞}, µsc
λ is

supported on T1 so µλ(T1) > 0. Since hα(S1) > 0, it is well known ([10], Proposition 4.11
and Corollary 4.12) that we can find a measure η so that η is supported by S1, η(S1) > 0,
and

η(x− δ, x + δ) ≤ Cδα (5.6)
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for all x and δ > 0. Let ν be given by (5.4). Then ν(T1) > 0.
By (5.6) and Lemma 5.4 there exists C1 so that

ImFη(x + iε) ≤ C1ε
−(1−α)

for all x and ε > 0. It follows from (5.5) that for x ∈ T1,

lim
ε↓0

ε(1−α)ImFν(x + iε) ≤ C1 lim
ε↓0

ε(1−α)[Im(−1/Fµ(x + iε))]−(1−α). (5.7)

Since G(x) = ∞, we have

lim
ε↓0

ImFµ(x + iε)
ε

= G(x) = ∞
and since ±∞ /∈ S1, Fµ(x + iε) → −λ−1 �= 0 so ε [Im(−1/Fµ(x + iε))]−1 → 0. Thus, we
see from (5.7) that for all x ∈ T1,

Q1−α
ν (x) < ∞

and if α < 1, then Q1−α
ν (x) = 0. Since ν(T1) > 0, Corollary 3.4 (along with its remark)

implies that hα(T1) > 0. The fact that in the α < 1 case T1 is not hα-sigma finite follows
from Lemma 3.2 and the remark to Theorem 2.1.

Remark. To apply Proposition 4.11 and Corollary 4.12 of [10], we need that S is a Borel
set. This follows, for example, by picking {ϕn}∞n=1 an orthonormal basis for L2(R , dµ),
letting F (n ≥ N) be the projection onto the span of {ϕn}∞n=N and noting that by the
RAGE theorem [25]:

R\S =
{
λ

∣∣∣∣ ∀m lim
N→∞

lim
K→∞

1
K

K∫
0

‖F (n ≥ N)eisAλϕm‖2 ds = 0
}
.

§6. Rank One Perturbations: Some Examples

Rank one perturbations can be described by a measure µ given by

(ϕ, (A − z)−1ϕ) =
∫

dµ(x)
x− z

where A+λ(ϕ, · )ϕ is the rank one perturbation, so we’ll phrase our examples in this section
in terms of dµ. To make things operator theoretic, one can always take H = L2(R , dµ),
A = multiplication by x, and ϕ the function ϕ(λ) ≡ 1 (as in the last two sections).

We’ll discuss four classes of examples in this section:
(i) Point measures with rapidly decreasing weights for which we’ll show that the per-

turbed spectrum is supported by a set of Hausdorff dimension zero. This class is relevant
for our study of localization in the next section.

(ii) Point measures where for a.e. λ, dµλ has exact dimension α0. These are variants of
the measures in [40].

(iii) A family of singular continuous measures where one can calculate many distinct
dimensions. Details of the calculations are pushed to Appendix 5.

(iv) A set of examples that show {x | G(x) < ∞} can have any dimension and that
have point spectrum embedded in singular continuous spectrum.
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Example 1. Point spectrum with decaying weights

Given a sequence of sets An, we call A∞ =
∞∩
n=1

∞∪
m=n

Am, the lim sup(An) consisting of

points in infinitely many An’s.

Lemma 6.1. Suppose that for a family of intervals An, we have for each j > 0

|An| ≤ Cjn
−j . (6.1)

Then A∞ = lim sup(An) is a set of Hausdorff dimension zero.

Proof. By (6.1), |An| → 0 so given δ, choose N0 so |An| ≤ δ for n ≥ N0. Then for m ≥ N0,
∞∪
n=m

An is a δ-cover of A∞. Thus,

Qα,δ(A∞) ≤ Cαj

∞∑
n=m

n−jα.

For a fixed α > 0, pick j so jα > 1. Then the sum is finite and clearly,

Qα,δ(A∞) ≤ Cαj inf
m≥N0

∞∑
n=m

n−jα = 0.

Thus, hα(A∞) = 0 if α > 0 and so A∞ has dimension zero as claimed.

Theorem 6.2. Suppose dµ(E) =
∞∑
n=1

an dδEn(E) where an obeys the condition that for

all j, there is a Cj with

|an| ≤ Cjn
−j . (6.2)

Then for every λ, dµλ is supported on a set of Hausdorff dimension zero. Moreover, dµλ
is pure point except for a set of λ’s of Hausdorff dimension zero.

Remark. Equivalently, let A have a complete orthonormal set of eigenvectors

Aψn = Enψn

and let ϕ =
∑
n
anψn, where an obeys (6.2), and Aλ = A+λ(ϕ, · )ϕ. Then for every λ, the

spectral measures of Aλ are all supported on a set of Hausdorff dimension zero. Moreover,
Aλ has pure point spectrum except for a set of λ’s of Hausdorff dimension zero.

Proof. Let G(x) be defined by (5.1) and let S = {x | G(x) = ∞, x /∈ {Ei}∞i=1}. Then the
Aronszajn-Donoghue theory [33] says that for any λ �= 0, dµsc

λ , the singular continuous
measure for Aλ is supported by S. Thus, the spectral measure dµλ is supported by
S ∪ {eigenvalues of Aλ}. Since the set of eigenvalues is a zero-dimensional set, it suffices
to prove that S is zero-dimensional. The final assertion then follows from Theorem 5.2.

Let bn = 3
√
an and let An = [En − bn, En + bn]. Then

|An| ≤ 2C1/3
j n−j/3
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for any j, so An obeys (6.1). Thus, A∞ ≡ lim sup(An) has dimension zero.
We claim S ⊂ A∞. To prove this, we need only show if x /∈ A∞ and x /∈ {Ei}∞i=1, then

G(x) < ∞. But if x /∈ A∞, then for some N0, x /∈ ∞∪
n=N0

An so

∞∑
n=N0

an
|x− En|2 ≤

∞∑
n=N0

an
b2n

=
∞∑

n=N0

a1/3
n < ∞

by (6.2). Since x /∈ {Ei}∞i=1,
N0−1∑
n=1

an

|x−En|2 < ∞ so G(x) < ∞ as required.

Remarks. 1. In the next section, we’ll apply this result to random Hamiltonians.
2. One natural way that (6.2) can hold is if |an| ≤ Ce−ε|n| for some ε > 0.

Example 2. Perturbed measures of prescribed exact dimension

Our second class of examples is intended to show that it can happen that for any
α0 ∈ [0, 1], there is a rank one perturbation situation where µλ [0, 1] is a measure of
exact dimension α0 for a.e. λ (w.r.t. Lebesgue measure). All our unperturbed measures in
this example will live on [0, 1] and be point measures. The third set of examples will be
similar but the unperturbed measures will be continuous. For each n = 0, 1, 2, . . . let

dµn =
1
2n

2n∑
j=0

dδj/2n , (6.3a)

and for α ∈ (0, 1) define

dνα =
∞∑
n=0

2−n(1−α)dµn. (6.3b)

For any x0 ∈ [0, 1] and n, there is j
2n within 2−n−1 of x0, so να([x0− 1

2n+1 , x0 + 1
2n+1 ]) ≥

2−n(2−α). Thus for any ε < 1, να(x0 − ε, x0 + ε) ≥ ε2−α so by (3.1), for x0 ∈ [0, 1] and
0 < ε, ImFνα(x0 + iε) ≥ 1

2
ε1−α. So the set Sα of Theorem 4.1 is all of [0, 1], and so (by

Theorem 4.1):

Theorem 6.3. Fix 0 < α < 1. Let dνα be the measure (6.3) and let dνα;λ be its rank one
perturbations. Then for any λ �= 0, dνα;λ gives zero weight to any S ⊂ [0, 1] of dimension
β < α.

On the other hand, suppose (for j
2n closest to x0)∣∣∣∣x0 − j

2n

∣∣∣∣ > εn ≡ 2−n(1+η)δ0 (6.4)

for some η, δ0 > 0. Pick 1 < γ < (2 − α)/(1 + η). Then∫
dµn(y)
|x0 − y|γ ≤ εn

−γ2−n +
∫

2−n−1≤|x−y|≤1

dy

|x− y|γ

≤ C [εn−γ2−n + 2n(γ−1)].
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Thus, by (6.3)∫
dνα(y)
|x0 − y|γ ≤ C

( ∞∑
n=0

2−n(2−α−γ) +
∞∑
n=0

δ0
−γ2−n[−γ(1+η)+1+1−α]

)
< ∞

by the choice of γ and α + γ < 2.

The measure of the set of x0 ∈ [0, 1] where (6.4) fails is
∞∑
n=0

2−nηδ0 and is arbitrarily

small if δ0 gets small. Thus,

Lemma 6.4. For any γ < 2 − α and a.e. x0 ∈ [0, 1],
∫ dνα(y)

|x0−y|γ < ∞.

Since γ can be taken arbitrarily close to 2−α, we see by Proposition 2.4 and Lemma 5.4
that the set Ŝβ of Theorem 4.2 has Lebesgue measure 1 if β > α. Thus, |[0, 1]\ ∩

β>α
Ŝβ| = 0.

By the result of Simon-Wolff [40], µλ([0, 1]\ ∩
β>α

Ŝβ) = 0 for a.e. λ. Thus, by Theorem 4.2:

Theorem 6.5. Fix 0 < α < 1. Then for a.e. λ, να;λ is supported on a set of dimension
α. In particular, να;λ [0, 1] is of exact dimension α.

If we take dν1 =
∞∑
n=1

n−2 dµn, it is not hard to see that for all λ �= 0, ν1;λ [0, 1] is of

exact dimension one. Thus, we see that for any α ∈ [0, 1] there are examples with singular
spectrum of exact dimension α (in [0, 1]) for a.e. λ (and for α = 0, for all λ).

Example 3. Some number theoretic examples

Our third class of examples illustrates change of dimension from singular continuous to
singular continuous spectrum. Details will be presented in Appendix 5.

These examples will depend critically on the base 2 decimal expansion of a number x
in [0, 1]. Given such an x, we can expand it, viz.

x =
∞∑
n=1

an(x)
2n

. (6.5)

We deal with the non-uniqueness for binary decimals (e.g., numbers of the form j
2n ) by

requiring am(x) = 0 for m large for such x (except for x = 1). Thus, (6.5) defines a map
of {0, 1}N F−→ [0, 1], and x → {an(x)} defines a left inverse.

Any measure λ on {0, 1}N defines a measure µ on [0, 1] by µ(A) = λ(F−1[A]). For any p
with 0 < p < 1, let Ap be the product measure on {0, 1}N with each factor giving weights
p to 0 and (1 − p) to 1, that is, the an’s are i.i.d.’s with density pdδ0 + (1 − p)dδ1. Let µp
be the corresponding measure on [0, 1].

Two dimensions will arise below:

H(p) ≡ − p ln p + (1 − p) ln(1 − p)
ln 2

(6.6)

L(p) ≡ 2 +
ln p(1 − p)

2 ln 2
≡ 2 − γ(p). (6.7)
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We note that
L(p) < H(p) < 1 p �= 1

2
(but in fact H(p) − L(p) ∼= 0((p − 1

2 )4) for p near 1
2 so they are very close for most p’s).

Notice also that H(p) > 0 and that

p ∈
(

2 −√
3

4
,

2 +
√

3
4

)
≡ I0 ⇔ L(p) > 0

(I0 is about (0.07, 0.93)).

Theorem 6.6. (1) dµp has exact dimension H(p).
(2) Suppose p ∈ I0. Then for a.e. λ w.r.t. Lebesgue measure, the restriction to [0, 1] of

the rank one perturbation of dµp has exact dimension L(p).
(3) If p /∈ Ī0, then for a.e. λ, the rank one perturbation of dµp is pure point.
(4) If p ∈ (1

4 ,
3
4 ), p �= 1

2 , then for all λ, the restriction to [0, 1] of the rank one perturbation
of dµp is purely singular continuous (so we have an example with singular continuous
spectrum for all λ).

Remarks. 1. (4) says for p ∈ (1
4 ,

3
4 ), G(x) = ∞ for all x ∈ [0, 1].

2. We’ll prove this theorem in Appendix 5.

Example 4. Examples with pure point spectrum

Our last class of examples will show {x | G(x) < ∞} can have any Hausdorff dimension,
and also provide examples where dµλ has a singular continuous component for all λ �= 0 but
sometimes mixed with embedded point spectrum. In this example, dµ will be a measure
fixed once and for all with supp(µ) = [0, 1] and Gµ(x) ≡ ∫ dµ(y)

(x−y)2 = ∞ on [0, 1]. Three
possibilities to keep in mind are:

(1) χ[0,1](x)dx which is absolutely continuous.
(2) dµp, the measure of Example 3, with p ∈ (1

4
, 1

2
) where G(x) = ∞ by Theorem

6.6(4).
(3) Any of the point measures dνα of Example 2 having G(x0) = lim

ε↓0
ε−1ImFνα(x0 +

iε) = ∞ for all x0 ∈ [0, 1].
These show there are such µ with any spectral type.

Theorem 6.7. Let C be an arbitrary closed nowhere dense set in [0, 1]. Let µ be a Borel
measure on [0, 1] with Gµ(x) = ∞ on [0, 1] and

∫
dµ(x) = 1. Let

dν(x) = dist(x,C)2 dµ(x).

Then, supp(ν) = [0, 1], Gν(x) = ∞ on [0, 1]\C and Gν(x) ≤ 1 on C .

Proof. If x /∈ C , dist(x,C) = δ > 0 since C is closed. Thus, Gν(x) ≥ ( δ2)2
∫

|x−y|≤δ/2
dµ(y)

(x−y)2

= ∞ since Gµ(x) = ∞. On the other hand, if x ∈ C ,

Gν(x) =
∫

dist(y,C)2

dist(x, y)2
dµ(y) ≤

∫
dµ(y) = 1
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since dist(x, y) ≥ dist(C, y). Finally, since [0, 1]\C is dense, supp(dν) = [0, 1].

Now let ν̃ be ν/[
∫
dν]. Then for every x ∈ C , Gν̃(x) ≤ 1

N for N =
∫
dν. Consider now

the rank one perturbation dν̃λ of dν̃. ¿From (5.3), we see each pure point has weight at
least N

λ2 so there are at most λ
2

N
pure points (since dν̃λ is normalized in (5.3)). Thus,

Proposition 6.8. If N =
∫
dν(x) for the measure ν of Theorem 6.7, then Aλ ≡ A +

λ(ϕ, · )ϕ has at most λ2

N eigenvalues in [0, 1]. In particular, if λ2 < N , Aλ has purely
singular continuous spectrum in [0, 1]; and for any λ, σsc(Aλ) = [0, 1].

Remarks. 1. This shows the set in Theorem 5.1 can have any Hausdorff dimension since
there are closed sets of any dimension. In addition, unlike the Simon-Wolff scenario, the
s.c. spectrum need not ever be empty.

2. There exist nowhere dense C ’s of measure arbitrarily close to 1. So, to conclude σsc

is empty for some λ, it is not enough G(x) < ∞ on a set of positive Lebesgue measure.

§7. Localization

One of our goals in this section is to prove that local perturbations of random Hamiltoni-
ans in the Anderson localization regime, while they may produce singular continuous spec-
trum, always produce zero-dimensional spectrum, in the sense that the spectral measures
are all supported on a set of Hausdorff dimension zero. We’ll use Theorem 6.2. Naively,
one might confuse exponential decay of eigenfunctions in Zν (as in |ϕn(m)| ≤ Cne

−A|m|)
with exponential decay in eigenfunction label (as in |ϕn(0)| ≤ Ce−B|n|) which allows one
to apply Theorem 6.2. In fact, they are distinct — indeed, if ν ≥ 2, we will not prove that
|ϕn(0)| ≤ Ce−B|n| but only |ϕn(0)| ≤ C exp(−B|n|1/ν); also see Appendix 2.

Throughout this section, n is an eigenvalue label and m is a Zν point. It will be
convenient to take the norm |m| = max

j=1,...,ν
|mj| on Zν .

Definition. Let H be a self-adjoint operator on 72(Zν ). We say that H has semi-uniformly
localized eigenfunctions (SULE), pronounced “operators with a soul,” if and only if H has
a complete set {ϕn}∞n=1 of orthonormal eigenfunctions, there is α > 0 and mn ∈ Zν ,
n = 1, . . . , and for each δ > 0, a Cδ so that

|ϕn(m)| ≤ Cδe
δ|mn|−α|m−mn| (7.1)

for all m ∈ Zν and n = 1, 2, . . . .

Thus, eigenfunctions are “localized about” points mn. We use the “semi” in SULE

because one can define ULE by requiring the bound with δ = 0. The theory below extends
to this case, but we’ll restrict ourselves to the SULE case. In Appendix 3, we’ll show that
large classes of models, including the Anderson model in any dimension and the almost
Mathieu operator, do not have ULE.

Below we’ll first prove a result about the number of mn in a box of side L, essentially
proving that the number grows like Lν as L → ∞. This will show that local perturbations of
SULE operators have zero-dimensional spectrum. Then, we’ll relate SULE to dynamics and
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to Green’s function localization; essentially, SULE always implies dynamical localization,
and if the spectrum is simple, dynamical localization implies SULE. This will imply that
Anderson-model Hamiltonians have SULE.

Appendix 2 has an example to show that a Jacobi matrix can have localized eigenfunc-
tions which are not (semi) uniformly localized.

Theorem 7.1. Suppose H has SULE. For each L, #{n | |mn| ≤ L} is finite and

lim
L→∞

1
(2L + 1)ν

#{n | |mn| ≤ L} = 1.

Remarks. 1. This says the density of centers of eigenfunctions is 1.
2. This will be a simple consequence of normalization and completeness, viz.∑

m

|ϕn(m)|2 = 1 n = 1, 2, . . . , (7.2a)∑
n

|ϕn(m)|2 = 1 each m ∈ Zν . (7.2b)

Lemma 7.2. For each ε > 0, there is a Dε so that for each n and L:∑
|m−mn|≥ε(|mn|+L)

|ϕn(m)|2 ≤ Dεe
−αεLe−αε|mn|/2 .

Proof. By hypothesis, we can find C
(1)
ε so

|ϕn(m)| ≤ C(1)
ε eα[ε|mn|/2−|m−mn |] .

If |m−mn| ≥ ε(|mn| + L), then |m−mn| ≥ 1
2
|m−mn| + ε

2
|mn| + ε

2
L so in that regime

|ϕn(m)| ≤ C(1)
ε e−εαL/2e−α|m−mn |/2

so ∑
|m−mn|≥ε(|mn|+L)

|ϕn(m)|2 ≤ [C(1)
ε ]2e−αεL

∑
|k|≥ε|mn|

e−α|k| ≤ Dεe
−εαLe−αε|mn|/2

as claimed.

Proof of Theorem 7.1. To get the upper bound, we’ll use the fact that functions localized
in a box of side 2L contribute most of their norm to a box of side 2(1+ ε)L. By the lemma,
if |mn| ≤ L, then ∑

|m|≥(1+2ε)L

|ϕn(m)|2 ≤
∑

|m−mn|≥ε(L+|mn|)
|ϕn(m)|2 ≤ Dεe

−αεL
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and so by (7.2a), ∑
|m|≤(1+2ε)L

|ϕn(m)|2 ≥ 1 −Dεe
−αεL .

Thus by (7.2b),

[2(1 + 2ε)L + 1]ν ≥
∑
all n

|m|≤(1+2ε)L

|ϕn(m)|2

≥
∑

n so that |mn|≤L
|m|≤(1+2ε)L

|ϕn(m)|2

≥ #{n | |mn| ≤ L}(1 −Dεe
−αεL).

Thus, #{n | |mn| ≤ L} is finite and

lim (2L + 1)−ν#{n | |mn| ≤ L} ≤ 1. (7.3)

In particular,
#{n | |mn| ≤ L} ≤ c0L

ν (7.4)

for some c0 and all L ≥ 1.
To get the lower bound, we’ll use the fact that wave functions localized far outside a

box of side 2L can’t contribute much to the wave function sum inside that box. Explicitly,
suppose that |mn| ≥ 1+ε

1−εL and |m| ≤ L. Then we claim

|m−mn| ≥ ε(|mn| + L)

for

|m−mn| ≥ |mn| − L ≥ |mn|
(

1 − 1 − ε

1 + ε

)
= ε

(
1 +

1 − ε

1 + ε

)
|mn| ≥ ε(|mn| + L).

Thus by Lemma 7.2, if |mn| ≥ 1+ε
1−εL, then∑

|m|≤L
|ϕn(m)|2 ≤ Dεe

−αεLe−αε|mn|/2

so ∑
n so that |mn|≥ 1+ε

1−εL

|m|≤L

|ϕn(m)|2 ≤
∞∑
k=0

#{n | |mn| ≤ (k + 1)L}Dεe−αεLe−αεkL/2 ≤ D̃εe
−αεL/2

by (7.4).
Thus by (7.2b),

(2L + 1)ν =
∑
all n

|m|≤L

|ϕn(m)|2 ≤ #
{
n

∣∣∣∣ |mn| < 1 + ε

1 − ε
L

}
+ D̃εe

−αεL/2,

from which one immediately sees that

lim (2L + 1)−ν#{n | |mn| ≤ L} ≥ 1.

Combining this with (7.3) yields the theorem.



HAUSDORFF DIMENSIONS, RANK ONE PERTURBATIONS, AND LOCALIZATION 21

Corollary 7.3. Suppose that H has SULE. Then there are C and D and a labeling of
eigenfunctions so that

|ϕn(0)| ≤ C exp(−Dn1/ν ). (7.5)

Proof. Reorder the eigenfunctions so |mn| is increasing. By Theorem 7.1, |mn|/ 1
2
n1/ν → 1

as n → ∞ so |mn| ≥ 1
3n

1/ν − C0 for some constant C0. By (7.1), we get (7.5); indeed, we
see D can be taken arbitrarily close to 1

2α.

Combining this corollary with Theorem 6.2, we see:

Theorem 7.4. Suppose that H has SULE. Let Hλ = H+λ(δ0, · )δ0. Then for every λ, the
spectral measures for Hλ are supported on a set of Hausdorff dimension zero. Moreover,
Hλ has pure point spectrum except for a set of λ’s of Hausdorff dimension zero.

Next, we relate SULE to other conditions. We’ll suppose H has simple spectrum, al-
though one can easily extend this to examples with spectrum having a uniform finite upper
bound on multiplicity.

Definition. Let H be a self-adjoint operator on 72(Zν ). We say that H has semi-uniform
dynamical localization (SUDL) if and only if there is α > 0 and for each δ > 0, a Cδ so that
for all q,m ∈ Zν :

sup
t

|(δq , e−itHδm)| ≤ Cδe
δ|m|−α|q−m| . (7.6)

We say that H has semi-uniformly localized projections (SULP) if and only if H has a
complete set of normalized eigenfunctions and there is α > 0 and for each δ > 0, a Cδ so
that for all q,m ∈ Zν :

|(δq, P{E}δm)| ≤ Cδe
δ|m|−α|q−m|

for all spectral projections P{E} onto a single point (uniformly in E).

Theorem 7.5. Let H be a self-adjoint operator on 72(Zν ) with simple spectrum. Then
the following are equivalent:

(i) H has SUDL.
(ii) H has SULP.

(iii) H has SULE.

Remarks. 1. The fact that dynamical localization implies point spectrum has a long his-
tory, going back at least to Kunz-Souillard [20]. Martinelli-Scoppola [23] used a variant
of SULE, which they proved by analysis of eigenfunctions, to prove a restricted form of
dynamical localization in the multi-dimensional Anderson model.

2. (iii) ⇒ (i) ⇒ (ii) does not require simplicity of the spectrum. It is an interesting
open problem whether (ii) ⇒ (iii) can be extended to cases with unbounded multiplicity.

3. It is not claimed the α’s are the same in the three statements. Indeed, (iii) ⇒ (i) ⇒
(ii) doesn’t change α (by more than ε) but our proof of (ii) ⇒ (iii) decreases α by a factor
of 2.

Proof. (i) ⇒ (ii): Follows immediately from P{E} = s-lim
T→∞

1
2T

T∫
−T

eiEse−iHs ds.
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(ii) ⇒ (iii): Label the eigenvalues of H: E1, E2, . . . . For each En ∈ spec(H), pick an
eigenfunction ϕn( · ), unique up to phase. Then by (ii):

|ϕn(q)ϕn(m)| ≤ Cεe
δ|m|e−α|q−m| . (7.7a)

Since ϕn ∈ 72, it takes its maximum value so choose mn so that

|ϕn(mn)| = sup
m

|ϕn(m)|. (7.7b)

Then by (7.7),

|ϕn(q)|2 ≤ |ϕn(q)| sup
m

|ϕn(m)| ≤ |ϕn(q)| |ϕn(mn)|

≤ Cδe
δ|mn|e−α|q−mn|

so H has SULE by taking square roots.
(iii) ⇒ (i): Let ϕn be the eigenfunctions and En eigenvalues. Then

(δq , e−itHδm) =
∑
n

ϕn(q) e−itEnϕn(m),

so, assuming SULE,

sup
t

|(δq , e−itHδm)| ≤
∑
n

|ϕn(q)ϕn(m)| ≤ C2
δ

∑
n

e2δ|mn|e−α(|q−mn|+|m−mn|). (7.8)

Now,
|q −mn| + |m−mn| ≥ |q −m|

and
|q −mn| + |m−mn| ≥ |mn| − |m|.

Thus,
e−α(|q−mn|+|m−mn|) ≤ e−3δ|mn|e3δ|m|e−(α−3δ)|m−q| .

So, by (7.8)
sup
t

|(δq, e−itHδm)| ≤ C2
δ e

3δ|m|e−(α−3δ)|m−q|A0

where
A0 =

∑
n

e−δ|mn | .

By (7.4) which follows from SULE, A0 is finite.

One can prove by the above means a result that shows that if H has simple spectrum and

sup
t

|(ϕ, e−itHδn)| ≤ Ce−α|n|, then the spectral measure for ϕ can be written
∞∑
n=1

an dδEn

where |an| ≤ De−βn
1/ν

if the En’s are properly labeled. That is, one can prove a result
that requires less uniformity than the full-blown theory assumes.

Finally, we turn to when any, and hence all, of the conditions of Theorem 7.5 hold
in the context of the Anderson model. We’re dealing here with models depending on a
random parameter so we first reduce SUDL to a requirement on expectations. General
considerations [32] imply that the spectrum is simple in the localized regime.
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Theorem 7.6. Let (Ω, µ) be a probability measure space and E( · ) its expectation. Let
ω → Hω be a strongly measurable map from Ω to the self-adjoint operators on 72(Zν ) which
is translation invariant in the sense that for each m ∈ Zν , there is a measure preserving
Tm : Ω → Ω so HTmω = UmHωU

−1
m where (Umϕ)(q) = ϕ(q −m). Suppose that

E

(
sup
t

|(δq, e−itHωδ0)|
)

≤ C1e
−α|q| (7.9)

for some α > 0 and that Hω has simple spectrum for a.e. ω. Then for each β < α, for
a.e. ω, there is a Cω < ∞ so that for all 0 < ε ≤ 1

sup
t

|(δq, e−itHωδm)| ≤ Cω
εν+1

eε|m|e−β(m−q).

In particular, a.e. Hω has SULE.

Proof. Let
Q(ω) =

∑
m

(1 + |m|)−(ν+1)eβ|m−q| sup
t

|(δq, e−itHωδm)|.

Then by (7.9),
E(Q(ω)) < ∞

so Q(ω) < ∞ for a.e. ω. But for such ω,

sup
t

|(δq, e−itHωδm)| ≤ Cω(1 + |m|)ν+1e−β|m−q| .

The result now follows from the trivial bound (1 + x)ν ≤ ννeεxε−ν for ε ≤ 1.

So when does (7.9) hold? Delyon-Kunz-Souillard [8] have proven this bound for a general
class of one-dimensional random potentials. In general, we have the following beautiful
bound of Aizenman:

Theorem 7.7. (Aizenman’s theorem) Let Vω(n) be a family of independent identically
distributed random variables (indexed by n ∈ Zν ; ω ∈ Ω is the probability parameter).
Suppose H0 is an operator on 72(Zν ) commuting with translations and Hω = H0 +Vω with
Vω viewed as a diagonal matrix. Suppose Vω(n) has a distribution g(λ)dλ with g ∈ L∞

and has compact support. Suppose

E

( b∫
a

|(δn, (Hω − λ− i0)−1δ0)|s dλ
)

≤ Ce−µ|n| (7.10)

for some s ∈ (0, 1). Then

E

(
sup
t

|(δn, e−itHωP[a,b](Hω)δ0)|
)

≤ C̃e−µ|n|/(2−s) (7.11)



24 R. DEL RIO, S. JITOMIRSKAYA, Y. LAST, AND B. SIMON

where C̃ only depends on s and the distribution g.

Remarks. 1. In fact, as we’ll see, one can take C̃ = ∆s/(2−s)‖g‖1/(2−s)
∞ C1/(2−s) where ∆

is the diameter of the support of g.
2. The result as stated differs from [1] in several aspects. Most significantly, it hasn’t a

requirement of approximation by operators with discrete spectrum in (a, b). Moreover, we
have a proof that, while it follows Aizenman [1] in the essentials, avoids a priori estimates
on the distribution function of |(δ0, (H − E − i0)−1δ0)|. For this reason, we provide this
proof in Appendix 1.

3. We’ve stated a local (with P[a,b]) result but one can take [a, b] to be so big spec(Hω) ⊂
[a, b] to get the global result (7.9). Alternatively, we could localize the result earlier in this
section.

4. Aizenman has neither a ‖g‖∞ < ∞ condition nor that g has compact support.
We could mimic his technique to replace ‖g‖∞ < ∞ by ‖g‖p < ∞ for some p > 1.
Moreover, we could replace the compact support assumption by the finiteness of some
moment

∫ |λ|αg(λ)dλ for some α > 0.
Combining this result with those of Aizenman-Molchanov [2], we see that the strongly

coupled multi-dimensional Anderson model has SULE.

§8. Semi-Stability of Dynamical Localization

Anderson localization (at least as proven in [1]) implies that if @x is the operator

(xiψ)(m) = miψ(mi) i = 1, . . . , ν,

then in the localized regime,

sup
t

(e−itHδ0, x2e−itHδ0) < ∞. (8.1)

It follows from the RAGE theorem (see, e.g., [22]) that (8.1) implies that H has pure point
spectrum.

For operators H with dense pure point spectrum, it is proven in [7,11] that for a Baire
generic set of λ, Hλ = H+λ(δ0, · )δ0 has only singular continuous spectrum and so for such
Hλ’s, (8.1) must fail. Our purpose in this section is to show that the failure is only very
mild. 〈x2〉(t) ≡ (e−itHδ0, x2e−itHδ0) is unbounded but grows at worst logarithmically!

Theorem 8.1. Suppose that H is a self-adjoint operator on 72(Zν ) with SULE. Let Hλ =
H + λ(δ0, · )δ0. Then

〈x2n〉(t) ≡ (e−itHλδ0, (x2)ne−itHλδ0)

obeys
〈x2n〉(t) ≤ Cn(ln |t|)2n

for |t| large.
Remarks. 1. The result is actually stronger since we only need dynamical localization in
the sense that sup |(δm, e−itHδ0)| ≤ Ce−α|m|. If this estimate holds, then so does the upper
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bound on 〈x2n〉(t), regardless of whether H has SULE, or even whether H has only pure
point spectrum or not.

2. By a result of Last [22], which extends an idea originaly due to Guarneri [12], it
follows that if the spectral measure of δ0 (for Hλ) is not supported on a set of Hausdorff
dimension zero, then for some β > 0, lim t−2nβ〈x2n〉(t) > 0. Thus, we get an alternative
proof to the fact that SULE (for H) implies zero-dimensional spectrum for Hλ (for all λ’s).

Proof. Write a DuHamel expansion:

(δm, e−itHλδ0) = (δm, e−itHδ0) − iλ

t∫
0

(δm, e−isHδ0)(δ0, e−i(t−s)Hλδ0)ds. (8.2)

Since H has SULE, by Theorem 7.5,

sup
t

|(δm, e−itHδ0)| ≤ Ce−α|m|

for suitable C and α. Plugging this into (8.2) and using |(δ0, e−itHλδ0)| ≤ 1, we see that

|(δm, e−itHλδ0)| ≤ Ce−α|m|[1 + |λ| |t|]. (8.3)

This would seem to give linear growth in t for 〈x2m〉1/2m but we’ll combine it with the
trivial bound ∑

m

|(δm, e−itHλδ0)|2 = 1. (8.4)

Use (8.3) only if |m| > 2 ln(1 + |λ| |t|)/α ≡ G(t). In that regime (8.3) says that

|(δm, e−itHλδ0)| ≤ Ce−α|m|/2.

Thus, ∑
|m|≥G(t)

(m2)n|(δm, e−itHλδ0)|2 ≤ Cn

and obviously by (8.4), ∑
|m|≤G(t)

(m2)n|(δm, e−itHλδ0)|2 ≤ (G(t))2n,

so
〈x2n〉(t) ≤ (G(t))2n + Cn

as claimed.

In fact, the proof shows that

lim
|t|→∞

(ln |t|)−2n〈x2n〉(t) ≤
(
α

2

)−2n

.
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Appendix 1: Aizenman’s Theorem

Our goal here is to prove Theorem 7.7. We begin with a general fact about rank one
perturbations. Let A be a self-adjoint operator on a Hilbert space H and P = (ϕ, · )ϕ a
rank one projection onto a unit vector ϕ assumed cyclic for A. Let Aλ = A + λP . Then
ϕ is cyclic for Aλ. Let dµλ be the spectral measure of the pair ϕ,Aλ, so for example,∫

dµλ(x)
x− z

= (ϕ, (Aλ − z)−1ϕ) ≡ Fλ(z).

By the spectral theorem, there is a natural map Uλ : H → L2(R , dµλ) so that Uλϕ ≡ 1
and UλAU−1

λ is multiplication by x. The point is that in the localized regime, there is an
explicit formula for Uλ.

Recall that the function

G(x) =
∫

dµ0(y)
(x− y)2

plays a critical role in situations where Aλ has point spectrum. Explicitly [33,40],
(1) Aλ has only pure point spectrum in [a, b] for a.e. λ ∈ R if and only if G(E) < ∞

for a.e. E ∈ (a, b).
(2) If G(E) < ∞, then F (E + i0) = α exists, is real, and E is an eigenvalue of Aλ if

and only if λ = −α−1.
Our main preliminary is

Lemma A.1. Suppose G(E) < ∞ for a.e. E ∈ [a, b]. Then for any such E,

lim
ε↓0

(A − E − iε)−1ϕ = ϕE (A.1)

exists. Moreover, if λ is such that µλ [a, b] is supported on {E ∈ [a, b] | G(E) < ∞}, then
(Uλψ)(E) = −λ(ϕE , ψ). (A.2)

Proof. The general theory of rank one perturbations (see [33]) implies

(Aλ − z)−1ϕ

(ϕ, (Aλ − z)−1ϕ)
=

(A − z)−1ϕ

(ϕ, (A − z)−1ϕ)
(A.3)

for any z with Im z > 0 and any λ. Given E with G(E) < ∞, F (E + i0) exists and
equals some −λ−1. Pick that value of λ in (A.3). Then E is an eigenvalue of Aλ and the
projection onto the corresponding eigenvector is

PE = s-lim
ε↓0

[(−iε)(Aλ − E − iε)−1 ].

Thus, multiplying the numerator and denominator of the left side of (A.3) by (−iε) and
taking ε to zero, we see that the limit in (A.1) exists, and by the fact that F (E+i0) = −λ−1,
that

(ϕ,−λϕE) = 1 (A.4)

and that ϕE is a multiple of the eigenfunction for Aλ a.e. E.
Since (Uλψ)(E) is precisely an inner product of ψ with that multiple of the eigenfunction

that obeys (ϕ, · ) = 1, (A.4) implies (A.2).
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Lemma A.2. Suppose G(E) < ∞ for a.e. E ∈ [a, b], that ‖ψ‖ = 1, and that λ is a
random variable with distribution g(λ)dλ where g ∈ L∞, with compact support. Then for
any λ0 ∈ supp(g) and s ∈ (0, 1):

E

(
sup
t
|(ψ,P[a,b](Aλ)e−itAλϕ)|

)
≤

∆s/(2−s)‖g‖1/(2−s)
∞

( b∫
a

|(ψ, (Aλ0 − E − i0)−1ϕ)|s dE
)1/(2−s)

(A.5)

where ∆ = diam(supp g) = max(|λ − λ′| | λ, λ′ ∈ supp g).

Proof. By the spectral theorem,

(ϕ,P[a,b](Aλ)e−itAλψ) =

b∫
a

e−itE(Uλψ)(E)dµλ(E)

and by the unitarity of U , ∫
|(Uλψ)(E)|2 dµλ(E) = 1. (A.6)

Hölder’s inequality says that for 0 < s < 1,

∫
|g| dµ ≤

(∫
|g|2 dµ

)(1−s)/(2−s)(∫
|g|s dµ

)1/(2−s)
(A.7)

so

sup
t

|(ϕ,P[a,b](Aλ)e−itAλψ)| ≤
b∫
a

|(Uλψ)(E)| dµλ(E)

≤
( b∫
a

|(Uλψ)(E)|s dµλ(E)
)1/(2−s)

(A.8)

by (A.6) and (A.7). Since we can think of Aλ as a perturbation of Aλ0 , we can use Lemma
A.1 to say that

(Uλψ)(E) = −(λ − λ0)((Aλ0 − E − i0)−1ϕ,ψ).

Thus, (A.8) implies

sup
t

|(ϕ,P[a,b](Aλ)e−itAλψ)| ≤ ∆s/(2−s)
( b∫
a

|(ψ, (Aλ0 − E − i0)−1ϕ)|s dµλ(E)
)1/(2−s)

.
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Now take E’s. Since 1
2−s < 1, Hölder’s inequality implies E(|f |1/(2−s)) ≤ (E(|f |))1/(2−s)

and E(dµλ(E)) ≤ ‖g‖∞
∫
dλ(dµλ(E)) = ‖g‖∞ dE where the last equality is a result explic-

itly in Simon-Wolff [40] but obtained in related forms earlier by Javrjan [15] and Kotani
[19].

Proof of Aizenman’s Theorem (Theorem 7.7). The hypothesis (7.10) implies that for
a.e. pairs ω, λ ∈ [a, b]

|(δn, (Hω − λ− i0)−1δm)| ≤ Cω,λ,me
−µ|n−m|/2

so for a.e. such pairs,
‖(Hω − λ− i0)−2δm‖ < ∞

and thus by the Simon-Wolff criterion [33,40], Hω has pure point spectrum in [a, b]. Thus,
for such ω, Lemma A.2 applies and we get (7.11) after averaging over λ0 and then over
ω.

Remarks. 1. Independence of {v} is not needed. It suffices that the conditional distribution
of v(0), conditioned on {v(n)}n �=0 has a density gv(λ)dλ with ‖gv‖∞ bounded uniformly
in v and with a uniform bound on diam(suppgv).

2. Relative to Aizenman’s proof, we get a simplification by using (ϕ, (A−E− i0)−1ϕ) =
−λ−1 and therefore not needing Boole’s equality. We can turn this around and actually
use the theory of rank one perturbations to prove Boole’s equality in its natural setting.

Proposition A.3. Let µ be a finite purely singular measure and let F (E + i0) =∫ dµ(x)
x−(E+i0)

. Then for t > 0,

|{E | F (E + i0) > t}| = |{E | F (E + i0) < −t}| = t−1µ(R ).

Proof. Without loss, we can suppose µ(R ) = 1. Let A0 be the operator of multiplication
by x on L2(R , dµ) and (Pψ) = (1, ψ)1. Let dµλ be the spectral measure for A0 + λP . As
noted above: ∫

dλ[dµλ(E)] = dE

in the sense that for any measurable set S,∫
µλ(S)dλ = |S|. (A.9)

On the other hand, by the Aronszajn-Donoghue theory [33],

µλ is supported on {E | F (E + i0) = −λ−1}. (A.10)

Let St = {E | F (E + i0) < −t}. Then (A.10) says that

µλ(St) =
{

1, 0 < λ < t−1

0, λ < 0 or λ > t−1
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so (A.9) implies |St| = t−1.

Remarks. 1. Boole’s equality for µ, a measure with a finite number of pure points, was
found in 1857 [6]. See [1,24] for more recent history.

2. Using this result in this form, it is not hard to show for any measure µ,

lim
t→∞ t|{x | |F (x + i0)| > t}| = 2µsing(R )

the mass of the singular part of µ. Boole’s equality applies explicitly only to µ purely
singular.

3. This proof of Boole’s equality was found independently by Poltoratski [24].

Appendix 2: A Pathological Example

Our goal in this appendix is to present a one-dimensional Jacobi matrix (i.e., potential
v(n) on Z+ and operator (hu)(n) = u(n + 1) + u(n − 1) + v(n)u(n) on 72(Z+) with
Z+ = {n ∈ Z, n ≥ 0} and a Dirichlet boundary condition at n = −1) so that

(0) v is bounded.
(1) h has a complete set of normalized eigenfunctions.
(2) Each eigenfunction is exponentially decaying, that is,

|ϕn(m)| ≤ Cne
−α|m|

for some fixed α > 0.
(3) Let F (t) = t2/ ln(t). Then

lim
t→∞ ‖xe−ithδ0‖2

/
F (t) = ∞. (B.1)

Thus, in spite of exponentially localized eigenfunctions, h doesn’t have dynamical local-
ization. This shows that proofs of “localization” that only show (1),(2) are only part of
the story and that the SUDL shown by Aizenman in [1] and the SULE consideration in this
paper are a significant desideratum. One can modify the proof to replace F (t) by t2/f(t)
for any monotone f with lim

t→∞ f(t) = ∞. Thus, this example also shows that the result of

[31] that point spectrum implies

lim
t→∞ ‖xe−ithδ0‖2

/
t2 = 0

cannot be improved.
Our v(n) will have the form

v(n) = 3 cos(παn + θ) + λδn0 (B.2)

with α irrational. We’ll prove that α can be constructed so that (B.1) holds for all θ and
λ ∈ [0, 1]. It is well known (e.g., [4]) that the Lyapunov exponent, which characterizes
solutions of (h − E)u = 0 for a.e. E, θ, is everywhere larger than or equal to ln(3

2 ). Thus,
by the Simon-Wolff criterion [33,40], (1) and (2) hold for a.e. θ, λ and we only need to
choose α so that (B.1) holds.

Let Pn>a denote the projection onto those functions supported by {n | n > a} and
similarly for Pn≤a, etc. Let f(t) be a monotone increasing function of t with f(t) → ∞ at
∞ (we’ll take f(t) = [ln(|t| + 2)]1/5).
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Lemma B.1. Suppose there exists Tm → ∞ so that

1
Tm

2Tm∫
Tm

‖Pn≥Tm/f(Tm)e
−ishδ0‖2 ds ≥ 1

f(Tm)2
. (B.3)

Then
lim
t→∞ ‖xe−ishδ0‖2f(t)5

/
t2 = ∞.

Proof. Under the hypothesis, there must be some sm ∈ [Tm, 2Tm] so

‖xe−ismhδ0‖2 ≥
(

Tm
f(Tm)

)2

‖Pn≥Tm/f(Tm)e
−ismhδ0‖2

≥ T 2
mf(Tm)−4 .

Thus,

f(sm)5

s2
m

‖xe−ismhδ0‖2 ≥
(
Tm
sm

)2(
f(sm)
f(Tm)

)4

f(sm)

≥ 1
4
f(sm) → ∞

as claimed.

We’ll get the lower bound in (B.3) from the following:

Lemma B.2. Let δ be a unit vector, P a projection, and h a self-adjoint operator. Suppose
δ = ϕ + ψ with (ϕ,ψ) = 0. Then

1
T

2T∫
T

‖(1 − P )e−ishδ‖2 ds ≥ ‖ψ‖2 − 3
(

1
T

2T∫
T

‖Pe−ishψ‖2 ds

)1/2

. (B.4)

Proof. Since ‖Pη‖2 + ‖(1 − P )η‖2 = 1 for any unit vector η, ‖ψ‖2 + ‖ϕ‖2 = 1 and
‖e−ishδ‖2 = 1, we see that

LHS of (B.4) ≥ A + B

where

A = ‖ϕ‖2 − (ϕ,ϕ)∼

B = ‖ψ‖2 − (ψ,ψ)∼ − 2 Re(ϕ,ψ)∼

with

(η, ξ)∼ =
1
T

2T∫
T

(Pe−ishη, e−ishξ)ds.
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Clearly, (ϕ,ϕ)∼ ≤ 1 and (ψ,ψ)∼ ≤ 1, so A ≥ 0 and B ≥ ‖ψ‖2 − 3(ψ,ψ)1/2∼ , which is the
stated result.

We need to make a break-up so (ψ,ψ)∼ is small. This is what we turn to next.
Recall the notion of |||·||| introduced by Kato (see (X.4.17) of [18]). Let A be a self-adjoint

operator. A vector ϕ is said to have finite triple norm if its spectral measure µ has the
form dµAϕ = F (E)dE with F ∈ L∞. We set |||ϕ||| ≡ |||ϕ|||A ≡ ‖F‖1/2

∞ . Given α, θ, λ, we set
h(α, θ, λ) to the Jacobi matrix with potential (B.2).

Lemma B.3. Fix α rational. Then there exist C1 > 0 and C2 < ∞ and for each θ ∈ [0, 2π]
and λ ∈ [0, 1], a breakdown

δ0 = ϕθ,λ + ψθ,λ

so

(ϕ,ψ) = 0 (B.4)

‖ψθ,λ‖ ≥ C1 (B.5)

|||ψθ,λ|||h(α,θ,λ) ≤ C2. (B.6)

Proof. Consider first λ = 0 and consider the periodic Jacobi matrix on 72(Z) which cor-
responds to the potential (B.2) (on Z). It is a periodic Hamiltonian with a fixed Bloch
Hamiltonian decomposition. If α = p

q
, the period is q and we can use a quasimomen-

tum label that runs from 0 to π
q . Consider the lowest band and the quasimomenta range

between π
3q and 2π

3q .
Let Eθ(k) denote the band function for the lowest band. Eθ is strictly monotone in k;

indeed, ∂Eθ

∂k
> 0, and jointly continuous in θ ∈ [0, π], k ∈ [π

3
, 2π

3q
]. Thus, the width of the

energy range, Eθ(2π
3q

) − Eθ( π3q ) ≡ 7θ is uniformly bounded away from zero.
Let Φθn(E) denote the 2 × 2 transfer matrix from 0 to n for the potential (B.2). That

is, Φθn(E) ≡ T θn(E)T θn−1(E) . . . T θ0 (E), where

T θn(E) ≡
(
E − v(n) −1

1 0

)
and v(n) is given by (B.2) with λ = 0. By, for example, Lemma 3.1 of [21], we have the
bound ‖Φθmq−1(E)‖ ≤ 2q

∣∣ ∂Eθ

∂k

∣∣−1
for any integer m > 0. (Remark: Lemma 3.1 of [21]

is formulated for the transfer matrix over one period, but it is easy to see from its proof
that the bound holds for any integer number of periods.) Thus, ‖Φθmq−1(E)‖ is uniformly
bounded for all θ’s, m > 0, and E ∈ [Eθ(2π

3q ), Eθ( π3q )] ≡ Iθ.
Let Φ̃θ,λn (E) denote the transfer matrix for the potential (B.2) with λ ∈ [0, 1]. Then

we see that ‖Φ̃θ,λn (E)‖ must also be uniformly bounded. That is, ‖Φ̃θ,λn (E)‖ < C for all
n ≥ 0, λ ∈ [0, 1], θ ∈ [0, 2π], and E ∈ Iθ. By, for example, Theorem 2 of [38], this implies
that the imaginary part of the m-function for h(α, θ, λ), which is identical to the Borel
transform Fθ,λ of the spectral measure of δ0 (for h(α, θ, λ)), is uniformly bounded. Namely,
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C−1
1 < ImFθ,λ(E + i0) < C1 for some constant C1 and for all λ ∈ [0, 1], θ ∈ [0, 2π], and

E ∈ Iθ.
Let ψθ,λ = P θ,λIθ δ0, where P θ,λIθ is the spectral projection (for h(α, θ, λ)) on Iθ. Then the

spectral measure of ψθ,λ is purely absolutely continuous and has the form π−1ImFθ,λ(E +
i0)dE. Thus, we see that the claim holds.

As a final lemma, we need to control changes in the dynamics as we change α:

Lemma B.4.
‖(e−ish(α,θ,λ) − e−ish(α

′,θ,λ))δ0‖ ≤ 3πs2|α− α′| (B.7)

Proof. h(θ, α, λ) − h(α′, θ, λ) = 3[cos(απx + θ) − cos(α′πx + θ)] so

‖[h(θ, α, λ) − h(α′, θ, λ)]η‖ ≤ 3π|α− α′| ‖xη‖
and so by a DuHamel formula,

LHS of (B.7) ≤
s∫

0

3π|α− α′| ‖xe−ith(α′ ,θ,λ)δ0‖ dt.

But x(t) = x+
t∫
0

p(u)du where p(u) = eiuhpe−iuh and p = [x, h] has norm at most 2. Since

xδ0 = 0,

LHS of (B.7) ≤
s∫

0

3π|α− α′|2t dt = 3πs2|α− α′|

as claimed.

Theorem B.5. α can be chosen irrational so that (B.1) holds for h(α, θ, λ) and all θ ∈
[0, 2π], λ ∈ [0, 1].

Proof. Let f(t) = (ln(2 + |t|))1/5. We’ll pick αm, Tm,∆m inductively starting with α1 = 1
so

(i) αm+1 − αm = 2−km! for some km.

(ii) 1
Tm

2Tm∫
Tm

‖Pn≥Tm/f(Tm)e
−ish(α,λ,θ)δ0‖2 ds ≥ 1

f(Tm)2 for all θ ∈ [0, π], λ ∈ [0, 1] and α

with |α− αm| ≤ ∆m.
(iii) |αm+1 − αk| < ∆k for k = 1, 2, . . . ,m.
By (i), α∞ = lim αm is irrational, and by (ii), (iii), the bound holds for α∞, and (B.1)

holds by Lemma B.1.
Start with α1 = 1. We’ll show how to pick Tm,∆m, αm+1 given α1, . . . , αm, T1, . . . ,

Tm−1, ∆1, . . . ,∆m−1. Given αm, let δ0 = ϕ + ψ be the decomposition given by Lemma
B.3 and let C1, C2 be the corresponding constants. Choose Tm ≥ 2Tm−1 (and T1 ≥ 2 so
Tm ≥ 2m) so that

C2
1 − 3

√
2πC2(f(Tm)−1 + T−1

m )1/2 ≥ 2f(Tm)−1. (B.8)
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Since C1 and C2 are fixed (given αm) and f(Tm) → ∞, it is certainly possible.
Notice that

(ψ,ψ)∼ ≡ 1
T

2T∫
T

‖Pn<T/f(T )e
−ishψ‖2 ds

≤ 2π
T

#{n | n < T/f(T )} |||ψ|||2 (B.9)

since for any unit vector η,

∞∫
−∞

|(η, e−ishψ)|2 ds ≤ 2π|||ψ|||2 ‖η‖2 (B.10)

by the Plancherel theorem. Thus, by (B.8) and Lemma B.2,

1
Tm

2Tm∫
Tm

‖Pn≥Tm/f(Tm)e
−ish(αm,λ,θ)δ0‖2 ds ≥ 2

f(Tm)
.

By Lemma B.4, we can pick ∆m so |α− αm| < ∆m implies

1
Tm

2Tm∫
Tm

‖Pn≥Tm/f(Tm)e
−ish(α,λ,θ)δ0‖2 ds ≥ 1

f(Tm)
.

Finally, pick αm+1 so |αn − αm+1| < ∆n for n = 1, . . . ,m.

Remarks. 1. (B.10) is the standard estimate for which ||| · ||| was introduced (see (X.4.18)
of [18]). It is used here as the Strichartz estimate [41] is used in the proof of Theorem 6.1
of [22]. Indeed, the above proof is essentially a variant of the proof of a similar result in
[22] (Theorem 7.2 of [22]).

2. One can similarly prove an analogous result for a corresponding operator on 72(Z).
The main difference in this case is that δ0 might not be cyclic, and thus, to assure pure
point spectrum, we need to perturb the potential at two consecutive points. The proof
is essentially unchanged except for Lemma B.3, the analog of which can be obtained by
uniformly bounding the m-functions for the two “half-line” operators, from which one can
construct the Borel transform of the spectral measure for the “line” problem.

Appendix 3: ULE Fails for Many Models

In analogy with SULE, we’d say that H on 72(Zν) has ULE if there are C,α > 0 with

|ϕn(m)| ≤ Ce−α|m−mn| (C.1)
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for all eigenfunctions ϕn and suitable mn.
Motivated by Jitomirskaya [16], we present a simple argument that many models do not

have ULE: Let Ω be a topological space, Ti : Ω → Ω, i = 1, . . . , ν commuting homeomor-
phisms, and let µ be an ergodic Borel measure on Ω. Let f : Ω → R be continuous and
define Vω(n) = f(Tnω) for n ∈ Zν where Tn = Tn1

1 . . . Tnν
ν . Let Hω be the operator on

72(Zν),

(Hωu)(n) =
∑

|m−n|=1

u(m) + Vω(n)u(n).

Theorem C.1. If Hω has ULE for ω in a set of positive µ-measure, then Hω has pure
point spectrum for any ω ∈ supp(µ), where supp(µ) is the complement of the largest open
set S ⊂ Ω for which µ(S) = 0.

Proof. Define the function F : Ω → [0,∞] by

F (ω) = sup
t∈Q

n,m∈Zν

[|(δn, e−itHω δm)|(1 + |n−m|)ν].

When ULE holds, the proof of Theorem 7.5 shows that

|(δn, e−itHωδm)| ≤ Cωe
−αω |n−m|

and it follows that F (ω) < ∞. F is clearly measurable and translation invariant so
F (ω) < ∞ on a set of positive measure shows that F (ω) = C < ∞ for a.e. ω. Thus on a
dense set in supp(µ):

|(δn, e−itHω δm)| ≤ C(1 + |n−m|)−ν (C.2)

with C independent of ω. By continuity, (C.2) holds on all of supp(µ) and so the RAGE

theorem [25] implies that Hω has pure point spectrum for any ω ∈ supp(µ).

Example 1. Let dλ be a probability measure on R and let S = supp(λ). Let Ω = SZν

,
dµ = ⊗

n∈Zν
dλ(ωn), (Tnω)m = ωm−n, and f(ω) = ω0. Then {Hω} is the Anderson model.

If γ ∈ S, the constant potential ωn = γ lies in supp(µ) and the corresponding Hω has
purely a.c. spectrum. Thus, ULE cannot hold.

Example 2. Let Ω = S1, the circle, α irrational, dµ = dθ/2π and Tθ = θ + πα. Let f be
an even function (e.g., γ cos( · )). Then [17] shows there are θ’s for which Hθ has no point
spectrum and so again ULE cannot hold.

Appendix 4: The Dimension of the Set Where G(x) = ∞
In this appendix we consider a probability measure dµ on [0, 1] and the function G(x)

given by (5.1), and relate the dimension of supports of µ to the dimension of the set where
G(x) is infinite.
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Theorem D.1. If A = {x | G(x) = ∞} is a set of dimension α, then µ is supported on a
set of dimension α.

Proof. µ is obviously supported on A.

There is no inequality in the other direction for all µ, since there are point measures
(obviously supported on a set of dimension 0) with G(x) = ∞ on [0, 1]. However, if we are
willing to replace µ by an equivalent measure, there is a complementary result:

Theorem D.2. Let µ be a probability measure on [0, 1] and suppose µ is supported on a
set of dimensionα. Then, there is a measure ν equivalent to µ so that A = {x | Gν(x) = ∞}
has dimension at most α.

Remark. The proof follows the strategy in Howland [14]; more precisely, it follows the
strategy in [14] with some errors corrected.

Proof. Let S be a set of dimension α which supports µ. By inner regularity, we can find
{Cn}∞n=1 closed sets so C1 ⊂ C2 ⊂ · · · ⊂ S, and µ is supported on

∞∪
n=1

Cn. Since Cn ⊂ S

has dimension at most α, we can find a δ-cover
∞∪
m=1

B
(n)
m of Cn so that

(i) |B(n)
m | ≤ 2−n, B(n)

m is an open interval

(ii) Cn ⊂
∞⋃
m=1

B(n)
m

(iii)
∞∑
m=1

|B(n)
m |α+2−n ≤ 2−n . (D.1)

Let On =
∞∪
m=1

B
(n)
m and Kn = [0, 1]\On. Since On is open, Kn is closed and so dn =

dist(Kn, Cn) > 0. Let

ν( · ) =
∞∑
n=1

2−nd2
nµ( · ∩ Cn) ≡

∞∑
n=1

νn( · ).

Then, ν(A) = 0 ⇔ µ(A ∩ Cn) = 0 for all n ⇔ µ(A) = 0 so ν is equivalent to µ. Let

K∞ = limKn =
∞⋃
m=1

( ∞⋂
n=m

Kn

)
.

We claim that Gν(x) < ∞ for x ∈ K∞ and that

O∞ = [0, 1]\K∞ = [0, 1]
⋂

limOn

= [0, 1]
⋂[ ∞⋂

m=1

∞⋃
n=m

On

]
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has dimension at most α which proves the desired result.
If x ∈ K∞, then eventually x ∈ Kn and so x /∈ ∞∪

n=1
Cn. Thus,

(i)
∫ dνn(y)

|x−y|2 < ∞ for all n (since x /∈ Cn).

(ii)
∫ dνn(y)

|x−y|2 ≤ 2−n for large n (since x ∈ Kn for n large).

It follows that Gν(x) < ∞ as promised.
Given α̃ > α, pick n0 so α + 2−n0 ≤ α̃. Then for each n ≥ n0,

∞∪
k=n

∞∪
m=1

B
(k)
m is a

2−n-cover of O∞ and by (D.1), its | · |α̃ power sum is at most 2−(n−1). Thus, O∞ has hα̃

measure zero and so O∞ has dimension at most α.

Appendix 5: Analysis of the Measures µp

Here we analyze Example 3 from Section 6.
We’ll need information on the weight that µp gives to intervals. For any x, let

∆(1)
n (x) = {y | aj(y) = aj(x) for j = 1, . . . , n}. (E.1)

∆(1)
n (x) is a dyadic interval of length 2−n containing x uniquely determined by that except

for certain dyadic rationals. Clearly,

δ > 2−n ⇒ ∆(1)
n (x) ⊂ (x− δ, x + δ) (E.2)

and so, if δ > 2−n

µp(x− δ, x + δ) ≥ pNn(x)(1 − p)n−Nn(x) (E.3a)

where
Nn(x) = #{j ≤ n | aj(x) = 0}. (E.3b)

In particular, if p < 1
2 (lim occurs because log δ < 0)

lim
δ↓0

ln[µp(x− δ, x + δ)]
ln(2δ)

≤ −f(x) ln p + (1 − f(x)) ln(1 − p)
ln 2

(E.4)

where
f(x) = lim

n→∞ Nn(x)/n. (E.5)

If p > 1
2 , we replace f by lim Nn(x)/n.

In particular, for any x, p:

lim
δ↓0

ln[µp(x− δ, x + δ)]
ln(2δ)

≤ − ln(min(p, 1 − p))
ln 2

(E.6a)

and ∫
dµp(y)
|x− y|α = ∞ for all x ∈ [0, 1] if 2αmin(p, 1 − p) > 1. (E.6b)
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To get an upper bound let

∆̃1
n(x) =

{
∆(1)(x + 1

2n ) if an+1(x) = 1

∆(1)(x− 1
2n ) if an+1(x) = 0

(E.7)

so ∆̃1(x) is the next nearest dyadic interval (with the convention that we take ∆(1)(x+ 1
2n )

if x is at the midpoint of ∆(1)(x)). Define

∆(2)
n (x) = ∆(1)(x) ∪ ∆̃(1)(x).

Then
δ < 2−n−1 ⇒ (x− δ, x + δ) ⊂ ∆(2)

n (x). (E.8a)

Normally, µp(∆̃(1)(x)) and µp(∆(1)(x)) are of the same magnitude; the exception when
p < 1

2 (resp. p > 1
2 ) is when a long string of 0’s (resp. 1’s) starts before position n

and includes position n + 1. For then subtracting 1
2n from x changes many 0’s into 1’s.

Explicitly, if an−5(x) = · · · = an(x) = an+1(x) = 0 but an−5−1(x) = 1, then

µp(∆̃(1)(x)) =
[

(1 − p)
p

]5
µp(∆(1)(x)). (E.8b)

For example, if x0 is defined by

an(x0) =
{

1 N ! ≤ n < (N + 1)! N even
0 N ! ≤ n < (N + 1)! N odd

then

lim
ln[µp(x0 − δ, x0 + δ)]

ln(2δ)
= − ln(min(p, 1 − p))

ln 2

lim
ln[µp(x0 − δ, x0 + δ)]

ln[2δ]
= − ln(max(p, 1 − p))

ln 2
.

Fortunately, as we’ll see, this behavior is very atypical of any of the µp’s. For p < 1
2 , let

Cn(x) be defined by

Cn(x) = sup{7 | an(x) = an−1(x) = · · · = an−5(x) = 0}
where we set Cn(x) = 0 if an(x) = 1. Then (6.12a,b) imply

lim
δ↓0

lnµp(x− δ, x + δ)
ln(2δ)

≥ −g(x) ln p + (1 − g(x)) ln(1 − p)
ln 2

(E.9a)

where

g(x) = lim
n→∞

[
Nn(x) −Cn(x)

n

]
. (E.9b)

Both Nn and Cn are functions of the sequence {ai} and so their behavior is well known.
The law of large numbers says that a.e. w.r.t. µp, lim Nn(x)

n
= p and a standard Borel-

Cantelli argument shows that a.e. w.r.t. µp, lim Cn(x)
lnn = −1

ln p so lim Cn(x)
n = 0. Thus:
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Proposition E.1. Fix p, q ∈ (0, 1). Then a.e. x w.r.t. dµq, we have

lim
δ↓0

lnµp(x− δ, x + δ)
ln (2δ)

=
−q lnp− (1 − q) ln(1 − p)

ln 2
.

Recall the definition of H(p), L(p) in (6.6)/(6.7) and of I0.

Theorem E.2 (≡ Theorem 6.6). (1) dµp has exact dimension H(p).
(2) Suppose p ∈ I0. Then for a.e. λ w.r.t. Lebesgue measure, the restriction to [0, 1] of

the rank one perturbation of dµp has exact dimension L(p).
(3) If p /∈ Ī0, then for a.e. λ, the rank one perturbation of dµp is pure point.
(4) If p ∈ (1

4 ,
3
4 ), p �= 1

2 , then for all λ, the restriction to [0, 1] of the rank one perturbation
of dµp is purely singular continuous (so we have an example with singular continuous
spectrum for all λ).

Proof. (1) By the last proposition, the quantity α(x) given by (2.2) is H(p) for a.e. x
w.r.t. dµp so by Corollary 2.2, dµp has dimension H(p).

(2) By the last proposition with q = 1
2 (recall dµ1/2 is Lebesgue measure) and Lemma

5.4 for a.e. x w.r.t. Lebesgue measure

lim
ε↓0

ε−(1−α)ImF (x + iε) = 0 (resp. ∞)

if α > L(p) (resp. α < L(p)). By Simon-Wolff [33,40], (dµp)λ is supported on this Lebesgue
typical set for a.e. λ. Thus by Theorems 4.1 and 4.2, the rank one perturbation has
dimension L(p) for a.e. λ.

(3) By the last proposition and Proposition 2.4, for a.e. x w.r.t. Lebesgue measure∫
dµp(y)
|x− y|α < ∞

if α < γ(p) (and is infinite a.e. if α > γ(p)). 2±√
3

4 are precisely the points where γ(p) = 2
and so p /∈ Ī0 means

∫ dµp(y)
|x−y|2 < ∞ for a.e. x so Simon-Wolff [33,40] implies the rank one

perturbations are pure point for a.e. λ.
(4) By (E.6), if p ∈ (1

4 ,
3
4 ), then

∫ dµp(y)
|x−y|2 = ∞ for all x ∈ [0, 1] and so by the Aronszajn-

Donoghue theory [33], there is no point spectrum for any λ.

Remark. By using Theorem 5.1, one can show if 2−√
3

4 < p < 1
4 , then the dimension of the

set of λ for which (µp)λ has some pure point spectrum is

D(p) = −q ln q + (1 − q) ln(1 − q)
ln 2

where

q =
−2 ln 2 − ln(1 − p)

ln p− ln(1 − p)
.
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As a final variant in this class of examples, we’ll give an example of a measure supported
by the set Wα defined in (2.3) (examples of this kind go back to Besicovitch [5]). Fix
0 < p1 < p2 < 1

2
. Define a measure dµp1p2 on [0, 1] as follows: The variables an(x) will be

independent for different n but not identically distributed. Rather

Prob(an(x) = 0) =
{

p1 N ! ≤ n < (N + 1)! N odd
p2 N ! ≤ n < (N + 1)! N even.

Then by the law of large numbers, one easily sees that for a.e. x w.r.t. dµp1p2,

lim
n→∞

Nn(x)
n

= p2

lim
n→∞

Nn(x)
n

= p1

lim
n→∞

Cn(x)
lnn

< ∞

so that by analogs of (E.4), (E.5), and (E.9):

lim
δ↓0

lnµp1p2(x− δ, x + δ)
ln 2δ

= − p2 ln p2 + (1 − p2) ln(1 − p2)
ln 2

= H(p2)

lim
δ→∞

lnµp1p2(x− δ, x + δ)
ln 2δ

= − p1 ln p1 + (1 − p1) ln(1 − p1)
ln 2

= H(p1).

It follows that

H(p1) < α < H(p2) ⇒ for µp1p2 a.e. x,

lim
δ↓0

µ(x− δ, x + δ)
δα

= ∞; lim
δ↓0

µ(x− δ, x + δ)
δα

= 0.

Remarks. 1. One can modify this contradiction to find a measure dν so that a.e. lim
δ↓0

ln ν(x−δ,x+δ)
ln(2δ) = 1, lim

δ↓0
ln ν(x−δ,x+δ)

ln(2δ) = 0 so that only if α = 0, 1 does ν(x | lim
δ↓0

ν(x−δ,x+δ)
δα

exists) = 1.
2. One can further analyze dµp1p2 to prove that for a.e. λ, the rank one perturbed

measure (dµp1p2)λ has dimension L(p1).
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