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Abstract. We construct one-dimensional potentials V (x) so that if H = − d2

dx2 + V (x) on

L2(R), then H has purely singular spectrum; but for a dense set D, ϕ ∈ D implies that

|(ϕ, e−itHϕ)| ≤ Cϕ|t|−1/2 ln(|t|) for |t| > 2. This implies the spectral measures have Haus-

dorff dimension one and also, following an idea of Malozemov-Molchanov, provides counterex-

amples to the direct extension of the theorem of Simon-Spencer on one-dimensional infinity

high barriers.

§1. Introduction

This is a continuation of my series of papers (some joint) exploring singular continuous
spectrum especially in suitable Schrödinger operators and Jacobi matrices [3,15,4,8,2,19,17,
5,7,16]. Our main goal here is to construct potentials V (x) on R so that ifH = − d2

dx2+V (x),
then σ(H) = [0,∞), σac(H) = σpp(H) = ∅, and there is a dense set D ⊂ L2(R ) so that if
ϕ ∈ D, then

|(ϕ, eitHϕ)| ≤ Cϕt
−1/2 ln(|t|) (1.1)

for |t| > 2. (We say |t| > 2 because of the behavior of ln(|t|) for |t| ≤ 1; note all matrix
elements are bounded by 1, so control in |t| ≤ 2 is trivial.)

(1.1) is interesting because the stated bound on Fϕ(t) ≡ (ϕ, e−itHϕ) is just at the
borderline for operators with singular continuous spectrum. Indeed, if t−1/2 in (1.1) were
replaced by t−α for any α > 1

2 , then Fϕ(t) would be in L2 and so the spectral measures
dµϕ(E) = F (E)dE for F ∈ L2; that is, dµϕ would be a.c. and so σac(H) 
= ∅.

As an indication of the borderline nature of (1.1), we note that by Falconer [6], (1.1)
implies dµϕ is a measure carried on set of Hausdorff dimension 1 in the sense that it gives
zero weight to any set of Hausdorff dimension strictly less than 1.

The potentials V are sparse potentials in the sense that they are mainly zero. They
are examples of the type already studied in [19]. We will have examples where V → 0 at
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2 B. SIMON

infinity but also examples where lim
x→±∞V (x) = ∞. The latter are of some interest because

of an idea of Malozemov-Molchanov [13], which was the starting point of our work here.
This idea is related to results of Simon-Spencer [18]. To describe it, we need some

notions. Call a barrier a compact subset B ⊂ Rn so that Rn\B has exactly one bounded
component and so that Rn\B has two components if n ≥ 2 and three if n = 1. If B1 and
B2 are barriers, we say B2 surrounds B1 if B1 is contained in the bounded component of
Rn\B2.

By the width of a barrier B, we mean the distance between the bounded component
of Rn\B and the unbounded component (in case n = 1, the union of the two unbounded
components). By the diameter of B, we mean max{|x− y| | x, y ∈ B}.

We say a potential V on Rn has a sequence of high barriers if
(1) V is globally bounded from below and locally bounded.
(ii) There is a sequence B1, B2, . . . of barriers so Bk+1 surrounds Bk.
(iii) The width of each barrier is at least 1.
(iv) There exists ak → ∞ so V (x) ≥ ak if x ∈ Bk.

Then Simon-Spencer proved:

Theorem 1.1 [18]. If n = 1, H = − d2

dx2 + V (x), and V has a sequence of high barriers,
then σac(H) = ∅.

Malozemov-Molchanov [13] have studied extensions of this result to higher dimensions,
which require some relations between the size of ak and diameter of Bk. It is clearly
expected that the result does not extend without restriction to n ≥ 2 but it is unclear how
to make counterexamples. Malozemov-Molchanov noted that there exist purely singular
measures dν on R so that the convolution dν ∗ dν is absolutely continuous. Moreover, if
V1 is a potential on R with such a spectral measure dν and

V (x, y) = V1(x) + V1(y)

is a potential V on R 2, then −∆+ V has dν ∗ dν as spectral measure (specifically, if ϕ(x)
has spectral measure dν, then ϕ̃(x, y) = ϕ(x)ϕ(y) has spectral measure dν ∗ dν). Finally,
if V1 has a sequence of high barriers, so does V .

Our examples in obeying (1.1) will let us implement this strategy and so prove:

Theorem 1.2. If n ≥ 2, there exist potentials V with a sequence of high barriers so that
−∆+V has purely absolutely continuous spectrum. If n ≥ 3, there are such V ’s for which
the spectrum is purely transient.

We’ll discuss transient and recurrent spectrum further below. It was in thinking of how
to implement this Malozemov-Molchanov strategy that I was led to think of time decay
and (1.1).

The potentials V which implement (1.1) will be chosen even, so we may as well consider
half-line problems with Dirichlet or Neumann boundary conditions at x = 0. The half-line
potentials will have the form

V (x) =
∞∑
n=1

Vn(x− Cn) (1.2)
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where Vn is a potential of compact support and the Cn’s are sufficiently large. In principle,
our constructions let us determine how large the Cn’s must be, but since the main point
of this construction is existence, we won’t completely track the restrictions on Cn.

Section 4 is the technical core of the paper where we prove a critical lemma about
half-line potentials V (x) of the form

VL(x) = V∞(x) +W (x− L) (1.3)

with V∞,W bounded non-negative of compact support. We obtain some uniform in L
bounds on the time decay of |(ϕ, e−itHϕ)|. This lemma is used in Section 2 to make the
construction of V obeying (1.1). The application to Theorem 1.2 is found in Section 3.
Finally, Section 5 contains some remarks about how big the Cn’s in (1.2) need to be.

While Section 4 is somewhat technical, it is technicality with an elegant physical inter-
pretation and technology we expect will be useful in other contexts.

It is a pleasure to thank Y. Last, L. Malozemov, and S. Molchanov for useful discussions.

§2. The Construction Modulo the Main Technical Lemma

In this section, we’ll construct potentials V on R so that − d2

dx2 +V (x) has purely singular
continuous spectrum, but (1.1) holds for a dense set of ϕ’s. The construction will depend
on a lemma only proven in Section 4.

Our V ’s will obey
V (−x) = V (x),

so − d2

dx2 + V (x) is a direct sum of two operators, unitarily equivalent to the half line with
Neumann and Dirichlet boundary conditions. We’ll prove the result for the Neumann
boundary condition case. The argument for the Dirichlet boundary condition case is
similar: One replaces the Neumann m-function mN (E) by mD(E) = −mN(E)−1 and the
“vector” δ(x) by δ′(x) (δ(x) lies in H−1 for the Neumann case but δ′(x) is only in H−2

(e.g., [9] but this doesn’t change the analysis in any essential way).
Suppose V is bounded below and let H be the Neumann b.c. operator − d2

dx2 + V (x)
on L2(0,∞). Let Hs be the usual scale of spaces associated to H [14] (so, e.g., H+1 is
the form domain of H). Then δ(x), the delta function at 0, lies in H−1; so, in particular,
f(H)δ ∈ L2 for any function f ∈ C∞

0 (R ).
The technical lemma we will prove in Section 4 is

Theorem 2.1. Suppose VL has the form (1.3) with V∞,W fixed bounded non-negative
functions of compact support. Let f, g ∈ C∞

0 (0) with support in (0,∞). Then
(i) lim

L→∞
(f(HL)δ, e−itHLg(HL)δ) = (f(H)δ, e−itH g(H)δ) uniformly for t in compact

subsets of (−∞,∞).
(ii) There exist C independent of L and t so that

|(f(HL)δ, e−itHLg(HL)δ)| ≤ Ct−1/2 (2.1.)
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Remark. This is in essence a diffusion bound. For each fixed L, eventually (f(HL)δ,
e−itHLg(HL)δ) decays faster than any power of t. However, suppose f = g is supported
very near energy E = k2. Then at time t = ±L/k we should expect a bump in (f(HL)δ,
e−itHLg(HL)δ) due to return of a reflected wave (the distance traveled there and back is
2L but since the free energy is p2, not 1

2p
2, the velocity is near 2k). Because of diffusion,

this reflected bump will decay but only as t−1/2 for this particular t. Similarly, there will
be multiple reflection bumps at times t = ±nL/k. Our proof in Section 4 will essentially
invoke a rigorous multi-reflection expansion.

A sequence Vn non-negative potentials of compact support will be called trapping if

− d2

dx2
+

∞∑
n=1

[Vn(x− Ln) + Vn(−x− Ln)) (2.2)

has no a.c. spectrum if the Ln’s are sufficiently large. Trapping potentials are constructed
in Simon-Spencer [18] and Last-Simon [11]. They are of three types:

1) High barriers: What we have called sequence of high barriers where Vn(x) ≥ an on
(− 1

2 ,
1
2 ) and an → ∞.

2) Long random barriers: If Vn(x) is the sample of a random potential on the interval(n(n−1)
2 , n(n+1)

2

)
, there is no a.c. spectrum so long as Ln is large enough.

3) Very long decaying barriers: If Vn is the sample of |x|−αW (x) (with W (x) random
and α < 1

2) on (an−1, an) and an is large enough, then for Ln large, there is no
a.c. spectrum.

Potentials of type 1,2 are discussed in [18]. [11] has a method that handles all these
cases. In all cases, the Ln’s need only be so large that the support of Vn(x−Ln) is to the
right of the support of Vn−1(x− Ln−1). Our main theorem in this paper is

Theorem 2.2. Let {Vn} be a sequence of trapping potentials and let V be defined by
(2.2). Then the Ln’s can be chosen so that

(i) H = − d2

dx2 + V (x) has purely singular continous spectrum.
(ii) For a dense set D ⊂ L2(R ), and all ϕ,ψ ∈ D,

|(ϕ, e−itHψ)| ≤ Cϕ,ψ ln(|t|)/|t|1/2
for |t| ≥ 2.

Proof. Without loss, we’ll restrict to the half-line Neumann problem as explained. We’ll
make the argument for ϕ = f(H)δ for a single f and then explain the modifications needed
to get a dense set of ϕ.

Theorem 2.1 implies that

lim
L→∞

sup
|t|>2

[
(ln |t|)−1|t|1/2|(f(HL)δ, e−itHLf(HL)δ)− (f(H∞)δ, e−itH∞f(H∞)δ)|] = 0.

Thus in adding in Vn, we can choose Ln so the change in

sup
|t|>2

[
(ln |t|)−1|t|1/2(f(H(n))δ, e−itH(n)

f(H(n))δ)
]

(2.3)
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from the same quantity for n− 1 is at most 1
2n . Here

H(n) = − d2

dx2
+

n∑
m=1

Vm(x− Lm)

(on (L2(0,∞)).
Since H(n) → H in strong resolvent sense, we have the result for H by taking n → ∞

and noting
∞∑
n=1

2−n <∞. To get a dense set of vectors, choose fk, C∞ functions on (0,∞)

so the fk’s are dense in ‖ · ‖∞ norm in the continuous functions on [0,∞) vanishing at zero
and infinity. Then {fk(H)δ} is a dense set in L2(0,∞). At step n, arrange for the change
in (2.3) to be no more than 2−n for f = fk with k = 1, . . . , n. Then each of

|(fk(H)δ, e−itH fk(H)δ)| ≤ Ck|t|−1/2 ln(|t|)

for |t| > 2.

Note. ln(|t|) plays no special role in the proof or statement of the theorem. It could be
replaced by any function "(|t|) so long as lim

α→∞ "(α) = ∞.

Corollary 2.3. For any potential V of the form given in Theorem 2.2, H has singular
continuous spectrum of Hausdorff dimension 1 in the sense that its spectral measures E∆

have ES = 0 if S is a Borel set of Hausdorff dimension α < 1.

Proof. Follows from Falconer [6], pg. 67.

Corollary 2.4. For any potential V of the form of Theorem 2.2, we have

lim
|t|→∞

1
t2−ε

‖xe−itHδ0‖2 = ∞

for any ε > 0.

Proof. Follows from the results of Last [10].

§3. High Barriers in Dimension Two or More

In this section, we carry through the strategy of Malozemov-Molchanov described in
the introduction.

For this section, we’ll fix once and for all a function V1 on R so that
(i) V1(−x) = V1(x)
(ii) There is an → ∞ so V1(x) ≥ n on [an, an + 1].
(iii) σ(H1) = [0,∞) and is purely singular continuous where H1 = − d2

dx2 + V1(x).
(iv) For a dense set D1 ⊂ L2(R ), |(ϕ, e−itH1ψ)| ≤ Cϕ,ψ|t|−1/2 ln(|t|) for |t| ≥ 2 and any

ϕ,ψ ∈ D1.
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On Rn define

Vn(x1, x2, . . . , xn) = V1(x1) + V1(x2) + · · ·+ V1(xn)

and on L2(Rn),
Hn = −∆+ Vn.

Theorem 3.1. (a) If n ≥ 2, there is a dense set Dn in L
2(Rn) so that for ϕ,ψ ∈ Dn,

(ϕ, e−itHnψ) ∈ Lp for all p > 1.
(b) If n ≥ 3, there is a dense set Dn in L

2(Rn) so that for ϕ,ψ ∈ Dn, (ϕ, e−itHψ) ∈
L1 ∩ L∞.

Proof. If ϕ = ϕ1 ⊗ · · · ⊗ ϕn, ψ = ψ1 ⊗ · · · ⊗ ψn with ϕi, ψi ∈ D1, then (ϕ, e−itHnψ) =
n∏

j=1

(ϕj , e−itH1ψj) so for |t| ≥ 2,

|(ϕ, e−itHnψ)| ≤ Cϕ,ψ|t|−n/2(ln |t|)n.

Since it is also bounded, we have the Lp results. Linear combinations of those ϕ’s are
dense.

Corollary 3.2. If n ≥ 2, Hn has purely a.c. spectrum.

Proof. If dµ is a measure and Fµ(t) ≡ ∫
e−iEtdµ(E) is in Lp with p < 2, then by the

Hausdorff-Young inequality, dµ(E) = g(E)d(E) with g ∈ Lq (q = p/p− 1).

In [1], Avron-Simon introduced the notion of transient and recurrent a.c. spectrum.
ϕ ∈ Hac(A) is transient if it is a limit of ϕn’s where each (ϕn, e−itHϕn) decays faster than
any inverse polynomial in t. If Htac is the set of such ϕ’s, then Hrac = Hac ∩H⊥

tac is called
the set of recurrent a.c. vectors. It is proven in [1] that if F (t) = (ϕ, e−itHϕ) lies in L1,
then ϕ is in Htac. Thus,

Corollary 3.3. If n ≥ 3, Hn has purely transient a.c. spectrum.

Thus, if n = 2, it is possible that there is a weakened form of the result of Simon-Spencer
[18], that is,

Open Question. Are there examples of n = 2 with a sequence of barriers with transient
a.c. spectrum or is any a.c. spectrum in such cases of necessity recurrent?

§4. The Main Technical Lemma

Our goal in this section is to prove Theorem 2.1. Since− d2

dx2+VL converges to − d2

dx2+V∞
in strong resolvent sense, and δ is in the common form domain, (i) is elementary but also
follows from the discussion below.

Our analysis depends on the Weyl-Titchmarsh theory of spectral measures for the Neu-
mann problem (see [12]); explicitly, we’ll use the form:
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Proposition 4.1. Suppose V is bounded and non-negative with compact support in [0,∞)
andH = − d2

dx2 +V (x) with u′(0) = 0 boundary conditions. For any E > 0, let k =
√
E and

let u+(x,E) be the solution of −u′′ + V u = Eu which is equal to eikx for x large. Define
m(E) = −u+(0, E)/u′+(0, E), the Neumann m-function. Then for f , a smooth function of
compact support,

(δ, f(H)δ) =
1
π

∫
f(E)[Imm(E)] dE. (4.1)

Because of (4.1), we’ll need to estimate integrals of the form:

Lemma 4.2. Let g be a C∞ function of compact support on (0,∞), and let

Q(y, t) =

∞∫
0

eiky−ik2tg(k2)d(k2).

Then

|Q(y, t)| ≤ Ct−1/2

[ ∞∫
0

{|g(k2)|2 + k2|g′(k2)|2}k2 dk

]1/2

.

Proof. Let H0 be the operator − d2

dx2 on L2(R ). Let h(y) be the function Q(y, 0). Then,
using the explicit integral kernel of H0:

Q(y, t) = (e−itH0h)(y)

= (4πt)−1/2

∫
ei|x−y|2/4th(y)dy

so

|Q(y, t)| ≤ (4πt)−1/2

∫
|h(y)| dy

≤ (4πt)−1/2

(∫
|h(y)|2(1 + y2)dy

)1/2[∫
(1 + y2)−1 dy

]1/2

by the Schwartz inequality, so by the Plancherel theorem,

|Q(y, t)| ≤ (2t)−1/2

[∫
|f(k)|2 + |f ′(k)|2 dk

]1/2

where f(k) = 2kg(k2) and we are done.

For the remainder of this section, we’ll fix V∞ and W and always take L so large that
WL( · ) ≡ W (· − L) has its support to the right of the support of V∞. Thus, there are
a < b < c so supp(V∞) ⊂ [0, a), supp[WL] ⊂ (b, c). In the regions (a, b) and (c,∞), any
solution of −u′′ + VLu = EL is a linear combination of e±ikx where k ≡ √

E. For u+, we
have it equal to eikx on (c,∞) and it will be 1

tL
eikx+ rL

tL
e−ikx on (a, b). Hence, by general



8 B. SIMON

principles, |tL|2 + |rL|2 = 1 and tL 
= 0. Since m only involves a ratio, we can instead look
at ũ+ = tLeikx on (c,∞) and = eikx + rLe−ikx on (a, b).

Given any complex number r, we can solve on [0, a] for the function = eikx + re−ikx

near a and then let
M(r;E)

be the value of −u(0)/u′(0) for the corresponding solution. As indicated,M(r;E) depends
on the value of the reflection coefficient r (r is distinct from x, of course; beware of the
possible confusion) and energyE. It is also a function of V∞ but not ofW . If we choose r =
rL(E) which is dependent on W (and L and E), then, of course, mL(E) ≡ M(rL(E), E)
is the m for VL. And, of course, m∞(E) ≡M(r = 0, E) is the m for V∞.

Theorem 4.3. For each fixed E > 0, M(r,E) is anlytic in the complex disc {r | |r| < 1}.
Similarly, ∂M∂E is analytic there too. Moreover, both functions are uniformly bounded as E
run through compact subsets of (0,∞) and r through compact subsets of {r | |r| < 1}. In
particular, for any R0 < 1 and compact K ⊂ (0,∞), there is a C with

M(r,E) =
∞∑
n=0

an(E)rn

|an(E)| ≤ CR−n
0 (4.2a)∣∣∣∣dandE

∣∣∣∣ ≤ CR−n
0 (4.2b)

if E ∈ K.
Remark. The proof actually shows more, as we’ll note in the next section; namely, |an(E)|
≤ C , ∣∣ dan

dE

∣∣ ≤ C(n+ 1).

Proof. Let
(
α β

γ δ

)
be the transfer matrix from a to zero, that is,

(
w(0)
w′(0)

)
=

(
α β
γ δ

) (
w(a)
w′(a)

)
for solutions of −w′′ + (V − E)w = 0.

Then M(E, r) is the fractional linear transformation

M(r) = −α(ω + rω−1) + ikβ(ω − rω−1)
γ(ω + rω−1) + ikδ(ω − rω−1)

where ω = eika. The denominator vanishes exactly if r0 = ω2(−γ+ ikδ)/(γ+ ikδ). Notice
that since γ, δ are real, |r0| = 1, so as claimed, M is analytic in |r| < 1. The uniform
bounds on M follow by noting that α, β, γ, δ are uniformly bounded. Similarly, ∂M

∂E
has a

second order pole on the unit circle and we get its uniform bounds.

1. A convenient way to write M is in terms the zeros r0 and r1 of the denominator and
numerator of M . As in the proof, |r0| = |r1| = 1 and

M(r) =M(0)
(
r̄1
r̄0

)
r− r1
r− r0
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so, in fact |an(E)| ≤ 2|M(0)| (just expand the geometric series and multiply out). Similarly,
we can control

∣∣ dan

dE

∣∣.
2. That the zero of the denominator has |r0| = 1 just happens in the proof. But one

can understand it from two factors. First, every r with |r| < 1 occurs with someWL as we
run through all possibleW ’s. Thus, sincem is finite for any V∞+WL of compact support,
M must be analytic in |r| < 1. Moreover, M(r̄−1) = M(r), so we have analyticity also in
|r| > 1.

Proof of Theorem (2.1). Let r(E) be the reflection coefficient on the whole line for − d2

dx2 +
W (x). Then by translation covariance, rL(E), the reflection coefficient for W (x− L), is

rL(k2) = e2ikLr(k2).

Thus, in terms of the expansion above equation (4.2):

S(L, t) ≡ (f(HL)δ, e−itHLg(HL)δ) =
∞∑

n=−∞
Sn(L, t)

where

Sn(L, t) =




1
2i

∫
f(k2) g(k2)e−ik2t+2ikLnan(k2)r(k2)n d(k2); n ≥ 1∫

f(k2) g(k2)e−ik2tImm∞(k2)dk2; n = 0

− 1
2i

∫
f(k2) g(k2)e−ik2t−2ikLnan(k2) r(k2)

n
d(k2); n ≤ 1

where m∞ is the Neumann m-function for V∞. Since supp(f̄ g) ⊂ (0,∞), we know that on
that support sup |r(k2)| is some α < 1. So in (4.2), take R0 > α and use Lemma 4.2 to be
able to sum up the t−1/2 contributions and so obtain the theorem.

§5. Towards Explicit Estimates of the Ln

Our goal here is to explain why for the ln(t)/t1/2 bound we believe that one needs
to take Ln ∼ exp(exp(Cn3/2)) for the case where, say, Vn = nχ(−1/2,1/2). If we only
wanted t−1/2+ε behavior for fixed ε, these same considerations would only require Ln ∼
exp(Cεn

3/2) (consistent with the behavior needed in [19]).
As noted in the remark after Theorem 4.3, we have |an(E)| ≤ 2|M(0)|, ∣∣dan

dE (E)
∣∣ ≤∣∣2M(0)ndr0

dE

∣∣. Thus, if
A = inf(1 − |r|)

on the support in question, |M(r)| ≤ 2|M(0)|A−1 and
∣∣dM
dr

∣∣ ≤ 2QA−2 with Q bounded
by

∣∣M(0)dMdE (0)
∣∣. Because of the definition of the transfer matrix, in adding bump n, the

transfer matrix for V∞ is of order
n∏

j=1

eC
√
j ∼ exp(C1n

3/2), so M and dM
dE are bounded

by exp(C1n
3/2). On the other hand, |r| for nth bump is of order 1 − e−√

n by tunneling
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estimates, so the A−1 term in |M(0)|A−1 is much smaller than the |M(0)| bound. Thus,
the change in (f, e−itHg) is of order

exp(C1n
3/2)t−1/2

and only for t’s of order at least L1−δ
n for any δ > 0. Thus, to get a ln(t)/t1/2 bound, we

need only arrange
ln(Ln)1/2 ≥ n+2 exp(C1n

3/2),

and to get t−1/2+ε, we can have

Lεn ≥ n2 exp(C1n
3/2),

as claimed at the start of the section.
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