
OPERATORS WITH SINGULAR CONTINUOUS SPECTRUM, V.

SPARSE POTENTIALS

B. Simon1 and G. Stolz2

Abstract. By presenting simple theorems for the absence of positive eigenvalues for certain

one-dimensional Schrödinger operators, we are able to construct explicit potentials which
yield purely singular continuous spectrum.

§1. Introduction
This is one of a series of papers (see [2,11,3,7,1,13,4,6,12]) that discusses singular con-

tinuous spectrum in families of concrete operators. Our goal here is to provide examples
of half-line Schrödinger operators which have singular continuous spectrum [0,∞) for all
boundary conditions at x = 0. In fact, singular continuity of the spectrum will be pre-
served under arbitrary compactly supported perturbations for these examples. This is of
interest because it provides totally explicit operators without a need to appeal to generic
values of parameters and because it is a concrete example of the fact that while dense
point spectrum is always unstable under rank one perturbations [3], singular continuous
spectrum may be stable.
To be totally explicit, it will follow from our discussion below that if xn = e2n3/2

,
n = 1, 2, . . . and

V (x) =
{

n |x− xn| < 1
2

0 otherwise,

then for any boundary condition at 0, H ≡ − d2

dx2 + V (x) on [0,∞) has σ(H) = σsc(H) =
[0,∞) and σac(H) = ∅. Depending on the boundary condition, σpp(H) is either ∅ or a
single negative eigenvalue. And the whole-line problem, defined by symmetric extension
of V , has σ(H) = σsc(H) = [0,∞), σac(H) = σpp(H) = ∅.
Our examples here will be sparse, that is, they will be “mainly” zero. Our main technical

result, in Section 2, will show that sparse potentials have no point spectrum in [0,∞) for
any boundary condition. The proof will be very elementary. The examples of singular
continuous spectrum in Section 3 will then come by combining the results of Sections 2
and 3 with the theorems of Simon-Spencer [14] and Stolz [15] on the absence of absolutely
continuous spectrum for certain potentials.

1 Division of Physics, Mathematics and Astronomy, California Institute of Technology, 253-37,

Pasadena, CA 91125. This material is based upon work supported by the National Science Foundation

under Grant No. DMS-9101715. The Government has certain rights in this material.
2 Department of Mathematics, University of Alabama, Birmingham, AL 35294.

To appear in Proc. Amer. Math. Soc.

Typeset by AMS-TEX

1



2 B. SIMON AND G. STOLZ

In Section 4 we give two other situations where our ideas apply: If V is mainly periodic
instead of mainly zero, then one gets singular continuity in the spectral bands of the
underlying periodic potential. It is also easy to extend our results to Jacobi matrices.
It has not escaped our notice that Pearson’s examples [10] are sparse and, indeed,

our Section 2 implies the absence of point spectrum in his examples (for any boundary
condition!). However, we know of no way yet to prove the absence of absolutely continuous
spectrum in his examples other than the one he uses. At least, combining our argument
with the one of Pearson shows that Pearson’s examples also work on the whole line, a fact
not noted in [10].
We do note, however, that Last and Simon (work in progress) have another way to

construct potentials which decay at infinity and have purely singular continuous spectrum
and by [11], Baire generic V ’s vanishing at infinity have singular continuous spectrum on
[0,∞).
A result of the type discussed in this paper has been stated before in [5], but with no

proof. After we completed this work, we learned from [9] of some apparently unpublished
results of Gordon on Jacobi matrices with sparse potentials with a similar flavor to what
we do.
G.S. would like to thank M. Aschbacher and C. Peck for the hospitality of Caltech where

most of this work was done.

§2. Absence of Point Spectrum
Let V (x) be a measurable function on [0,∞) which is L1 on any interval [0, R). For

y ≥ 0, one can look at solutions of the differential equation

−u′′(x) + V (x)u(x) = Eu(x)

u(y) = a u′(y) = b.

If Φ(x, y,E;V ) is the solution with
(
a
b

)
=

(
1
0

)
and Ψ(x, y,E;V ) with

(
a
b

)
=

(
0
1

)
, then the

2× 2 matrix
M(x, y,E; v) =

(
Φ(x, y,E;V ) Ψ(x, y,E;V )
Φ′(x, y,E;V ) Ψ′(x, y,E;V )

)

is called the transfer or fundamental matrix. Solutions of −u′′ + V u = Eu obey

(
u(x)
u′(x)

)
=M(x, y,E;V )

(
u(y)
u′(y)

)
. (1)

and
M(x, y)M(y, z) =M(x, z) (2)

Constancy of the Wronskian implies that

det(M) = 1. (3)
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Theorem 2.1. If V is bounded from below and M obeys

∞∫
0

dx

‖M(x, 0, E;V )‖2
=∞ (4)

for some E, then −u′′ + V u = Eu has no solution u ∈ L2(0,∞).
Proof. Since M is unimodular ((1)) and 2× 2, we have

‖M−1‖ = ‖M‖. (5)

By (1), (
u(0)
u′(0)

)
=M(x, 0)−1

(
u(x)
u′(x)

)
.

So, by (5) ∥∥∥∥
(

u(x)
u′(x)

)∥∥∥∥ ≥
∥∥∥∥
(
u(0)
u′(0)

)∥∥∥∥
/

‖M(x, 0)‖.

Thus, (4) implies that ‖( u
u′

)‖ /∈ L2. Then also u /∈ L2.
Suppose, on the contrary, that u ∈ L2. Differentiating uu′, we get

u(x)u′(x) = u(0)u′(0) +

x∫
0

(u′2 + u2(V − E))dt

≥ u(0)u′(0) +

x∫
0

(u′2 − Cu2)dt,

where semiboundedness of V was used. If u ∈ L2, but u′ /∈ L2, this yields 1
2
(u2)′(x) =

u(x)u′(x)→ ∞ as x → ∞. This would imply the contradiction u2(x)→ ∞.
We are going to apply this to what we’ll call sparse potentials.

Definition. A sparse potential is a function V (x) on [0,∞) for which there exist xn+1 >
xn → ∞, αn > 0 and hn < ∞ so

(i) xn+1−xn

αn+αn+1+1 → ∞,
(ii) |V (x)| ≤ hn if |x− xn| ≤ αn, n = 1, 2, . . . ,
(iii) |V (x) = 0 otherwise.

By (i), (iii), sparse potentials are zero “most of the time.” We define Ln = xn+1 −xn −
αn − αn+1.
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Theorem 2.2. Let V be a sparse potential. Suppose that

Ln ≥ exp(4Qn) (6)

for all large n where

Qn ≡ n ln n+
n∑

j=1

αj(hj + ln j).

Then −u′′ + V u = Eu has no solutions with u ∈ L2 for any E > 0.

Proof. M ′(x) = A(x)M(x) where

A(x) =
(
0 1
−1 E − V (x)

)
,

so ‖A(x)‖ = |V (x)| + E + 1 ≤ hn +E + 1 on (xn − αn, xn + αn) and

‖M(xn + αn, xn − αn)‖ ≤ e2(hn+E+1)αn.

On the other hand, the transfer matrix when V = 0 and E = k2 > 0 is

M0(x, y) =
(

cos k(x− y) k−1 sin k(x− y)
−k sink(x− y) cos k(x− y)

)

and has norm bounded by max(k, k−1).
Using (2), it follows that for y ∈ (xn + αn, xn+1 − αn+1), we have

‖M(y, 0)‖ ≤ [max(k, k−1)]n+1 exp
( n∑

j=1

2αj(hj + E + 1)
)

≤ exp(2Qn)

for n large (and any fixed E). Thus,

xn+1−αn+1∫
xn+αn

dy

‖M(y, 0)‖2
≥ Ln

exp(4Qn)
≥ 1

by hypothesis. Thus, (4) holds and there are no L2 solutions.

Example 1. hn = n, αn = 1
2 ; (6) requires Ln ≥ exp((1 + ε)n2).

Example 2. hn = c, αn = n; (6) requires Ln ≥ exp((1 + ε)n2) again.

In the case of constant high barriers, like in Example 1, one actually has the following
result, which gives improved estimates
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Theorem 2.3. Let V be a sparse potential with

V (x) = hn if |x− xn| ≤ an, n = 1, 2, . . . ,

hn → ∞ and

Ln ≥ nδn

( n∏
j=1

hj

)
exp

(
4

n∑
j=1

αj

√
hj

)
(7)

for some δ > 0. Then −u′′ + V u = Eu has no solutions with u ∈ L2 for any E > 0.

Looking at Example 1 again, we see that (7) only requires Ln ≥ exp((1 + ε)n3/2).

Proof. We follow the proof of Theorem 2.2, but for n with hn > E + 1 and x, y ∈ [xn −
αn, xn + αn], replace M by the modified transfer matrix

M̃n(x, y) =
(√

hn −E Φ
√
hn −EΨ

Φ′ Ψ′

)
.

We have

M̃ ′
n =

√
hn − E

(
0 1
1 0

)
M̃n

and therefore,
‖M̃n(xn + αn, xn − αn)‖ ≤ exp(2αn

√
hn − E

)
.

Since

M(xn + αn, xn − αn) =
(
(hn − E)−1/2 0

0 1

)
M̃n(xn + αn, xn − αn)

(
(hn − E)1/2 0

0 1

)
,

we get

‖M(xn + αn, xn − αn)‖ ≤ max((hn −E)1/2, (hn − E)1/2) exp
(
2αn

√
hn − E

)
≤

√
hn exp

(
2αn

√
hn

)
.

Now the proof is completed as before.

§3. Examples with Singular Continuous Spectrum
As stated in the introduction, the idea behind these examples is to use [14] and [15]

to eliminate a.c. spectrum and Theorems 2.2 and 2.3 to eliminate point spectrum. Both
results apply with arbitrary bounded condition at x = 0. Non-existence of a.c. spectrum is
also stable under a compactly supported perturbation of V (a trace class perturbation of
the resolvent, e.g., [4]). Obviously, the same is true for non-existence of square-integrable
solutions.
Therefore, we get examples with purely singular continuous spectrum for all boundary

conditions and under arbitrary local perturbations. Whole-line problems differ from the
direct sum of two half-line problems only by adding boundary conditions at 0, a finite
rank perturbation. Moreover, lack of L2 solutions on either half-line clearly implies no L2

solutions on the whole line. This shows that we also get whole-line examples of purely
singular continuous spectrum.
The statements on σpp in (−∞, 0] made in the introduction follow from elementary

convexity considerations for solutions.
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Example 3. Let xn = e2n2/3
and

V (x) =
{

n if |x− xn| < 1
2 , n = 1, 2, . . .

0 otherwise.

Then − d2

dx2 + V (x) on L2(0,∞) has purely singular continuous spectrum in (0,∞) for any
boundary condition at x = 0. For [14] says there is no a.c. spectrum and Theorem 2.3 says
no point spectrum.

Example 4. Here we construct bounded potentials with purely singular continuous spec-
trum in (0,∞). Let W (x) be the random potential given by a random constant cn in
each interval (n − 1, n), n = 1, 2 . . . , where the cn are independent and each uniformly
distributed in [0, 1]. Let

V (x) =
{

W (x+ n(n−1)
2

− xn), xn ≤ x ≤ xn + n

0 otherwise

where xn = e2n2
. Essentially, we’ve broken W (x) into pieces of size 1, 2, . . . and placed

them at the points x1, x2 . . . . Then for almost all choices of the random potential, − d2

dx2 +
V (x) on L2(0,∞) has purely singular continuous spectrum for all boundary conditions at
x = 0.
By Theorem 2.2 there is no point spectrum. To prove absence of a.c. spectrum, let χ

be the characteristic function on [0, 1] and

qL(x) =
∞∑

n=−∞
χ(x− nL).

If E0 = k2
0 > 0 is such that k0

2π is not rational, then Theorem 3.4 of [8] guarantees the
existence of an integer L = L(E0) and δ > 0 such that (E0 − δ,E0 + δ) is contained in a
spectral gap of − d2

dx2 + qL. Almost certainly, there are intervals In with length tending to
∞ such that

sup
x∈∪In

|W (x) − qL(x)| < δ

2
.

By construction, the same holds for V . By Theorem 1 of [15], we have σac(− d2

dx2 + V ) ∩
(E0 − δ

2 , E0 + δ
2 ) = ∅ with probability one. A compactness argument and the fact that

the countable set {k2
0 :

k0
2π rational} cannot support a.c. spectrum finally show almost sure

absence of a.c. spectrum.
Of course, the above construction and argument apply to much more general random

potentials W .
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§4. “Mainly” Periodic Potentials and Jacobi Matrices
In Section 2 the important property of the regions with V = 0 was that, for a given

E > 0, the norm of the transfer matrix M0(x, y) is uniformly bounded in x, y. We are
in the same situation if we look at the transfer matrix for −u′′ + V0u = Eu, where V0 is
periodic and E is an interior point of one of the stability intervals for − d2

dx2 +V0. Thus, all
our results for sparse potentials have suitable extensions to “mainly” periodic potentials.
We illustrate this with

Example 5. Let V0 be real and periodic, xn = e2n3/2
and

V (x) =
{

n |x− xn| < 1
2 , n = 1, 2, . . .

V0(x) otherwise.

Then − d2

dx2 + V on L2(0,∞) with any boundary condition at x = 0 has purely singular
continuous spectrum in the interior of the stability intervals of − d2

dx2 + V0.

The above methods can easily be applied to Jacobi matrices h on &2(0,∞) defined by

(hu)(0) = u(1) + v(0)u(0),

(hu)(x) = u(x− 1) + u(x+ 1) + v(x)u(x), x = 1, 2, . . .

As an example, we give

Theorem 4.1. Let hn → ∞, xn be integers with xn+1 > xn → ∞ and

v(x) =
{

hn x = xn, n = 1, 2, . . .
0 otherwise.

Furthermore, let &n = xn+1 − xn satisfy

&n ≥
n∏

j=1

(hj + ln j), n = 1, 2, . . . (8)

Then, the Jacobi matrix h is purely singular continuous in (−2, 2).
Proof. σac(h) = ∅ follows from hn → ∞ and [14].
The transfer matrix to solutions of

u(x− 1) + u(x+ 1) + v(x)u(x) = eu(x), x = 1, 2, . . .

is given by

M(x) =
x∏

j=1

T (j)

where

T (j) =
(
0 1
−1 e− v(j)

)
.
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By an analog to Theorem 2.2, it suffices to show that for e ∈ (−2, 2)
∞∑

x=1

1
‖M(x)‖2

=∞. (9)

We have
‖T (xn)‖ ≤ hn + |e|+ 1

and, diagonalizing
( 0 1

−1 e

)
for e ∈ (−2, 2),

∥∥∥∥
xn+1−1∏
j=xn+1

T (j)
∥∥∥∥ ≤ C(e)

uniformly in n. Thus,

‖M(x)‖ ≤ C(e)n+1
n∏

j=1

(hj + |e|+ 1)

for x ∈ (xn, xn+1). (9) follows from this and (8).
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