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Abstract. Examples are constructed of Laplace-Beltrami operators and graph Laplacians
with singular continuous spectrum.

§1. Introduction

In previous papers in this series [6,3,5,2,8], we have explored the occurrence of singular
continuous spectrum, particularly for Schrödinger operators and Jacobi matrices. In this
note, we’ll construct examples of graphs whose Laplacians and Riemannian manifolds
whose Laplace-Beltrami operators have singular continuous spectrum. The idea will be to
take models with considerable symmetry which reduce to Jacobi matrices or Schrödinger
operators, and so reduce these two types of models to known cases.

The analysis is simple, almost trivial. However, since these are the first examples I know
of graph Laplacians or Laplace-Beltrami operators with singular continuous spectrum, it
seems worthwhile to make it explicit.

§2. Graph Laplacians

By a graph G = (V, I), we will mean a countable set of vertices V , and an incidence
matrix Iij of zeros and ones obeying

(i) Iij = Iji; Iii = 0.
(ii) Ni = {j | Iij = 1} is finite for each i. Let r(i) = #(Ni) =

∑
j
Iij , the coordination

number of r.
(iii) sup

i
r(i) <∞.
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The graph is called regular if r(i) is a constant.
Given a graph G, we can define two bounded operators on 
2(V ) =

{{u(n)}n∈V |∑
n∈V

|u(n)|2 <∞}
:

(L1u)(i) =
∑

j

Iiju(j) =
∑
j∈Ni

u(j)

(L2u)(i) =
∑

j

Iij(u(i)− u(j)) =
∑
j∈Ni

(u(i)− u(j)).

L1 and L2 define quadratic forms by

(u,L1u) =
∑
ij

Iij u(i)u(j)

(u,L2u) =
1
2

∑
ij

Iij |u(i)− u(j)|2.

They are related by
L2 = R− L1

where (Ru)(i) = r(i)u(i). In particular if G is regular, L1 and L2 differ by a constant and
sign and their spectral types are the same.

Our first example is a ladder with missing rungs. Let V = Z×Z2 = {(n, α) | n ∈ Z, α =
0 or 1}.

Figure 1. A ladder with missing rungs

The incidence matrix will depend on the choice of a single sequence s ∈ ZZ2 ; that is,
s = {sn}n∈Z with each sn 0 or 1. Given s, we define an incidence matrix so Iij = 1 if and
only if one of

(1) i = (n, α) j = (n ± 1, α)
(2) i = (n, 0) j = (n, 1) or vice-versa where sn = 1.

Thus, as Figure 1 shows, the graph is a ladder with those rungs with sn = 0 missing.
Let X = ZZ2 , a compact metric space in the product topology (and so complete). s(m) →

s(∞) if and only if s(m)
n → s∞n for each n. For each s ∈ X, we can define L1(s), L2(s), the

two Laplacians on 
2(V ). We say a set S ⊂ X is generic if and only if S is a dense Gδ.
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Theorem 2.1. For a generic s ∈ X, L1(s) has purely singular continuous spectrum and
L2(s) has a spectrum with a non-zero purely singular component.

As a preliminary, we’ll need:

Lemma 2.2. Fix c �= 0. Given s ∈ X, let J(s) be the Jacobi matrix on 
2(Z):

(J(s)u) = u(n+ 1) + u(n− 1) + csnu(n).

For each fixed c, {s ∈ X | J(s) has spectrum [−2, 2]∪ [c− 2, c+2] and it is purely singular
continuous} is a dense Gδ.

Proof. Because a countable intersection of dense Gδ’s is again a dense Gδ (by the Baire
category theorem), we need only show that each of

(i) A1 = {s | [−2, 2] ⊂ spec(J(s)) and has no eigenvalues in [−2, 2]}
(ii) A2 = {s | [c− 2, c+ 2] ⊂ spec(J(s)) and has no eigenvalues in [c− 2, c+ 2]}
(iii) A3 = {s | J(s) has no a.c. spectrum}

is a dense Gδ. For writing J = J0 + V where (V u)(n) = csn(u(n)), and noting spec(V ) ⊂
{0, c} and ‖J0‖ ≡ 2, we have spec(J(s)) ⊂ [−2, 2] ∪ [c− 2, c+ 2].

Each of the sets in (i)–(iii) is a Gδ. That this is so for point and a.c. spectrum is a
result of [6,7]. The argument that a given interval is in spec(A) on a Gδ is found in the
appendix.

To see (i) is dense, note that {s | sn = 0 for |n| large} ⊂ A1, and similarly, {s | sn =
1 for |n| large} ⊂ A2. But those sets are dense.

For A3, put any non-trivial product measure on X. By the result of Carmona, Klein,
and Martinelli [1], for a.c. s ∈ X with respect to this measure, J(s) has pure point spectrum
and, in particular, has a.c. spectrum. But the support of the product measure is all of X,
so A3 is dense.

Proof of Theorem 2.1. We’ll use reflection symmetry about the middle of the ladder. Let
H± = {u ∈ 
2(V ) | u(n, 1) = ±u(n, 0)} and let W± : 
2(Z) → H± by

(W±f)(n, 0) = f(n)
/√

2

(W±f)(n, 1) = ±f(n)/√2.

Then H± is left invariant by both L1(s) and L2(s) and

W−1
± L1(s)W± = J(±s)
W−1

+ L2(s)W+ = 2− J(0)
W−1

− L2(s)W− = 2− J(−2sn).

The result now follows by the lemma.

Note that L2(s) always has an a.c. component of the spectrum since J(0), the free
Schrödinger Laplacian, has a.c. spectrum. This argument also shows that generically
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spec(L1(s)) = [−3, 3] and spec(L2(s)) ≡ [0, 6] with a.c. spectrum on [0, 4] and singular
spectrum on [2, 6].

We were able to find a cheap trick to reduce the first example to the well-studied Jacobi
case. That will not be true in the second example, and so we’ll settle for a partial result.
A complete analysis should be possible (I expect purely singular continuous spectrum for
a generic s) but will require some effort to extend Carmona et al. [1] to this example.

Our purpose in this second example is to find a regular lattice whose Laplacian has
singular spectrum; the coordination number in Example 1 is sometimes 2 and sometimes
3. Our lattice will again depend on s ∈ ZZ2 and again be a basic ladder whose rungs are of
the two types shown in Figure 2 if sn = 0 or sn = 1.

.

Figure 2. Rungs in Example 2

The corresponding lattices are regular with coordination number 3, so we’ll only look
at L1, which we’ll call L(s). As before, the spaces H± are invariant and we’ll look only
at the operator on H− (call the restriction of L(s) to H−, B(s)). The space on which
B(s) acts is pairs of function u : Z → C and ϕ : {n | sn ≡ 1} ≡ Y (s) → C with∑
n∈Z

|u(n)|2 + ∑
n∈Y (s)

|ϕ(n)|2 <∞, and with

(B(s)u)(n) = u(n− 1) + u(n+ 1)− u(n) if sn = 0

= u(n+ 1) + u(n− 1) + ϕ(n) if sn = 1

(B(s)ϕ)(n) = u(n).

We want to compute spec(B(s)) for the two degenerate cases sn ≡ 0 and sn ≡ 1. If
sn ≡ 0, we get a Jacobi matrix whose spectrum is well known.
B(sn ≡ 0) has spectrum [−3, 1] with purely a.c. spectrum. For sn ≡ 1, one looks at

plane waves u(n) = ceikn, in which case ϕ(n) = cE−1eikn and E obeys E = 2 cos k+E−1,
which leads to

E = cos k ±
√
1 + cos2 k .

It is not hard to see that these continuous eigenfunctions are complete and so

spec(B(sn ≡ 1)) = [−1−
√
2, 1 +

√
2 ] and is purely absolutely continuous.
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Theorem 2.3. For a generic s ∈ X, B(s) contains [−3,−1−√
2 ) in its spectrum and the

spectrum is purely singular continuous there.

Proof. The spaces on which B(s) act are s-dependent, but there is still a natural sense in
which s(n) → s(∞) means (B(s(n))− z)−1 → (B(s(∞))− z)−1 strongly (apply to vectors
of compact support) and this notion is such that the results of [6,7] still apply. Let

A1 = {s | [−3,−1−√
2 ) ⊂ spec(B(s)) and has no point eigenvalues there}

A2 = {s | B(s) has no a.c. spectrum on [−3,−1−
√
2 )}.

Each is a Gδ by [6,7].
We claim that if sn ≡ 0 near infinity, s ∈ A1; but if sn ≡ 1 near infinity, then s ∈ A2.

This implies A1 and A2 are dense so their intersection is a dense Gδ and Theorem 2.3 is
proven.

The claim for sn ≡ 0 near infinity follows by using plane waves near infinity as a Weyl
sequence (to see that [−3, 1] ⊂ spec(B(s))) and then noting that eigenvalues must have
compact support and then be zero by a simple argument. The claim for sn ≡ 1 near
infinity follows because B(s) differs from B(sn ≡ 1 all n) by a finite rank operator, so
spec(B(s)) is thus discrete outside [−1−√

2, 1 +
√
2 ].

§3. Some Laplace-Beltrami Operators

In this section, we’ll find metrics on R×S1 =M for which the Laplace-Beltrami operator
has purely singular spectrum. Use coordinates (x, θ) on M and consider metrics of the
form dx2 + f(x)2 dθ. We’ll consider 1 ≤ f(x) ≤ 2 and is C∞ with the metric topology
associated to

{
sup

|x|≤N

‖dmf
dxm ‖∞

}
m=0,1,...
N=1,2,...

. Denote by X the set of such f ’s. Then:

Theorem 3.1. For a generic f in X, the Laplacian operator Hf has spectrum [0,∞) and
is purely singular continuous.

Proof. By a simple calculation (see, e.g., [4]), under the decomposition L2(R × S1) ∼=
∞⊕

n=−∞
L2(R ) (with g(z) =

∑
gn(x)einθ) Hf

∼= ⊕Hf ;n and Hf ;n is unitarily equivalent to

the operator Lf ;n on L2(R , dx) with

Lf ;n = − d
2

dx2
+ V (x) +

n2

f2(x)
≡ − d

2

dx2
+ Vn(x)

where

V (x) =
1
4

(
f ′

f

)2

+
1
2

(
f ′

f

)′
.

We’ll show for each n that Lf ;n generically has purely singular spectrum on [n
2

4 ,∞) and
that implies the full result. If f ≡ 2 near infinity, Lf ;n is n2

4 plus a Schrödinger operator
with potential of compact support. This operator has no point spectrum in [n

2

4 ,∞). Since
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Lf ;n=0 ≥ 0 and f ≤ 2, in general Lf ;n ≥ n2

4 . Moreover, the functions f ≡ 2 near ∞ are
dense in the topology on X. Thus, generically Lf ;n has spectrum [n

2

4 ,∞) with no point
spectrum. We’ll need to show that generically there is no a.c. spectrum either.

Consider a metric of the form f(x) = α + λ cos(kx) where 1 < α < 2 and λ is small.
Then

Vn(x) =
n2

α2
+ λ

[
k2

2α
− n

2

α2

]
cos(kx) + 0(λ2).

By the standard theory of periodic Schrödinger operators, for λ small, − d2

dx2 +Vn(x) has a
gap of order λ about every n2

α2 +
(

k
2

)2. If f(x) ≡ α+ λ cos(kx) near infinity, − d2

dx2 + Vn(x)
has only point spectrum in that interval. Thus, for any E0 ∈ [n

2

4 ,∞), we can find δ and
a dense set of f ’s with no a.c. spectrum in (E0 − δ,E0 + δ). By a compactness argument,
we conclude that generically there is no a.c. spectrum.

Is it true that for any non-compact manifold, a generic metric leads to purely singular
continuous spectrum?

Appendix: G ’s and the Spectrum of Operators

Recall that a regular space of operators is a family of self-adjoint operators indexed
by x ∈ X a complete metric space so that xn → x in the metric topology implies that
Axn → Ax in strong resolvent sense.

Our purpose here is to prove that

Theorem A.1. Let [a, b] be a fixed closed interval and X a regular space of operators.
Then {x | [a, b] ⊂ spec(Ax)} is a Gδ.

Let {ϕn}∞n=1 be an orthonormal basis for the underlying Hilbert space and let dµn(x)
be the spectral measure defined by

(ϕn, e
−itAϕn) =

∫
e−ixE dµn(E)

and dµ =
∞∑

n=1
2−n dµn. Then spec(A) = supp(dµ) so Theorem A.1 is a consequence of

Lemma A.2. Let MR
+,1 denote the family of probability measures on [−R,R] ⊂ R . Fix

[a, b] ⊂ [−R,R]. Then {µ ∈ MR
+,1 | [a, b] ⊂ supp(dµ)} is a Gδ in the topology of weak

convergence.

Remark. Thus, if S ⊂MR
+,1 is closed, S ∩ {µ | [a, b] ⊂ supp(dµ)} is a Gδ in S.

Proof of lemma. Let In be a counting of open intervals In ⊂ [a, b] with rational endpoints.
Let fn(x) = dist(x,R\In). Then [a, b] ⊂ suppµ if and only if for all n,

∫
fn(x)dµ > 0,

that is,

{µ | [a, b] ⊂ supp(dµ)} =
∞⋂

n=1

{
µ |

∫
fn(x)dµ > 0

}
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is clearly a Gδ.

Remark. Using lim
ε↓0

1
π

d∫
c

ImFµ(x+iε)dx = 1
2 µ((c, d))+

1
2µ([c, d]) with Fµ(z) =

∫
dµ(x)/(x−

z), it is easy to show that {µ | [a, b] ∩ suppdµ = ∅} is also a Gδ.
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