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Abstract

We give new examples of discrete Schrödinger operators with poten-
tials taking finitely many values that have purely singular continuous spec-
trum. If the hull X of the potential is strictly ergodic, then the existence
of just one potential x in X for which the operator has no eigenvalues
implies that there is a generic set in X for which the operator has purely
singular continuous spectrum. A sufficient condition for the existence of
such an x is that there is a z ∈ X that contains arbitrarily long palin-
dromes. Thus we can define a large class of primitive substitutions for
which the operators are purely singularly continuous for a generic subset
in X . The class includes well-known substitutions like Fibonacci, Thue-
Morse, Period Doubling, binary non-Pisot and ternary non-Pisot. We
also show that the operator has no absolutely continuous spectrum for all
x ∈ X if X derives from a primitive substitution. For potentials defined
by circle maps, xn = 1J (θ0 + nα), we show that the operator has purely
singular continuous spectrum for a generic subset in X for all irrational
α and every half-open interval J .

1 Introduction

Discrete Schrödinger operators with potentials taking values in a finite set A ⊂
R have interesting spectral properties. Topological spaces of such operators are
obtained by choosing a compact shift-invariant subset X of the compact metric
space AZ. If T denotes the left shift on X, the dynamical system (X, T ) is called
a subshift. Every point x ∈ X defines an operator on l2(Z) by

(L(x)u)n = un+1 + un−1 + xnun.
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In X = AZ, any spectral type can occur: the dense set of periodic operators in
AZ have purely absolutely continuous spectrum; for almost all x with respect
to any non-trivial product measure on X = AZ the spectrum is pure point
[7]. Hence, by the wonderland theorem [22], there exists a generic set in AZ

for which L(x) has purely singular continuous spectrum. The shift on AZ has
many invariant measures and there are many orbits which are not dense. It is
therefore convenient to consider the case of a compact shift-invariant X ⊂ AZ

that is minimal (i.e., the set of translates of every x ∈ X is dense in X) and
uniquely ergodic (i.e., there exists only one T -invariant measure). A system
(X, T ) that is both minimal and uniquely ergodic is called strictly ergodic. Two
common methods for generating strictly ergodic subshifts are the following:

• A primitive substitution, which is a map S from the alphabet A to the set of
finite words A∗, defines a fixed point z+ ∈ AN. Taking any z ∈ AZ satisfying
zn = z+

n for n ∈ N and defining XS as the set of accumulation points of
{Tnz | n ∈ N} gives a strictly ergodic system.

• A circle map θ �→ θ + α with irrational α together with a countable union
J of half-open intervals and an initial point θ0 ∈ T1 defines a sequence zn =
1J(θ0 + nα). The orbit closure XJ = X(J, θ0, α) is independent of θ0 and is a
strictly ergodic dynamical system (see [13] Proposition A.1.)

We do not know of any strictly ergodic aperiodic X ⊂ AZ for which some L(x)
has a spectral type different from purely singular continuous. The aim of this
paper is to extend the set of examples that have purely singular continuous
spectrum. We therefore need to exclude absolutely continuous spectrum and
eigenvalues.

The belief that singular continuous spectrum is the rule for such aperiodic op-
erators is supported by Kotani’s theorem [17] which says that almost all L(x)
have no absolutely continuous spectrum. Although the spectrum of L(x) does
not depend on x ∈ X if X is strictly ergodic [13], it does not follow that there
is no absolutely continuous spectrum for all x ∈ X. If, however, the Lyapunov
exponent exists for all x ∈ X and is independent of x, then indeed no L(x) has
absolutely continuous spectrum as we will see below. In [13] it is shown that
the Lyapunov exponent exists uniformly if X is defined by a primitive substi-
tution. Thus we exclude absolutely continuous spectrum for all operators L(x)
generated by substitutions.

In order to get singular continuous spectrum one has also to exclude eigenvalues.
This was done by a Gordon-type criterion for circle maps [10] and by using the
so-called trace map in [8, 24, 25, 4, 1, 11, 2, 5] for circle maps and substitutions.
In this paper we note that the criterion of Jitomirskaya and Simon [15] can be
used for sequences that we call strongly palindromic. A strongly palindromic
sequence contains palindromes wi of length li centered at mi → ∞ such that li
grows exponentially fast with respect to mi. We show that if a sequence x ∈ X
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contains arbitrary large palindromes (we call this palindromic), then there is an
uncountable set in X which is strongly palindromic. Many kinds of sequences
defined by circle maps and substitutions are palindromic. In addition, we show
that the existence of just one x ∈ X for which L(x) has no eigenvalues implies
that there is a generic set in X for which L(x) has purely singular continuous
spectrum.

Our work gives new examples of operators with purely singular continuous spec-
trum for both substitutions and circle maps.

For circle maps, Delyon and Petritis [10] have shown absence of eigenvalues
for almost all α, all intervals [0, β) and almost every θ0 . They do not exclude
eigenvalues for all irrational α. Eigenvalues have been excluded for all irrational
α in the case β = α by Bellissard et al. [4], but only for θ0 = 0. This was proved
independently by Sütő [25] in the “golden case” α = (

√
5−1)/2. We prove here

that for all irrational α and all intervals J = [0, β), there is a generic set in XJ

for which L(x) has purely singular continuous spectrum.

All papers on Schrödinger operators with potentials defined by primitive sub-
stitutions [1, 2, 11, 5] exclude eigenvalues for just one x; [2, 5] claim that the
spectrum is a Cantor set of Lebesgue measure 0. We get purely singular con-
tinuous spectrum for a generic set in XS for a large class of substitutions. Only
Bovier and Ghez [5] claim to exclude eigenvalues for a class of substitutions.
Our class of substitutions contains all but one of the examples (the “circle se-
quence”) given in [5] and the Bovier-Ghez class does not contain the “period
doubling” and the “Binary-Non-Pisot” substitutions, which are contained in
ours. (It should be noted, however, that the results in [2, 5] do not apply to
the sequences stated in those papers, but to different ones (see the erratum [6])
that are not necessarily in XS .)

2 Palindromic sequences

Let A be a finite set called alphabet and A∗ the set of (finite) words w1w2 · · ·wn

with wi ∈ A. A word w ∈ A∗ is called a palindrome if it is the same when read
backwards. The empty word is considered a palindrome. An element x ∈ AZ

is called palindromic if x contains arbitrarily long palindromes. We say that a
word w is centered at (n + m)/2 in x if w = xn · · ·xm.

The shift T on AZ is defined by T (z)n = zn+1. The orbit Orb(z) of z ∈ AZ is
the set {Tnz}n∈Z. The closure of Orb(z) in the product topology is called the
orbit closure of z and is denoted by Xz . A compact shift-invariant subset X of
AZ is called minimal if Xz = X for all z ∈ X.

If X is minimal then every word occuring in some y ∈ X occurs in all x ∈
X. Thus it makes sense to speak of palindromic sets X ⊂ AZ, compact
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shift-invariant minimal sets containing one (and therefore only) palindromic
sequences. Similarly, X is called aperiodic if the elements in X are aperiodic.

Define x ∈ AZ to be strongly palindromic, if there exists for every B > 0 a
sequence wi of palindromes of length li centered at mi → ∞ such that eBmi/li →
0. If x is strongly palindromic then it is clearly palindromic.

Proposition 2.1 If an aperiodic minimal set X ⊂ AZ is palindromic, then it
contains uncountably many strongly palindromic sequences.

Proof. Let {wi}∞i=1 be a sequence of palindromes of length li → ∞ that occur
in the sequences in X. We will construct sequences yn ∈ AZ such that
1) yn is equal to one of the wi on an interval In containing 0;
2) In ⊂ In+1 and every m ∈ Z is eventually in these intervals;
3) yn+1 is equal to yn on In;
4) for every yn, there are two possibilities for yn+1 that are different on the
intersection of the intervals where they are equal to one of the wi.
Clearly, every such sequence yn converges to a different y ∈ X. Since there
are infinitely many choices to be made, there are uncountably many different
limit points. Conditions will be imposed to make sure that the limit points are
strongly palindromic.

Choose B and a sequence of integers mi such that mi → ∞ and eBmi/li → 0 as
i → ∞. For every word w there is a d(w) ∈ N such that in every x ∈ X there
occurs a copy of w in every interval of length d(w) (see, e.g., [21], p. 71).

Let yn be equal to wjn on an interval In of length ljn containing 0. We show
how two choices arise for yn+1. There exists an integer in+1 such that d(wjn) <
min+1/2. This means there is a copy of wjn in each of the first two subwords of
length min+1/2 to the left of the center of each wj with j ≥ in+1. There exists a
jn+1 ≥ in+1 such that wjn+1 is not periodic with any period less than or equal
to min+1 over an interval of length ljn+1 −min+1 , for otherwise X would contain
a periodic sequence by minimality. The two occurrences of wjn in those first two
subwords to the left of the center of wjn+1 give the two possibilities for yn+1.
Denote the two possibilities by z and z′. Let I and I′ denote the intervals on
which z and z′ are equal to wjn+1 , respectively.

We are left to show that z and z′ differ on I ∩ I′. Note that the length of I ∩ I′

is at least ljn+1 −min+1 and that z′ on I ∩ I′ is equal to z translated by at most
min+1 . Now suppose z and z′ are equal on I ∩I′. Then wjn+1 would be periodic
with period at most min+1 over a length of at least ljn+1 −min+1 . But jn+1 was
chosen such that this does not happen.

Note that each limit point of the yn must be strongly palindromic because
ljn ≥ lin and because the center of wjn is within distance mjn of 0. ✷
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3 Substitution sequences

A substitution is a map S : A �→ A∗; it will be extended to a map A∗ �→ A∗

and AN �→ AN by concatenation, that is, S(a1a2 · · ·an) = S(a1)S(a2) · · ·S(an).
A substitution S is called primitive if there exists a k such that for all a ∈ A
the word Sk(a) contains at least one copy of every symbol. Without loss of
generality, one can assume that there exists a ∈ A such that S(a) starts with
a (see [13]). Iterating S on a then gives a fixed point z+ ∈ AN. Let z be any
element in AZ satisfying zn = z+

n for n ∈ N. The substitution dynamical system
(XS , T ) is now defined by

XS = {x ∈ AZ
∣
∣ x = lim

j→∞
Tnjz and nj → ∞} .

It is possible to generate the sequences in XS directly from the substitution
(see, e.g., [9, 12]). The system (XS , T ) is strictly ergodic (see, e.g., [21]). A
substitution S is called palindromic if XS is palindromic.

We say that a primitive substitution S is in the class P if there exists a palin-
drome p and for each b ∈ A a palindrome qb such that S(b) = pqb for all b ∈ A.
We allow p to be the empty word; if p is not the empty word then qb is allowed
to be the empty word.

Lemma 3.1 Class P substitutions are palindromic.

Proof. We show first by induction that if w is a palindrome, then S(w) = pu
with a palindrome u. We can write w = bvb with some b ∈ A and some
palindrome v. We have S(w) = S(b)S(v)S(b) = pqbS(v)pqb. By induction, S(v)
is of the form pu with some palindrome u. We get S(w) = pqbpupqb which is
of the form pũ with palindrome ũ. All words Sk(a) occur in all x ∈ XS , so the
sequences contain arbitrarily long palindromes. ✷

Corollary 3.2 If S is class P , then there are uncountably many elements in
XS that are strongly palindromic.

Proof. Apply 2.1 and 3.1. ✷

Remarks. 1) It is sufficient that some power of S is of class P in order that S
is palindromic.
2) A subclass of class P are substitutions for which S(b) is a palindrome for all
b ∈ A. Just take for p the empty palindrome.
3) Clearly, we could include into class P substitutions of the form S(b) = qbp.
We do not know whether all palindromic XS arise from substitutions that are
in this extended class P .
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4) Not all substitutions are palindromic, as the following example shows:

S : a �→ abbaaabbba, b �→ ab .

The word bbaaabbb occurs in the sequences but the word bbbaaabb does not
occur.
5) The set of strongly palindromic sequences is invariant and therefore has either
measure 0 or 1; but which we do not know. We cannot even exclude that all x
are strongly palindromic.

Here are some examples of substitutions in class P that have appeared in the
literature on Schrödinger operators:

Thue-Morse: S2 : a �→ abba, b �→ baab [18, 1, 11].
Fibonacci: S : a �→ ab, b �→ a [16, 20, 8, 24, 25, 4, 3, 5].
Period doubling: S : a �→ ab, b �→ aa [18, 2, 3, 5].
Binary non-Pisot: S : a �→ ab, b �→ aaa [3, 5].
Ternary non-Pisot: S : a �→ c, b �→ a, c �→ bab [3, 5].

Remarks. 6) The papers [2, 3, 5] implicitly consider the set Xz where z is
the symmetric extension of z+: for n ∈ N, z−n−1 = z+

n and zn = z+
n . This

is not natural. The system (Xz , T ) is, in general, neither uniquely ergodic nor
minimal.
7) We do not know if the Rudin-Shapiro sequence (rn = (−1)fn , where fn is
the number of pairs 11 in the binary expansion of n) is palindromic. Computer
experiments suggest it is. A Schrödinger operator with potential based on the
Rudin-Shapiro sequence has appeared in [18].

4 Sequences defined by circle maps

Consider the irrational rotation θ �→ θ + α on the circle T1 = R/Z. For a half-
open interval J = [0, β) ⊂ T1 and a point θ0 in T1, we consider the sequence
z = z(θ0) given by

zn = 1J(nα + θ0) ∈ {0, 1}Z .

We denote by XJ the compact subset of AZ obtained by taking the closure of
the orbit of z(θ0). It is independent of θ0 and the system (XJ , T ) is strictly
ergodic. This remains true if the half-open interval J is replaced by a countable
union of half-open intervals [13].

Lemma 4.1 For all irrational α and every half-open interval J there exists
θ0 ∈ T1 such that z(θ0) is palindromic.

Proof. If β �= 2kα, then the orbit of θ0 = β/2 is disjoint from {0, β}. If
β = 2kα (mod 1), the orbit of θ0 = (β + 1)/2 is disjoint from {0, β}. By
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symmetry, these orbits are even and therefore palindromic if they are disjoint
from {0, β}. ✷

Remarks. 1) The lemma can be generalized. Suppose J is a symmetric count-
able union of half-open intervals with a point of symmetry θ0. Then if one of
the orbits of the points θ0 + (i+ jα)/2 (i, j ∈ {0, 1}) does not hit the boundary
of J , then that orbit is even, and XJ is palindromic.
2) Another generalization of the lemma can be obtained by taking an ergodic
group translation θ �→ θ + α on Tν and taking J = [0, β1) × . . .× [0, βν). The
sequence zn = 1J(θ + nα) generates a strictly ergodic set X independent of θ
as in the case ν = 1. This set X is palindromic: it can be shown (by induction
in ν) that one of the orbits starting at θ0 = (β + v)/2, where vi ∈ {0, 1}, does
not hit the boundary of J .
3) There are (in cardinality) more sequences generated by circle maps than se-
quences generated by substitutions: the length of the interval [0, β) measures
the average frequency of occurrences of 1 in the sequence zn. In this way one
obtains uncountably many different sequences for different β. On the other
hand, there are only countably many substitutions.
4) The circle T1 is embedded in XJ by z(θ) = 1J(nα+θ) but not every sequence
z ∈ XJ is of this form.

5 The point spectrum

In the preceding three sections A was a finite set of symbols. In the remainder
of the paper we map the elements to A to real numbers and again denote the
image by A. So from now on sequences x ∈ AZ take values in R. Every x ∈ AZ

defines a discrete Schrödinger operator on l2(Z) by

(L(x)u)n = un+1 + un−1 + xnun .

Theorem 5.1 (Jitomirskaya-Simon) If x is strongly palindromic, then L(x)
has no eigenvalues.

Proof. The proof is essentially [15]. We give a proof in the appendix. ✷

Remarks. 1) Most (with respect to the product measure) sequences in AZ are
palindromic since almost all sequences contain all possible finite words. But
most sequences in AZ are not strongly palindromic since most sequences give
Schrödinger operators with Anderson localization [7] and strongly palindromic
sequences give operators without eigenvalues.
2) In the golden case treated in [25, 4] the sequence x is symmetric around 0.
The sequence in [11] is antisymmetric around 0. We do not know whether these
sequences are strongly palindromic, so we can not exclude eigenvalues for those
particular sequences, although in both cases X is palindromic.
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6 The absolutely continuous spectrum

Theorem 6.1 If the dynamical system (X, T ) has the property that the Lya-
punov exponent λx(E) = λ(E) of L(x) exists for all x ∈ X and is independent
of x ∈ X, then L(x) has no absolutely continuous spectrum for all x ∈ X.

Proof. For all E /∈ σ(L) or E ∈ σ(L(x)) with λ(E) > 0, there exist two
solutions u± ∈ RZ of Lu = Eu which are in l2(±N). By Kotani’s result
[17] and the Lyapunov assumption, this is the case for a set Y ⊂ R of full
measure that is independent of x. The vectors Φ±(n) = (u±(n + 1), u±(n))
satisfy AE(n)Φ±(n) = Φ±(n+ 1). If Φ+ �= Φ−, the Titchmarsh-Weyl functions
m±

E(n) = u±(n + 1)/u±(n) are different and real (but they may be infinite).
If Φ+ = Φ−, E is an eigenvalue. The resolvent (L − E)−1

nn = GE(n, n) of
L satisfies GE(n, n) = 1/(m+

E(n) − m−
E(n)) and is the Borel transform of the

spectral measure dken. The absolutely continuous part of dken is by Fatou’s
theorem given by Im(GE+i0(n, n)) = Im(1/(m+

E+i0(n) − m−
E+i0(n))), which is

zero for all E ∈ Y which are not eigenvalues. ✷

Remark. A different proof can be obtained by using a result of Berezanskii
(see [23]): if µφ is any spectral measure of any discrete Schrödinger operator
L then for µφ-almost every E ∈ R there exist polynomially bounded solutions
of Lu = Eu. If there is an x ∈ X such that L(x) has absolutely continuous
spectrum then it has an absolutely continuous spectral measure µφ supported on
a set A of positive Lebesgue measure. For µφ-a.e. E ∈ A — which is equivalent
to Lebesgue a.e. E — the equation L(x)u = Eu has polynomially bounded
solutions. So λx(E) = 0 for those E. But we assumed that λx(E) does not
depend on x and it is strictly positive Lebesgue almost everywhere by Kotani
[17]. Thus the assumption that L(x) has absolutely continuous spectrum leads
to a contradiction.

Corollary 6.2 If (XS , T ) is a substitution dynamical system, then L(x) has no
absolutely continuous spectrum for all x ∈ XS .

Proof. ¿From [13] we know that substitution sequences give operators with
Lyapunov exponents independent of x ∈ XS . ✷

Remarks. 1) Another way to exclude absolutely continuous spectrum for all x
is to show that the spectrum has Lebesgue measure zero and is independent of
x. This was done in [4] for circle maps with α = β. Circle maps give spectrum
independent of x for all values of α and β [13]. Kotani’s theorem [17] does not
imply that the spectrum has Lebesgue measure 0; a singular spectrum can have
positive Lebesgue measure. We do not know whether the Lyapunov exponent
is independent of x for sequences generated by circle maps.
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2) One might guess that if (X, T ) is a strictly ergodic dynamical system and
V : X → R is continuous, then the absolutely continuous spectrum of the
operator (L(x)u)n = un+1 + un−1 + V (Tnx)un is independent of x ∈ X. We
have shown that this is the case for dynamical systems (XS , T ) obtained by
substitutions if V (Tnx) = xn. It is also true for substitution dynamical systems
if V (x) only depends on x−l · · ·xl, because then the Lyapunov exponent remains
independent of V (x) by Proposition 5.2 in [13]. It was already known for circle
maps with α = β [4] and V (Tnx) = xn.
3) Assume that (X, T ) is strictly ergodic, that λx(E) exists for all x ∈ X and is
independent of x and that there exists x ∈ X such that L(x) has no eigenvalues.
Then it follows for example from the theorem of de la Vallée Poussin that the
spectrum of L(x) is the closure of {E | λx(E) = 0}. We expect (but can’t
prove) that the spectrum of L(x) is equal to {E | λx(E) = 0} from which it
would follow that it is a Cantor set of zero Lebesgue measure. The spectrum
has been shown to be equal to the set {E | ∫

dµ(x)λx(E) = 0}, where the
integration is with respect to the invariant measure on X, for circle maps with
α = β in [4]. It has been shown that spec(L(v)) = {E | λv(E) = 0} for a
sequence v defined by the Period Doubling substitution in [2] and this result
was extended to a class of substitutions including Period Doubling in [5].

7 The singular continuous spectrum

Theorem 7.1 (Simon) Let (X, d) be a complete metric space of selfadjoint
operators on a Hilbert space H such that the metric d is stronger than the
strong resolvent convergence. Then both of the sets {A ∈ X | σpp = ∅}, {A ∈
X | σac = ∅} are Gδ’s, countable intersections of open sets.

See [22].

Corollary 7.2 Let X ⊂ AZ be strictly ergodic. If there is one x ∈ X such that
L(x) has no eigenvalues, then there exists a generic subset in X on which L is
purely singular continuous.

Proof. By Kotani [17] there is a set of full measure with no absolutely continuous
spectrum. By strict ergodicity, this set is dense and by Theorem 7.1 it is a
dense Gδ. Since Orb(x) is dense by minimality, there is dense set on which L
has no eigenvalues. Again, this set is a dense Gδ by Theorem 7.1. Since X is a
complete metric space, the intersection of two dense Gδ’s is a dense Gδ by the
Baire category theorem. ✷

By 5.1, 2.1, 3.1 and 4.1 we get:
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Corollary 7.3 If X is strictly ergodic and palindromic, then there is a generic
Y ⊂ X such that for x ∈ Y the operator L(x) has purely singular continuous
spectrum.

Corollary 7.4 (Case of substitutions) For substitutions of class P , there
exists a generic set Y in XS such that for x ∈ Y the operator L(x) has purely
singular continuous spectrum.

Corollary 7.5 (Case of circle maps) For all irrational α and every half-
open interval J , there exists a generic set Y in XJ such that for x ∈ Y the
operator L(x) has purely singular continuous spectrum.

Remark. Strictly ergodic palindromic systems other then those defined by
circle maps and class P substitutions can be constructed from so-called Toeplitz
sequences [14, 19].

8 Appendix: The criterion of Jitomirskaya and

Simon

For the convenience of the reader we repeat the proof of the theorem of Jito-
mirskaya and Simon [15] for the case of potentials taking finitely many values.

Theorem 8.1 (Jitomirskaya-Simon) Let x ∈ AZ , where A ⊂ R is finite.
Consider the operator on l2(Z) given by (Lu)(n) = u(n+1)+u(n−1)+xnu(n).
Suppose there is a sequence of intervals Ii of length |Ii| centered at mi such that
x is a palindrome on Ii, 0 ∈ Ii and |Ii| → ∞ as i → ∞. Then there exists a
constant C depending only on A such that L has no eigenvalues if Cmi/|Ii| → 0
as i → ∞.

Proof. We can assume that |Ii| is either odd or even for all i. We prove the
theorem for the case that |Ii| is odd and then indicate what changes if it is even.
So first let Ii = {mi − li, mi + li}.
Assume Lu = Eu with ||u|| = 1. Define ui(n) = u(2mi−n), the vector reflected
at mi. Let W (u, ui)(n) = u(n + 1)ui(n) − ui(n + 1)u(n) be the Wronskian
of u and ui. Let Φ(n) = (u(n + 1), u(n)) and Φi(n) = (ui(n + 1), ui(n)) and
u±

i = u± ui and Φ±
i = Φ±Φi.

Step 1. W (n) := W (u, ui)(n) is constant for n ∈ Ii.
Proof. Compute using u(n + 1) = −u(n − 1) + (E − xn)u(n) and ui(n + 1) =
−ui(n − 1) + (E − xn)ui(n)

W (n)− W (n− 1) = (x2mi−n − xn)u(2mi − n)u(n) = 0 .
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Step 2. |W (mi)| ≤ 2/|Ii| = 2/(2li + 1).
Proof.

∑
n |W (n)| ≤ 2 by Schwarz inequality and ||u|| = ||ui|| = 1. Use Step 1.

Step 3. Either (i) |u+
i (mi)| ≤ 2|Ii|−1/2 or (ii) |u−

i (mi + 1)| ≤ 2|Ii|−1/2.
Proof. Since u−

i (mi) = 0, one has

u+
i (mi)u−

i (mi + 1) = W (u−
i , u+

i )(mi) = 2 ·W (u, ui)(mi) = 2 ·W (mi)

Use Step 2.

Step 4. There exists a constant C1 such that ‖Φ±
i (mi)‖ ≤ C1|Ii|−1/2 holds for

all i, with either the sign + or −.
Proof. In case (ii), we have ||Φ−

i (mi)|| = ||(u−
i (mi + 1), 0)|| ≤ 2|Ii|−1/2. As-

sume now case (i). We have ui(mi) = u(mi) and ui(mi − 1) = u(mi + 1),
rsp. ui(mi + 1) = u(mi − 1) so that u+

i (mi − 1) = u+
i (mi + 1). Therefore

u+
i (mi+1) = 1

2
(E−xmi)u

+
i (mi) so that ‖Φ+(mi)‖ ≤ C ′

1|u+(mi)| ≤ C1 · |Ii|−1/2.

Step 5. For some C > 0, ‖Φ±
i (0)‖ ≤ CmiC1 · |2l1 + 1|−1/2, for either sign + or

sign −.
Proof. There exists C such that ||A(n)|| ≤ C for all transfer matrices A(n), for
all E in the spectrum of L. Denote by Ai the transfer matrix that maps vectors
at mi to vectors at 0. In particular, because x is exactly symmetric on Ii,

AiΦ(mi) = Φ(0), AiΦi(mi) = Φi(0) .

Then also
Φ±

i (0) = AiΦ±
i (mi)

so that
||Φ±

i (0)|| ≤ CmiC1 · |2l1 + 1|−1/2 .

Step 6. Proof of the theorem.
By Step 5, ∣

∣‖Φ(0)‖ − ‖Φ(2mi)‖
∣
∣ ≤ ‖Φ±(0)‖ → 0

for suitable choices of + and − as i → ∞. Since ‖Φ(mi)‖ → 0 as mi → ∞
because u ∈ l2, it follows that Φ(0) = 0. But then u = 0, contradicting ‖u‖ = 1.

If Ii is even for all i we can put Ii := {mi − li, . . . , mi, mi + 1, . . . , mi + li + 1}.
Define ui(n) = u(2mi − n + 1), the at mi + 1/2 reflected vector. We have
x2mi−n+1 = xn on Ii.

Step 1 and Step 2 do not change.
In Step 3, the claim stays the same. Note that u−

i (mi) = 0 is no longer true in
general. However, the claim follows from

W (u−
i , u+

i ) = 2u+
i (mi)u−

i (mi + 1)
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(even with a factor 2 deleted), which is a consequence of u+
i (mi)u−

i (mi + 1) =
−u+

i (mi + 1)u−
i (mi).

Step 4. In case (ii) we take

‖Φ+
i (mi)‖ = ||(u+

i (mi + 1), u+
i (mi))|| ≤

√
2 · |u+

i (mi)|
since u+

i (mi) = u+
i (mi +1). Case (i) with a different C1 follows from u−

i (mi) =
−u−

i (mi + 1)

Step 5. Define Ai by AiΦ(mi) = Φ(0). Because x is symmetric on Ii, we have

AiA(mi)Φ(mi) = AiΦ(mi + 1) = Φ(2mi + 1) = Φi(0) .

Together
‖Φ±

i (0)‖ = ‖Φ(0)±Φi(0)‖ ≤ 2Cmi+1‖Φ±(mi)‖
for either the sign + or the sign −.

Step 6 is the same (replace Φ(2mi) by Φ(2m1 + 1)). ✷
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