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Abstract. For Sturm-Liouville operators on the half line, we show that the property of

having singular, singular continuous, or pure point spectrum for a set of boundary conditions
of positive measure depends only on the behavior of the potential at infinity. We also prove

that existence of recurrent spectrum implies that of singular spectrum and that “almost sure”

existence of L2-solutions implies pure point spectrum for almost every boundary condition.

The same results hold for Jacobi matrices on the discrete half line.

§1 Introduction
For Sturm-Liouville operators generated by − d2

dx2 +q on the half line [0,∞), we study the
dependence of spectral types on the boundary condition at 0 and on compactly supported
perturbations of the potential. In Weidmann [17], it was conjectured that the existence
of singular spectrum depends only on the behavior of the potential close to infinity. This,
strictly speaking, is not true (see [4,5]). However, we now prove that existence of singular,
singular continuous, or pure point spectrum for a set of boundary conditions of positive
measure does not depend on the local behavior of the potential (§5).

Our proof of this result is prepared in §2–3 and relies mainly on:

(i) The identification of Aronszajn [1] and Donoghue [7] of the various parts of the
spectrum under variation of boundary condition or rank one perturbation.

(ii) A result on the average of the spectral measure with respect to boundary condition
that goes back to Javrjan [9]; we use it in a form rediscovered by Kotani [12].

(iii) The invariance of the absolutely continuous spectrum under local perturbations.
(iv) Invariance of the set of energies with solutions L2 at infinity under local perturba-

tions.
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There are two other interesting consequences of these basic results:
(i) A further subdivision of the subspace of absolute continuity of a self-adjoint op-

erator was proposed by Avron-Simon [2], where the definitions of transient and
recurrent subspaces were introduced. It was noticed in [2] that the recurrent spec-
trum is, in some sense, close to the singular continuous spectrum. In fact, as we
shall see in Corollary 4.3, the presence of recurrent spectrum for some boundary
condition implies the presence of singular spectrum for more than a null set of
other boundary conditions.

(ii) The existence of L2-solutions for (Lebesgue-) almost every value of the eigenvalue
parameter implies pure point spectrum for almost every boundary condition (Corol-
lary 3.2). This was noted already in [6, Theorem 5.1] and generalizes a result of
Kirsch, Molchanov, and Pastur [11, Theorem 2], who applied this to potentials
with an infinite number of (high or wide) barriers [10,11]. Further applications will
be given in [16].

As noted in [8], there is a unified approach to rank one perturbations and variation of
boundary condition if we consider perturbations

Aα = A+ αB (1.1a)

with
Bψ = (ϕ,ψ)ϕ (1.1b)

where ϕ ∈ H−1(A), the quadratic form dual in the scale of spaces associated to A. ϕ is
always assumed cyclic. (1.1) is then interpreted as a form sum. Variation of boundary
condition is then obtained by defining A to have Neumann boundary condition, ϕ to be
δ(x). If α = − cot(θ), then Aα has boundary condition

u(0) cos θ + u′(0) sin θ = 0. (1.2)

Details of this relationship, including the connection between the functions F (E) and
the Weyl m-functions, and other results we’ll need are reviewed in Simon [14]. θ = 0, that
is, α = ∞ is discussed in Gesztesy-Simon [8].

Note that this identification of variation of boundary condition with rank one pertur-
bation of type (1.1) needs that the negative part of q− of the potential is infinitesimally
form bounded with respect to − d2

dx2 on L2(0,∞) with Neumann boundary condition at 0;
compare [14]. Therefore, the application of our general results below to Sturm-Liouville
operators needs that q+ ∈ L1

loc(0,∞) and, for example, q− is bounded (more generally, q−
which are locally uniformly integrable are included). However, all our results on variation
of the boundary condition or local perturbations for Sturm-Liouville operators are true
under the weaker assumption that − d2

dx2 + q is limit point at infinity. In particular, this
includes many operators which are not bounded from below. The proof uses the Weyl
m-function and the Weyl spectral measure instead of the function Fα and measure µα

introduced below (for their relation, see [14]) and proceeds in almost complete analogy.
Nevertheless, we use the rank one perturbation approach, which is more general in other
respects. For example, it immediately shows that all our results for Sturn-Liouville oper-
ators have analogs for Jacobi matrices on the discrete half line and extends to the case
where q is singular at x = 0, but not so singular that 0 stops being limit circle.
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§2. Rank One Spectral Theory
In the context of (1.1a), let dµα be the spectral measure for ϕ and Aα, so

Fα(z) ≡ (ϕ, (Aα − z)−1ϕ) =
∫

dµα(x)
(x− z)

.

We set F (z) ≡ Fα=0(z).
It is also convenient to define

dρα = (1 + α2)dµα

since dρ∞ = lim dρα then exists and [8]

dρ∞ = lim
ε↓0

[π−1Im(−F (x+ iε))−1 dx].

Aα converges to a self-adjoint operator A∞ in norm resolvent sense [8]. In the half-line
Sturm-Liouville case, A∞ is − d2

dx2 + q with Dirichlet boundary condition.
Moreover, since ϕ is assumed cyclic, Aα is unitarily equivalent to multiplication by x

on L2(R , dρα) if α �= ∞ and A∞ is equivalent to multiplication by x on L2(R , dρ∞) [8].
General principles imply F (z) has boundary values F (E + i0) for a.e. E. Set G(x) =∫ dµ0(y)
|x−y|2 . Note that G(E) < ∞ implies that F (E + i0) exists and is real [14].
The following is essentially in Aronszajn [1] and Donoghue [7]; see [14] for a short proof:

Theorem 2.1. ([1, 7]) For α �= 0 (α = ∞ allowed with ∞−1 = 0), define

Sα = {x ∈ R | F (x+ i0) = −α−1;G(x) = ∞}
Pα = {x ∈ R | F (x+ i0) = −α−1;G(x) <∞}
L = {x ∈ R | F (x+ i0) exists and Im F (x+ i0) �= 0}.

Then

(i) {Sα}α �=0;|α|≤∞, {Pα}α �=0;|α|≤∞ and L are mutually disjoint.
(ii) Pα is the set of eigenvalues of Aα. In fact

(dρα)pp(x) =
∑

xn∈Pα

1 + α2

α2G(xn)
δ(x− xn) α < ∞

(dρ∞)pp(x) =
∑

xn∈P∞

1
G(xn)

δ(x− xn) α = ∞.

(iii) (dρα)ac is supported on L, (dρα)sc is supported on Sα.
(iv) For α �= β, (dρα)sing and (dρβ)sing are mutually singular.
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In the above, we say S “supports a measure dν” if ν(R\S) = 0. And for any measure
dν, we use dνpp, dνac, dνsc, dνsing ≡ dνpp + dνsc for the pure point, absolutely continuous,
singular continuous, and singular parts of dν.

One can say more than that L supports (dρα)ac. Recall that any a.c. measure dν(E) is
of the form f(E)dE and that {E | f(E) �= 0} which is a.e. defined is called the essential
support of dν (also called a minimal support). Since (see, e.g., [14]):

dρα,ac =
1 + α2

π
Im Fα(E + i0)dE α <∞ (2.1a)

Im Fα(z) = Im F (z)/|(1 + αF (z)|2 (2.1b)

dρ∞,ac(E) = − 1
π

Im F0(E + i0)−1 dE, (2.2)

we see

Theorem 2.2. The set L of Theorem 2.1 is the essential support of each (dρα)ac.

It is useful to have α independent sets:

Corollary 2.3. Let

P = {x | G(x) <∞} ∪ {x | x is an eigenvalue of A}
L = {x | F (x+ i0) exists and Im F (x+ i0) �= 0}
S = R\(P ∪ L).

Then for α (including α = 0 and ∞):

(dρα)ac = χL dρα; (dρα)pp = χP dρα; (dρα)sc = χS dρα.

Proof. For α �= 0, this follows immediately from Pα ⊂ P , Sα ⊂ S and Theorem 2.1. For
α = 0, P contains the eigenvalues by construction, L supports dρα=0,ac by (2.1), and S
supports dρα=0,sc. Since S contains {E | lim

ε↓0
|F (E + iε)| = ∞}\{E | E is an eigenvalue of

A}.
Proposition 2.4. The sets, P, S, L are α independent, that is, one obtains the same sets
starting from any Aα, |α| < ∞.

Proof. (2.1b) and the related Fα(E) = F (E)/1 + αF (E) show that L is independent of
α. If G(E) < ∞, then F (E + i0) has a real value, so E is actually an eigenvalue of
{Aα}α �=0 with α = ∞ allowed (if F (E + i0) = 0). Using also Theorem 2.1(ii), we get that
P = ∪{E | E is an eigenvalue of Aα; α ∈ R ∪ {∞}}. Since {Aβ+α} = {Aβ} for any fixed
α, P is α independent. Thus, S = R\(L ∪ P ) is also α independent.

The following integral relation is a result of Javrjan [9]; see also Kotani [12] and Simon-
Wolff [15].
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Theorem 2.5. For any Borel set M , we have that

∫
µα(M)dα = |M |

∫
ρcot(θ)(M)dθ = |M |

where |M | is the Lebesgue measure of M .

It follows from the fact that the sets in Corollary 2.3 are α independent that

Theorem 2.6. For any Borel set M , we have that

∫
µα,pp(M)dα = |M ∩ P |

∫
µα,sc(M)dα = |M ∩ S|

∫
µα,sing(M)dα = |M ∩ (S ∪ P )|

∫
µα,ac(M)dα = |M ∩ L|

Thus, we immediately have:

Corollary 2.7. For any Borel set M , µα,pp(M) �= 0 for some set of α’s of positive measure
if and only if |M ∩P | �= 0 and similarly for µα,sc(M) and |M ∩S|, and for µα,sing(M) and
M ∩ (S ∪ P ). In particular, µα,sc �≡ 0 for a set of α’s of positive measure if and only if
|S| �= 0.

If one wants to state this theorem in terms of spectrum, one has to face the fact that
the spectrum is a poor invariant for measures, so one is restricted to open sets.

Corollary 2.8. For any open set I, I ∩ σα,sc �= ∅ for a set of α’s of positive measure if
and only if |I ∩ S| �= 0 and similarly for σα,pp and σα,sing.

Proof. For an open set I, and arbitrary measure dν, I ∩ supp(dν) �= ∅ if and only if
ν(I) �= 0.

Example. Suppose A has only point spectrum in (−∞, 0) and an infinity of eigenvalues
e1 < e2 < · · · < en < · · · with lim en = 0. Then by standard intertwining, each Aα has
an infinity of eigenvalues, one in each (en, en+1) and so 0 ∈ σpp(Aα) for all α, so Corollary
2.8 fails for I = {0}. Of course, Corollary 2.7 is still valid.

§3. Point Spectrum in the Sturm-Liouville Case
We have seen that a special role is played by the set

P = {E | G(E) < ∞} ∪ {eigenvalues of A}.

In the Sturm-Liouville case, we want to identify P :
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Theorem 3.1. Let A = − d2

dx2 + q(x) be limit point at infinity and suppose that A is
defined with Neumann boundary conditions. Then

P = {E ∈ R | −u′′ + q(x)u = Eu has a solution L2 at x = +∞}.

Proof. As already noted in the proof of Proposition 2.4, P = ∪{E | E is an eigenvalue of
some Aα; α ∈ R ∪ {∞}}. But since every solution L2 at ∞ obeys some boundary value at
0, this is precisely the set of E’s with a solution L2 at ∞.

Corollary 3.2. Let I be an open set in R . If for a.e. E ∈ I, −u′′ + q(x)u = Eu has a

solution which is L2 at ∞, then for a.e. boundary condition, − d2

dx + q with that boundary
condition has only point spectrum in I.

§4. Transient and Recurrent Spectrum

Definition ([2]). A vector ϕ ∈ H is called a transient vector for H if and only if for all
N > 0,

lim
|t|→∞

|t|N (ϕ, e−itHϕ) = 0.

The transient subspace Htac is the closure of the set of transient vectors. We have Htac ⊂
Hac. The recurrent space Hrac is the orthogonal complement of Htac in Hac, that is,
Hrac = Hac ∩ H⊥

tac.

Lemma 4.1. Let I be an open subset of R . Suppose that A is multiplication by x on
L2(R , dµ) and

dµac(x) = f(x)dx

with f > 0 a.e. on I. Then EIHrac = 0 where EI is the spectral measure for A.

Proof. Let U : L2(I, dx) → L2(I, f(x)dx) by

(Ug)(x) = f−1/2(x) gx.

U sets up a unitary equivalence between multiplication by x on L2(I, dx) and A EIHac.
That all vectors are transient follows from Proposition 3.3 and Example 3.8 in [2].

Theorem 4.2. In the context of rank one perturbations, suppose I ⊂ R is open and Aα

has only absolutely continuous spectrum in I for a.e. α. Then for any α, the spectrum is
purely transient in I.

Proof. By hypothesis and Theorem 2.6, |I∩P | = |I∩S| = 0 so |I�L| = 0; that is, Lemma
4.1 applies for any Aα and so EIHrac = 0.

Corollary 4.3. Suppose A is self-adjoint and I ⊂ R is open. Suppose ϕ is cyclic for A
and that EIHrac �= 0. Then for a set of α’s of positive measure, Aα has singular spectrum
in I.

Note that this result does not say if the singular spectrum is point or singular continuous.
As we’ll see in §6, either can occur.
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§5. Local Perturbations
In this section, we prove our main new result that the occurrence of any specific spectral

type for a set of positive measures of boundary conditions for a Sturm-Liouville operator
is invariant under local perturbations of potential.

Let q be locally in L1 on [0,∞) be such that − d2

dx2 + q is limit point at ∞ and let
Hθ(q) be the operator − d2

dx2 + q with boundary condition (1.2) at 0 (see [3] for the precise
definition). For θ �= 0, let Sθ(q), Pθ(q), Lθ(q) be the set defined in Corollary 2.3 for ϕ = δ0
and A = Hθ(q). We already know (Proposition 2.4) that these sets are θ independent.
Here we note that

Theorem 5.1. Let v be in L1 with compact support. Then

|Sθ(q + v)�Sβ(q)| = 0 (5.1)

Pθ(q + v) = Pβ(q) (5.2)

|Lθ(q + v)�Lβ(q)| = 0 (5.3)

for any θ, β.

Proof. As already noted, the sets are θ independent and since S = R\(P ∪ L), we need
only prove the results (5.2), (5.3). (5.2) follows immediately from Theorem 3.1 and the
fact that solutions of −u′′ + qu = eu and −w′′ + (q + v)w = ew agree near infinity.

To prove (5.3), let supp v ⊂ [0, c]. Let A = − d2

dx2 +q with Neumann boundary condition
at 0; let B = A + v; let Ã be A with an additional Dirichlet boundary at c, and similarly
for B̃. Then (Ã + i)−1 − (A + i)−1 and (B̃ + i)−1 − (B + i)−1 are rank one. Moreover,
(Ã + i)−1 = (Ãin + i)−1 ⊕ (Ãout + i)−1 on L2(0, c) ⊕ L2(c,∞) with (Ãin + i)−1 compact,
and similarly for B. Moreover, Ãout = B̃out. Thus, A and B have unitarily equivalent
a.c. subspaces (by using the Kuroda-Birman theorem (see, e.g., [13])). Since L is an
essential support of the a.c. part of the spectral measure, we see that Lθ(q) and Lθ(q + v)
agree up to sets of measure zero.

Corollary 5.2. Let I ⊂ R be open. If Lθ(q) has singular continuous spectrum in I for a
set of positive measure of θ’s, the same is true for q + v.

Proof. Follows from Corollary 2.8 and Theorem 5.1.

Similar results hold for point spectrum and singular spectrum.

§6. Examples
Here are five examples closely related to Examples 1–3 in Simon-Wolff [15] and Appendix

2 of [2]. They illustrate the kinds of spectrum that can appear under rank one perturbations
A + α(ϕ, ·)ϕ when A either has recurrent a.c. spectrum (Examples 1, 4, 5) or transient
a.c. spectrum (Examples 2, 3). In Example 1 the singular spectrum appearing under
rank one perturbations is just discrete eigenvalues, but lying outside the a.c. spectrum.
Examples 4 and 5 are somewhat more interesting in providing situations where either
s.c. spectrum or eigenvalues appear embedded in the recurrent a.c. spectrum. Examples
2 and 3 show that there is no converse to Corollary 4.3; namely, that the existence of
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singular spectrum for a set of positive measure α’s does not imply that A has any recurrent
spectrum, even if the a.c. spectrum has full support.

In all cases we can totally describe the example by giving the spectral measure dµϕ
A,

which we’ll call dµ. In each case we’ll take dµ(x) = χB(x)dx where B is a Lebesgue
measurable set.

Example 1. Take B to be a positive measure Cantor-type set. For example, start with
[0, 1], remove the middle ( 1

nj
), the fraction at step j with nj = j2. As usual, B is a closed

nowhere dense set. Let F (z) =
∫
B

(x − z)−1 dx. Then it is easy to see that lim
ε↓0

Im F (x +

i0) > 0 on B; indeed, we believe lim
ε↓0

Im F (x + iε) is 1
2 if x is a boundary point of a

connected component of [0, 1]\B and is 1 otherwise. Because lim Im F > 0 for all x in B,
dµα,sing(B) = 0 for all α. Aα for α �= 0 has a.c. spectrum B, and a single eigenvalue in
each component of [0, 1]\B. In this case the singular spectrum guaranteed by Corollary
4.3 is just discrete eigenvalues.

Example 2. Let {qn}∞n=1 be a counting of the rationals. Let a < 1
2 and let B = [0, 1] ∩

[
∞∪

n=1
(qn − an

2 , qn + an

2 )]. Then |[0, 1]\B| > 1 − (a + a2 + a3 . . . ) = (1 − 2a)/(1 − a) is a

closed nowhere dense set of positive Lebesgue measure. It is easy to see that G(x) < ∞
for a.e. x in [0, 1]\B by the argument in Example 3 in [15]. Thus, since |[0, 1]\B| > 0,
we know that for a set of α’s of positive measure, Aα has eigenvalues in [0, 1]. Of course,
σac = B̄ = [0, 1].

Example 3. Let B =
[ ∞∪
n=1

2n

∪
j=1

[ 1
2n (1 − 1

4n
−2), 1

2n (1 + 1
4n

−2)]
] ∩ [0, 1]. Then |[0, 1]\B| ≥

1 − 1
2

∞∑
n=1

n−2 > 0 so [0, 1]\B is a closed nowhere dense set of positive Lebesgue measure.

As in Example 2 in [15], G(x) = ∞ on all of [0, 1] so no Aα has point spectrum in [0, 1].
By Theorem 2.6, for a set of α’s of positive measure, Aα has some singular continuous
spectrum embedded in σac(Aα) = [0, 1].

For Examples 4 and 5, let nj = 21j + 1 be a sequence of odd integers with

∞∑
j=1

n−1
j <∞. (6.1)

As in Appendix 2 of [2], we can define functions aj(x) for x ∈ [− 1
2 ,− 1

2 ] with aj ∈
{−1j,−1j + 1, . . . , 1j − 1, 1j} by using a variable base expansion:

x =
∞∑

j=1

aj(x)
n1 . . . nj

. (6.2)

Lebesgue measure corresponds to taking the aj ’s independent with uniform distribution
among the nj values. By (6.1) and the Borel-Cantelli lemma, |{x | aj(x) = 0 for infinitely



STABILITY OF SPECTRAL TYPES FOR STURM-LIOUVILLE OPERATORS 9

many j’s}| = 0. As in [2], define

B = {x | aj(x) = 0 for an odd number of j’s}
C = {x | aj(x) = 0 for an even number or for infinitely many j’s}.

We’ll also define

D = {x | |aj(x)| ≥ 2 all j}
Bj = {x | aj(x) = 0}

Sj(y) =
{
x | |x− y| ≤ 1

n1 . . . nj

}
.

We note first that |D| > 0 if all nj ≥ 5 since

|D| =
∞∏

j=1

(
1 − 3

nj

)
> 0 (6.3)

by (6.1).
Next (following the argument in [2]):

|Sj(y) ∩B| ≥ γ|Sj(y)|(nj+1)−1 (6.4a)

|Sj(y) ∩ C | ≥ γ|Sj(y)|(nj+1)−1 (6.4b)

so long as y �= ± 1
2

and j is so large that Sj(y) ⊂ (−1, 1). In (6.4) γ is the fixed constant

γ =
1
2

∞∏
�=1

(
1 − 1

n�

)
> 0.

To prove (6.4), note first that

a�(x) = a�(y); 1 = 1, . . . , j =⇒ x ∈ Sj(y).

Suppose #{1 ≤ j | a�(y) = 0} is odd. Then

Sj(y) ∩B ⊃ {x | a�(x) = a�(y), 1 = 1, . . . , j; a�(x) �= 0, 1 > j}

which has measure (n1 . . . nj)−1
∞∏

�=j+1

(
1 − 1

n�

) ≥ 1
2 |Sj(y)|

∞∏
�=1

(
1 − 1

n�

)
while

Sj(y) ∩ C ⊃ {x | a�(x) = a�(y), 1 = 1, . . . , j; aj+1(x) = 0, a�(x) �= 0, 1 > j + 1}

which has measure (n1 . . . nj)−1n−1
j+1

∞∏
�=j+1

(
1 − 1

n�

) ≥ γ|Sj(y)|/nj+1. A similar argument

applies if #{1 ≤ j | a�(y) = 0} is even.
As a final preliminary we need that

inf{|x− y| | x ∈ D, y ∈ Bj} = (n1 . . . nj)−1. (6.5)
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Example 4. Pick nj so that (6.1) holds and

lim
j→∞

n1 . . . nj

nj+1
= ∞, (6.6)

for example, 1j = 2j . Let dµ = χB dx. Then we claim G(y) = ∞ for all y. For

G(y) ≥ |Sj(y) ∩ B|(n1 . . . nj)2

≥ 2γ
n1 . . . nj

nj+1

by (6.4a). Moreover by (6.4a,b) the essential closure of B is [− 1
2 ,

1
2 ] and the essential

closure of [− 1
2
, 1

2
]\B is also [− 1

2
, 1

2
]. Thus, the operator A has recurrent spectrum [− 1

2
, 1

2
]

and no Aα has point spectrum. Since
∣∣[− 1

2 ,
1
2 ]\B

∣∣ = |C | > 0 for a positive measure set of
α’s, Aα has singular continuous spectrum embedded in [− 1

2
, 1

2
] = σac(Aα).

Example 5. Pick nj so that

∞∑
j=1

(
n1 . . . nj

nj+1

)2

< ∞ (6.7)

and that ∞∑
j=k+1

1
nj

≤ 1
nk
, (6.8)

for example, nj = 2j!. Define B̃ analogously to B but with

B̃ = {x | the number of j with aj(x) = 0 lies in {3, 5, 7, . . . }}

and let dµ = χB̃ dx. As above, A has recurrent spectrum with essential support B̃ but
closed support [− 1

2
, 1

2
]. We claim that G(x) < ∞ on D. Since |D| > 0, Aα has point

spectrum embedded in [− 1
2 ,

1
2 ] = σac for a set of α’s of positive measure. Note that this

does not exclude the occurrence of singular spectrum in addition.
To see that G(x) <∞, define

Bj,k,� = {x | aj(x) = ak(x) = a�(x) = 0}.

Thus by (6.8), ∑
k,�>j
k �=�

|Bj,k,�| ≤
( ∞∑

m=j+1

1
nm

)2 1
nj

≤ 4
nj(nj+1)2

(6.9)

since (6.8) implies that
∞∑

j=k+1

1
nj

≤ 2
nk+1

.
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On the other hand, by (6.5),

inf{|x− y| | x ∈ D, y ∈ Bj,k,�} ≥ (n1 . . . nj)−1 k, 1 > j. (6.10)

Since B̃ ⊂ ∪
j,k,�

all unequal

Bj,k,�, we have by (6.9–6.10) that if x ∈ D

G(x) ≤ 4
∞∑

j=1

(n1 . . . nj)2

nj(nj+1)2
< ∞

by (6.7).
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