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Abstract. We prove that one-dimensional Schrödinger operators with even almost
periodic potential have no point spectrum for a dense Gδ in the hull. This implies

purely singular continuous spectrum for the almost Mathieu equation for coupling
larger than 2 and a dense Gδ in θ even if the frequency is an irrational with good

Diophantine properties.

§1. Introduction

This is a paper that provides yet another place where singular continuous spec-
trum occurs in the theory of Schrödinger operators and Jacobi matrices (see
[5,6,2,10,3]). It is especially interesting because it will provide examples where
a non-resonance condition in a KAM argument is not merely needed for technical
reasons but necessary.

Our main results, proven in §2, do not deal directly with singular continuous
spectrum but only with continuous spectrum.

Theorem 1S. Let V be an even almost periodic function on (−∞,∞) and let
Ω be the hull of V and Vω(x) the corresponding function for ω ∈ Ω. Then there
is a dense Gδ, U in Ω (in the natural metric topology), so that if ω ∈ U , then

Hω ≡ −d2

dx2 + Vω(x) has no eigenvalues as an operator on L2(R ).

For the Jacobi case, we let h0 be the operator on 
2(Z) defined by (h0u)(n) =
u(n+ 1) + u(n− 1).

Theorem 1J. Let V be an even almost periodic function on Z, Ω its hull, and
Vω(n) the function associated to ω ∈ Ω. Then there is a dense Gδ, U in Ω so that
if ω ∈ U , then Hω = h0 + Vω(n) has no eigenvalues as an operator on 
2(Z).

The Gδ set U will be rather explicit—see §2. By combining this with the ma-
chinery of [10], we can sometimes get singular continuous spectrum.

Theorem 2. In the context of Thm. 1, suppose there is a single ω ∈ Ω so that
Hω has no absolutely continuous spectrum. Then for a dense Gδ, Ũ , Hω has purely
singular continuous spectrum.

Proof. Let U1 = {ω ∈ Ω | Hω has no a.c. spectrum}. By [10], U1 is a Gδ. By
hypothesis, ω0 and its translates lie in U1, so U1 is a dense Gδ. Thus, Ũ = U1 ∩ U
is a dense Gδ.
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Example 1. Consider the Jacobi matrix with

Vθ(n) = λ cos(πβn + θ). (1)

If λ > 2, the Lyapunov exponent is positive ([1,7]) so if β is irrational, there is no
a.c. spectrum for Lebesgue a.e. θ (see e.g. [1]), so hθ has purely singular continuous
spectrum for a dense Gδ of θ.

Sinai [11] and Fröhlich-Spencer-Wittwer [4] have proven for λ large and β having
good Diophantine properties, a.e. θ has pure point spectrum, and Jitomirskaya [8]
has proven that for λ ≥ 15. In that case there are intertwined locally uncountable
sets of θ with only pure point and with only singular continuous spectrum. For
λ = 2, spec(hθ) has zero measure for many irrational β’s [9] and so no a.c. spectrum.
We conclude

Theorem 3. For the example (1), hθ has purely singular continuous spectrum for
a dense Gδ of θ’s if β is irrational and λ > 2 or if the continued fraction expansion
of β has unbounded integers and λ = 2.

Example 2. Consider the Schrödinger case with Vθ(x) = −k[cos(2πx)+cos(2πβx+
θ)]. Then, Fröhlich-Spencer-Wittwer [4] have proven for a.e. θ (k large enough),
there is pure point spectrum for low energies. Sorets-Spencer [12] have proven pos-
itivity of the Lyapunov exponent for a wider area of low energy. We conclude that
for a dense Gδ of θ, there is purely singular continuous spectrum for low energies.

§2. Proof of Theorem 1

We’ll consider the Jacobi case in detail and then discuss the changes for the
Schrödinger case. Let Vω0 be the even almost periodic function on Z:

Vω0(−n) = Vω0 (n).

Fix once and for all a number B so

B > 4 ln(3 + 2 sup
n

|Vω0(n)|) ≡ 4 lnα. (2.1)

α is chosen so that the matrix
(

E−V (u) 1

1 0

)
has norm bounded by α if |E| ≤ 2 +

sup
n

|Vω0(n)|.
Let Ω be the hull of V , that is, the closure in ‖ · ‖∞ of translates of V ; it is

compact by hypothesis. Define ρ on Ω by

ρ(ω, ω′) ≡ sup
n
(|Vω(n) − Vω′ (n)|)

and define maps R and T on Ω by

VRω(n) = Vω(−n) VTω(n) = Vω(n− 1).
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Lemma 2.1. Let Un = ∪
|m|>n

{ω | ρ(RT 2mω, ω) < e−B|m|} and let U =
∞∩

n=1
Un.

Then Un is a dense open set and U is a dense Gδ in Ω.

Proof. Let ωm = T−mω0. Then RT 2mωm = ωm since Rω0 = ω0, so ωm ∈ Un if
|m| > n. It is easy to see the set of {ωm | |m| > n} is dense in Ω, so Un is dense. It
is clearly open and so U = ∩Un is a dense Gδ by the Baire category theorem.

U is the set of ω’s for which there exists an infinite sequence mi with |mi| → ∞
with ρ(RT 2miω, ω) < e−B|mi|. For a subsequence, either mi → ∞ or mi → −∞
and by reflection invariance, we can suppose mi → ∞. Thus, Thm. 1J follows from

Theorem 2.2. Suppose that V is a function obeying

|V (2mi − n)− V (n)| ≤ e−Bmi (2.2)

for a sequence mi → ∞ where B is given by (2.1). Then

u(n+ 1) + u(n− 1) + V (n)u(n) = Eu(n) (2.3)

has no 
2 solutions for any E.

Remark. The intuition behind the proof is that any u obeying (2.3) has to be close
to being even or odd about mi so u(n) 9 0.

Proof. Suppose not. Then we can find a solution u of (2.3) in 
2 which we normalize,
so that ∑

n

|u(n)|2 = 1. (2.4)

We let ui(n) ≡ u(2mi − n). Let W (f, g)(n) = f(n + 1)g(n) − f(n)g(n + 1) be the
Wronskian as usual, and let

Φ(n) =
(
u(n+ 1)
u(n)

)
; Φi(n) =

(
ui(n+ 1)
ui(n)

)

as two component vectors.

Step 1. Almost constancy of W (u, ui)
By a standard calculation using (2.3)

|W (u, ui)(n) −W (u, ui)(n − 1)| ≤ |V (n)− V (2mi − n)||u(n)ui(n)|
≤ e−Bmi (2.5)

by (2.2) and (2.4).

Step 2. Smallness of W (u, ui) for mi large
Since u and ui are in 
2 with 
2 norm 1, the Schwarz inequality implies that∑

n
|W (n)| ≤ 2. Thus for some n with |n| ≤ eBmi/2, we must have that |W (n)| ≤

e−Bmi/2. By (2.5) we se that for |n| ≤ eBmi/2, we have that

|W (n)| ≤ 3e−Bmi/2 (2.6)

and in particular for n = mi.
Now define u±i = u± ui, Φ±

i = Φ± Φi.
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Step 3. Smallness of Φ+
i (mi) or Φ−

i (mi)

Since W (u−i , u
+
i ) = 2W (u, ui) and u−i (mi) = 0, we see that

|u+
i (mi)u−i (mi + 1)| ≤ 6e−Bmi/2

so either
|u+(mi)| ≤

√
6e−Bmi/4 (2.7)

or
|u−i (mi + 1)| ≤

√
6e−Bmi/4. (2.8)

We claim that this means either

‖Φ±
i (mi)‖ ≤ Ce−Bmi/4 (for one of + or −). (2.9)

If (2.8) holds, (2.9) is immediate since u−i (mi) = 0. If (2.7) holds, note that by
(2.3)

u+(mi + 1) +
1
2
(V (mi)−E)u+(mi) = 0

so (2.9) holds for Φ+
i .

Step 4. Smallness of Φ±
i (0)

Let T (1)
i be the transfer matrix for (2.3), taking Φ(mi) to Φ(0) and let T (2)

i be
the same with V (2mi − n) so

T
(1)
i Φ(mi) = Φ(0)

T
(2)
i Φi(mi) = Φi(0).

Writing out Ti as a product and using the definition of α and (2.2), we have that

‖T (1)
i − T (2)

i ‖ ≤ 2miα
mi−1e−Bmi ≤ 2mie

−3Bmi/4.

Writing

Φ±
i (0) = T

(1)
i Φ(mi)± T (2)

i Φi(mi)

= T
(1)
i (Φ±

i (mi)) ∓ (T (1)
i − T (2)

i )Φi(mi)

we see that
‖Φ±

i (0)‖ ≤ mie
−3Bmi/4 +C(αe−B/4)mi

goes to zero as mi → ∞.

Step 5. Completion of the proof

By the last fact, ‖Φ(0)‖ − ‖Φ(2mi)‖ → 0 which is only consistent with u ∈ 
2 if
‖Φ(0)‖ = 0 which implies that u = 0.
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For the continuum (Schrödinger case), here are the changes: We can suppose
(2.2) holds, but with e−Bmi replaced by e−m2

i (any f(m) with lim
i→∞

m−1
i lnf(m)−1 =

∞ will do). We normalize u so that

∫ [
u(x)2 + u′(x)2

]
dx = 1. (2.10)

Step 1. By (2.10) and a Sobolev estimate, u and u′ are uniformly bounded so∣∣dW
dx (u, ui)(x)

∣∣ ≤ Ce−m2
i for some C.

Step 2.
∫ |W (u, ui)|dx ≤ 2, so, by the same argument

|W (u, ui)|(x) ≤ (2C + 1)e−m2
i if |x| ≤ em

2
i /2.

Step 3. This is actually easier since (u+
i )

′(mi) = 0 and u−i (mi) = 0.

Step 4. This is similar. The transfer matrix is bounded by eCmi where C is E-
dependent (and goes to infinity as E → ∞) which is always beaten out by e−m2

i /2).

Step 5 is unchanged.
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