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§0. Introduction
The Baire category theorem implies that the family, F , of dense sets Gδ in

a fixed metric space, X, is a candidate for generic sets since it is closed under
countable intersections; and if X is perfect (has no isolated point), then A ∈ F has
uncountable intersections with any open ball in X.

There is a long tradition of soft arguments to prove that certain surprising sets
are generic. For example in C[0, 1], a generic function is nowhere differentiable.
Closer to our concern here, Zamfirescu [20] has proven that a generic monotone
function has purely singular continuous derivative, and Halmos [7]-Rohlin [14] have
proven that a generic ergodic process is weak mixing but not mixing. We will say
a set S ⊂ X is Baire typical if it is a dense Gδ and a set S ⊂ X is Baire null if its
complement is Baire typical.

Our goal is to look at generic sets of self-adjoint operators and show that their
spectrum is quite often purely singular continuous. Here are three of our results
that give the flavor of what we will prove in §3 and §4.

Consider the sequence space, [−a, a]Z, of sequences vn with |vn| ≤ a. Given
any such v, we can define a Jacobi matrix J(v) as the tridiagonal matrix with
Jn,n±1 = 1 and Jn,n = vn. View J as a self-adjoint operator on 	2(Z). It is known
(e.g. [4,17,16]) that if one puts a product of normalized Lebesgue measures on
[−a, a]Z (i.e., the vn are independent random variables each uniformly distributed
in [−a, a]) then, J(v) is a.e. an operator with spectrum [a−2, a+2] and the spectrum
there is pure point. So our first result is somewhat surprising.

Theorem 1. View [−a, a]Z in the product topology. Then {v | J(v) has spectrum
[−a − 2, a + 2] and the spectrum is purely singular continuous} is Baire typical.

We also have some results if Z is replaced by Zν and the Jacobi matrix by the
multidimensional discrete Schrödinger operator. One might think that the weakness
of the topology and the one dimension are critical. They are not, as our second
result shows.

For V ∈ C(R ν ), let S(V ) be the Schrödinger operator −∆+ V on L2(R ν).
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Theorem 2. Let C∞(R ν) be the continuous functions vanishing at infinity in ‖·‖∞.
Then

{V | S(V ) has purely singular continuous spectrum on (0,∞)}
is Baire typical.

Note that for V ∈ C∞(R ), the essential spectrum, specess(S(V )) = [0,∞), so
Theorem 2 says that generically, the singular continuous spectrum, specsc(S(V )) =
[0,∞), the absolutely continuous spectrum, specac = ∅, and the pure point spec-
trum, specpp(S(V )) ⊂ (−∞, 0]. For the discrete one-dimensional (Jacobi matrix)
case, we will be able to say something about decay. For example when ν = 1, a
generic v ∈ 	p (2 < p < ∞) has a J(v) with purely singular continuous spectrum in
[−2, 2]. For p = 1, we know specac(J(v)) = [−2, 2] so the singular spectrum result
doesn’t extend to all p. 1 < p ≤ 2 is open.

Our third example is related to the celebrated theorem of Weyl-von Neumann
[18,19,8] that given any self-adjoint A and any ε, there exists a Hilbert-Schmidt
operator B with ‖B‖2 < ε (where ‖C‖2 = tr(C∗C)1/2) so that A + B has only
point spectrum. That is not the generic situation.

Definition. A self-adjoint operator, C, is called usual if and only if {ψ | Cψ = λψ
and λ ∈ specdisc(C), the discrete spectrum of C} ∪ {ψ | dµCψ (λ) is purely singular
continuous} span the space H. Here dµCψ is the spectral measure for (C, ψ), that is∫

eiλtdµCψ (λ) = (ψ, eiλCψ). (0.1)

I2 is the Hilbert-Schmidt operators in ‖ · ‖2 norm.

Theorem 3. Let A be a fixed self-adjoint operator. Then {B ∈ I2 | A+B is usual}
is Baire typical.

For example, if spec(A) = [−1, 1], generically A + B has purely singular contin-
uous spectrum in (−1, 1).

In §1 we prove two results asserting that certain families of operators are always
sets Gδ. We will use that to prove criteria for generic singular spectrum in §2. We
then study general operators in §3 and Schrödinger/Jacobi operators in §4.

I would like to thank R. del Rio and N. Makarov for discussions which stimulated
this work, and S. Molchanov and A. Teplyaev for telling me of [10].

§1. Soft Stuff
A metric space, X, of (perhaps unbounded) self-adjoint operators on a separable

Hilbert space, H, will be called regular if and only if:
(1) X is complete.
(2) If An → A in the metric topology, then An → A in the strong resolvent

sense.
Our main technical results are three:

Theorem 1.1. Fix C ⊂ R closed and X a regular metric space of operators. Then

{A | A has no eigenvalues in C}
is a Gδ in X.
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Theorem 1.2. Fix U ⊂ R open and X a regular metric space of operators. Then

{A | For any spectral measure for A, (µAψ )ac[U ] = 0}
is a Gδ in X.

Remarks. 1. Note the word “dense” does not appear before Gδ. That will hold
sometimes, as we will analyze.

2. µAψ is defined in (0.1). (ν)ac means the absolutely continuous component of
ν .

Theorem 1.3. Fix K ⊂ R closed and X a regular metric space of operators. Then

{A | K ⊂ spec(A)}
is a Gδ.

Lemma 1.4. Let An be a sequence of self-adjoint operators on H so that An → A
in strong resolvent sense for some self-adjoint A. Let K be a compact subset of R ;
ϕ, a fixed vector in H, and ε > 0. Suppose there exist eigenvectors ηn of An:

Anηn = λnηn

with ‖ηn‖ = 1, λn ∈ K and |〈ηn, ϕ〉| ≥ ε. Then A has an eigenvector η with

Aη = λη

with λ ∈ K, ‖η‖ = 1 and |〈η, ϕ〉) ≥ ε.

Proof. K is compact and {ψ ∈ H | ‖ψ‖ ≤ 1} is compact in the weak topology. So
we can pass to a subsequence and suppose ηn → η∞ weakly and λn → ∞. We will
show that η∞ ∈ D(A) and Aη∞ = λη∞. Since |(η∞, ϕ)| ≥ ε, we have η∞ �= 0 and
so η = η∞/‖η∞‖ is the required vector.

Let ψ ∈ H be arbitrary. Then
(
(A + i)−1η∞, ψ

)
=

(
η∞, (A − i)−1ψ

)
= lim

n

(
ηn, (An − i)−1ψ

)
(1.1)

= lim
n

(
(An + i)−1ηn, ψ

)
= lim

n

(
(λn + i)−1ηn, ψ

)
=

(
(λ + i)−1η∞, ψ

)
.

It follows that η∞ = (λ + i), (A + i)−1η∞ ∈ D(A∞) and Aη∞ = λη∞. (1.1) holds
because (An − i)−1ψ converges to (A − i)−1ψ in norm and ηn → η∞ weakly with
‖ηn‖ ≤ 1.

Proof of Theorem 1.1. Fix K ⊂ R compact, ε > 0 and ϕ ∈ H. Then Lemma 1.4
implies that

Q(K, ϕ, ε) =

{A ∈ X | ∃η ∈ D(A) with ‖η‖ = 1, |〈ϕ, η〉| ≥ ε, Aη = λη for some λ ∈ K}
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is a closed subset of X.
Fix {ϕl}∞l=1 an orthonormal basis of H. For n, l, m ∈ Z+, let

Qn,l,m = Q(C ∩ [−n, n], ϕl, m−1).

Then
∪Qn,l,m = {A | A has an eigenvalue in C}

is an Fσ, so its complement is a Gδ as claimed.

Lemma 1.5. Let (a, b) be a fixed open interval in Rn and let dµ be a measure on
R . Then µ is purely singular on (a, b) if and only if for each n > 2, there exists
εn > 0 and fn obeying

(1) 0 ≤ fn ≤ 1,
(2) fn is supported in (a − εn, b + εn),

(3)
∞∫

−∞
fn(s)ds < 2−n,

(4) µ
(
χ[a−εn,b+εn] − fn

)
< 2−n,

(5) εn < 2−n.

Proof. Suppose such εn and fn exist. Let

Cn =
{

x | fn(x) >
1
2

}
.

Then (with | · | = Lebesgue measure):

|Cn| < 2−n+1

µ([a − εn, b + εn]\Cn) < 2−n+1

and
Cn ⊂ [a − εn, b + εn].

It follows that

C =
⋂
m

∞⋃
n=m

Cn

obeys |C| = 0 and µ([a, b]\C) = 0.
Conversely, suppose that µ is purely singular continuous on (a, b). Find C in

(a, b) so |C| = 0 and µ((a, b)\C) = 0. By adding a and/or b to C, we can suppose
C ⊂ [a, b] and µ([a, b]\C) = 0. Since lim

ε↓0
µ([a − ε, a)) = 0 and lim

ε↓0
µ((b, b + ε]) = 0,

we can choose εn < 2−n so that

µ([a − εn, a)) + µ((b, b + εn]) < 2−n−1.

By regularity of measures, we can find Kn ⊂ C ⊂ Un ⊂ (a − εn, b + εn) so that
|Un| < 2−n, µ([a, b]\Kn) < 2−n−1. By Urysohn’s lemma, find f continuous with
0 ≤ f ≤ 1, f ≡ 1 on Kn and suppf ⊂ Un. Then

∞∫
−∞

fn(s)ds ≤ |Un| < 2−n
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while
µ

(
χ[a−εn,b+εn] − fn

) ≤ µ([a − εn, a)) + µ([a, b]\Kn) + µ((b, b + εn]) < 2−n

as required.

Proof of Theorem 1.2. Let ϕ ∈ H, a, b ∈ R and

Q(ϕ, a, b) = {A | dµAϕ is purely singular on (a, b)}.
By Lemma 1.5

Q(ϕ, a, b) =
∞⋂
n=2

⋃
(f,ε)∈Bn

An(f, ε;ϕ)

where Bn is the set of pairs (f, ε) obeying (1–3; 5) of Lemma 1.5 and
An(f, ε;ϕ) = {A | (ϕ, [χ[a−ε,b+ε](A)− f(A)]ϕ) < 2−n}.

We claim each A is open, equivalently that
Ac
n(f, ε;ϕ) = {A | (ϕ, χ[a−ε,b+ε](A) − f(A)ϕ) ≥ 2−n}

is closed. For let Al ∈ Ac
n converge to A in strong resolvent sense. Then

lim(ϕ, f(Al)ϕ) = (ϕ, f(A)ϕ) (see, e.g., [12]). Let hm be continuous functions with
hm ↓ χ[a−ε,b+ε] monotonically. Then hm(A) → hm(A) strongly, so

(ϕ, χ[a−ε,b+ε](A)ϕ) = inf
m
(ϕ, hm(A)ϕ)

= inf
m
[lim
n
(ϕ, hm(l)ϕ)]

≥ lim
n
(ϕ, χ[a−ε,b+ε](Al)ϕ)

so the claim is proven.
Any open set U is a countable union of open intervals In = (an, bn). Let ϕl be

an orthonormal basis for H. Then the set that the theorem asserts is a Gδ is just
∞⋂
n=1

∞⋂
l=1

Q(ϕl, an, bn)

which is indeed therefore a Gδ.

The following is an expression of the well-known fact of lower semicontinuity of
the spectrum under strong limits.

Lemma 1.6. If An → A in strong resolvent sense and (a, b) ∩ spec(An) = ∅, then
(a, b) ∩ spec(A) = ∅.
Proof. Let f be the function f(x) = dist(x,R\(a, b)). Then (a, b) ∩ spec(B) = ∅ if
and only if f(B) = 0. By the continuity of the functional calculus of An → A in
strong resolvent sense, then f(A) = s-lim f(An) = 0 if (a, b) ∩ spec(An) = ∅.
Proof of Theorem 1.3. Let λn be a countable dense set in K. Then

{A | K ⊂ spec(A)} =
⋂
n

{A | λn ∈ spec(A)}

so we need only consider the cases where K = {λ}. But

{A | λ /∈ spec(A)} =
∞⋃
n=1

{
A |

(
λ − 1

n
, λ +

1
n

)
∩ spec(A) = ∅

}

is an Fσ by Lemma 1.6. Thus, its complement is a Gδ.
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§2. Welcome to Wonderland
The main point in the way to generate generic singular spectrum is

Theorem 2.1. Let X be a regular metric space of self-adjoint operators. Suppose
that for some interval (a, b), we have that

(i) {A | A has purely continuous spectrum on (a, b)} is dense in X.
(ii) {A | A has purely singular spectrum on (a, b)} is dense in X.
(iii) {A | A has (a, b) in its spectrum} is dense in X.

Then {A | (a, b) ⊂ specsc(A), (a, b) ∩ specpp(A) = ∅, (a, b) ∩ specac(A) = ∅} is a
dense Gδ.

Proof. Because (a, b) is an Fδ, each of the sets in (i)–(iii) is a Gδ by Theorems 1.1–3.
(For example, the set in (i) is the intersection of the same sets for [a + 1

n
, b − 1

n
].)

Thus, by hypothesis they are dense Gδ’s. By the Baire category theorem, their
intersection is a dense Gδ.

Remarks. 1. We pick an interval for definiteness. In many cases, one can say things
about other sets.

2. We pick the same set (a, b) for convenience. In some examples later, we will
take (a, b) = R in (ii), but replace (a, b) by a closed set in (i).

Here is a spectacular corollary, which we call the Wonderland Theorem:

The Wonderland Theorem. Let X be a regular metric space of operators. Sup-
pose

(a) {A | A has purely absolutely continuous spectrum} is dense in X;
(b) {A | A has purely point spectrum} is dense in X.

Then Baire typically, A has only singular continuous spectrum.

Proof. Strictly speaking, this is not a corollary of the theorem but of its proof, since
we do not specify the spectrum. By Theorem 1.1 and (a)

{A | A has purely continuous spectrum}

is Baire typical. Similarly, by Theorem 1.2 and (b)

{A | A has purely singular spectrum}

is Baire typical. So their intersection is Baire typical.

§3. General Operators
We apply the theory to general self-adjoint operators first. Throughout, H is a

fixed separable Hilbert space.

Theorem 3.1. Fix a > 0. Let X = {A | A is self-adjoint, ‖A‖ ≤ a} which is a
complete metrizable space in the strong topology. Then

{A | spec(A) = [−a, a];A has purely singular continuous spectrum}
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is Baire typical.

Remark. For example, if ϕn is an orthonormal basis

ρ(A, A′) =
∞∑
n=1

min(2−n, ‖(A− A′)ϕn‖)

is a metric.

Proof. This will use the Wonderland Theorem. By the Weyl-von Neumann the-
orem, the operators with point spectrum are norm dense, but there is a simpler
argument since we only need strong density. Since the same argument is needed
for dense absolutely continuous spectrum, we give it.

Pick an orthonormal basis {ϕn}∞n=−∞ (this way of counting will be convenient)
and let PN be the projection onto {ϕn}|n|≤N so that PN → 1 strongly. Let αn be a
counting of the rationals in [−a, a] and let B be the diagonal operator Bϕn = αnϕn.
Then

PNAPN + (1− PN)B(1 − PN)
s→ A.

The operator on the left has spectrum [−a, a] and it is pure point. So we have two
of the three hypotheses of the Wonderland Theorem.

To prove that absolutely continuous spectrum operators are dense, we need only
prove that an operator A with point spectrum and ‖A‖ ≤ a−ε can be approximated
since we have just proven such operators are dense. Let {ϕn} be the eigenvectors of
A (say, Aϕn = αnϕn) and let AN = PNAPN . Fix a sequence δN with 0 < δN < ε

2
and δN → 0. Let BN be defined by

BNϕn = δN(ϕn+(2N+1) + ϕn−(2N+1) + βnϕn

where βn = αj for the unique j with n ≡ j mod (2N − 1). Then ‖BN‖ ≤ a since
δN ≤ ε

2
and BN → A strongly as N → ∞. Each BN is a direct sum of N + 1

operators of the form
αnI+ δNJ

where J is the tridiagonal operator with zeros on diagonal and 1 on the two principal
off diagonals. J has absolutely continuous spectrum and thus so does αnI+ δNJ
and BN .

Surprisingly, the strong topology is only relevant to be sure that the spectrum
is [−a, a]:

Theorem 3.2. Fix a < b. Let X = {A | A is self-adjoint and spec(A) = [a, b]} in
the operator norm topology. (X is closed in L(H), so complete.) Then

{A | A has purely singular continuous spectrum}

is Baire typical.

Proof. We will use the Wonderland Theorem. By the Weyl-von Neumann theorem,
given A ∈ X and ε, we can find B1 so ‖B1‖ < ε

2
and C1 ≡ A + B1 has pure point

spectrum. C1 may have eigenvalues in (a − ε
2
, a) ∪ (b, b + ε

2
) and so not be in X,
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but we can change those eigenvalues to a or b with an operator B2 of norm at most
ε
2
. Then, C2 = A + B1 + B2 ∈ X has pure point spectrum and ‖C2 −A‖ < ε.
By the above, we need only show operators in X with pure point spectrum can

be approximated by operators with purely absolutely continuous spectrum. So,
suppose A ∈ X has pure point spectrum.

Let c = b − a. Given n, let

I1 =
[
a, a+

c

2n
)

, I2 =
[
a +

c

2n
, a +

2c
2n

)
, . . . , I2n =

[
b − c

2n
, b

]
.

Let αj be the midpoint of Ij . Suppose

Aϕk = λkϕk

is the orthonormal family of eigenvalues for A. Define Bn by

Bnϕk = αjϕk if λk ∈ Ij

so ‖Bn − A‖ ≤ c
2n+1 and Bn is a direct sum of α1I⊕ · · · ⊕ α2nI with each I an

infinite dimensional identity. Let D be a self-adjoint operator with purely absolutely
continuous spectrum on [−1, 1] (e.g., the matrix with 0 on diagonal and 1

2
on the

two principal off diagonals). Let

Cn = (α1I+
c

2n+1
D) ⊕ · · · ⊕ (α2nI+

c

2n+1
D).

Then, C ∈ X, C has purely absolutely continuous spectrum and ‖A−Cn‖ < c
2n .

Theorem 3.3. Let A be a fixed self-adjoint operator. Let I2 be the Hilbert-
Schmidt operators. Then for a dense Gδ of B in I2:

(1) specac(A + B) is empty.
(2) A + B has no eigenvalues on specess(A + B) = specess(A).

Remarks. 1. This is equivalent to Theorem 3 of the introduction.
2. Given Kuroda’s extension of the Weyl-von Neumann theorem [11], this the-

orem extends to Ip with p > 1. If A has no absolutely continuous spectrum, one
can take p = 1.

Proof. By the Baire category theorem, it suffices to prove the set with (i), (ii)
separately are given by dense Gδ’s. By Theorem 1.2, the set of operators B with
specac(A +B) empty is a Gδ, and by the Weyl-von Neumann theorem, it is dense
so (i) yields a dense Gδ.

By Weyl-von Neumann and a simple additional argument, given ε, we can find
B0 with ‖B0‖2 < ε

2 so A0 ≡ A + B0 has simple pure point spectrum. Let ϕ be a
cyclic vector for A0 and let P0 be the projection onto {αϕ | α ∈ C}. By a theorem
of [3], A0 + λP0 has no eigenvalues in spec(A0) for Baire typical λ so we can find
|λ0| < ε

2 so that A0 + λ0P0 has no eigenvalues on specess(A). Take B = B0 + λ0P0

so ‖B‖2 < ε. This proves the density of the set in (ii). It is a Gδ by Theorem
1.1.
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§4. Jacobi Matrices and Schrödinger Operators
We will begin with the Jacobi matrix case and prove Theorem 1 of the introduc-

tion.

Theorem 4.1. Fix a > 0. Let X be the set of Jacobi matrices on 	2(Z):

Aun = un+1 + un−1 + xnun

where xn is an arbitrary sequence with |xn| ≤ a. Put the topology of pointwise
convergence on {xn} (so X is a compact metrizable space). Then

{A ∈ X | spec(A) = [−a− 2, a+ 2], spec(A) is purely singular continuous}

is Baire typical.

Proof. We use the Wonderland Theorem. Let dµ be the product of Lebesgue
measures (2a)−1dxn so supp(dµ) = [−a, a]Z . Let D = {A ∈ X | spec(A) =
[−a−2, a+2], spec(A) is pure point}. Then µ(X\D) = 0 by Anderson localization
(see, e.g., [14]). D is dense by the support result.

Given any xn, let

xjn = xn |n| ≤ j

= chosen to be periodic of period 2j + 1 if n > |j|.

Thus, x(j) → x and the Jacobi matrix associated to x(j) has purely absolutely
continuous spectrum.

Remark. We do not need the full proof of Anderson localization; it suffices that
the Jacobi matrices associated to Lebesgue typical sequences have no a.c. spectrum
and this is easier to prove.

For random Jacobi matrices in higher dimension, it is believed that there is
sometimes a.c. spectrum, but that is not so for the generic matrix. Let Zν have the

norms |n| =
ν∑
j=1

|nj| and ‖n‖ = sup
j

|nj|.

Theorem 4.2. Fix a > 0. Let X be the set of Jacobi matrices on 	2(Zν)

Aun =
∑
|j|=1

un+j + xnun

where x is an arbitrary multisequence with |xn| ≤ n. Put the topology of pointwise
convergence on {xn}. Then

{A ∈ X | spec(A) = [−a− 2ν, a+ 2ν ]; spec(A) is purely singular continuous}

is Baire typical.

We need a lemma which shows how “loose” generic really is:
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Lemma 4.3. In the setup of Theorem 4.2, suppose that there is a single operator
A0 ∈ X, specac(A0) = ∅. Then, specac(A) = ∅ for a dense set of A in X.

Proof. Let x
(0)
n be the multisequence defining A0. Given B ∈ X with multisequence

xn, define Aj by the multisequence x
(j)
n where

x(j)
n = xn |n| ≤ j

= x(0)
n |n| > j.

Since x
(j)
n → xn pointwise, Aj → B. But Aj → A0 is finite rank, so specac(Aj) =

specac(A0) = ∅.
Proof of Theorem 4.2. We use the Wonderland Theorem. For any rational q ∈
[−a, a], the set of potentials xn equal to q if |n| ≥ j for some j is dense. Such
a potential yields an operator A with [q − 2ν, q + 2ν ] ∈ spec(A), so generically
∪
q
[q − 2ν, q + 2ν ] is in ] spec(A).

As in the proof of Theorem 4.1, the periodic multisequences are dense and each
yields an operator A with no point spectrum, so the operators with no point spec-
trum are dense.

By the lemma, we need only find the operator A in our space with no a.c. spec-
trum. Let {yi}i∈Z be a specific sequence in [−aν , aν ]

Z whose one-dimensional Jacobi
matrix J0 has only dense point spectrum in [−2− a

ν
, 2 + a

ν
]. Let

xn = yn1 + · · ·+ ynν

so the corresponding A has the form

J ⊗ 1⊗ · · · ⊗ 1 + 1⊗ J ⊗ · · · ⊗ 1 + · · ·+ 1⊗ 1⊗ · · · ⊗ J

in 	2(Zν) = 	2(Z)⊗ 	2(Z)⊗ · · · ⊗ 	2(Z). Then spec(A) is also pure point.

Theorem 4.4. Let c0 be the sequences {xn}n∈Z with |xn| → 0. For x ∈ 	p or in c0,
let J(x) be the corresponding Jacobi matrix on 	2(Z). Then specess(J(x)) = [−2, 2]
and

{x | (x) has purely singular continuous spectrum on [−2, 2]}
is Baire typical in c0 and in each 	p (p > 2) when these spaces are given the norm
topology.

Proof. Since xn → 0 at ±∞, the diagonal matrix is compact and specess(J(x)) =
specess(J(x = 0)) = [−2, 2]. Thus, it suffices to find dense sets with no point
spectrum in [−2, 2] and with no a.c. spectrum in [−2, 2]. If x has finite support,
then any solution of J(x)u = λu with λ ∈ (−2, 2) must be a plane wave outside a
finite set and so is not in 	2. Since the sequences, x, of compact support are dense,
we have the required density of operators without point spectrum.

As in the proof of the last theorem, we need only find one x in our space with
no a.c. spectrum. In [15], Simon showed that if an is a typical random sequence,
independent and uniformly distributed in [−1, 1], then xn = (|n|+ 1)−βan yields a
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J(x) with pure point spectrum so long as β < 1
2 . This yields the required examples

in 	p or c0.

Remarks. 1. One could instead look at sequences xn with sup
∣∣(1 + |n|)βxn

∣∣ < ∞
in the obvious norm and get the result so long as β < 1

2
.

2. For p = 1, or β > 1 (in the language of Remark 1), J(x) has lots of a.c. spec-
trum, so the result requires some slow falloff hypothesis. It is likely the result
remains true for 1 < β ≤ 1

2 and 1 < p ≤ 2 but it is open.
3. We are unable to extend this result to the higher dimensional (Zν) case

because neither the method used in Theorem 4.2 (taking xn = yn1 + · · ·+ ynν ) or
Theorem 4.5 (spherical symmetry) works.

We turn next to Schrödinger operators. We will begin with the case where V → 0
at infinity.

Theorem 4.5. Let C∞(R ν) be the continuous function of R ν which vanish at in-
finity in the uniform norm. Then for a Baire typical set of V , −∆+ V has purely
singular continuous spectrum on all of (0,∞).

Proof. By general principles, (see, e.g., [13]), specess(−∆+ V ) = [0,∞) so we need
only show that for a dense set specac(−∆ + V ) = ∅ and for another dense set,
specpp(−∆+ V ) ⊂ (−∞, 0].

If V has compact support, it is well known [13] that specpp(−∆+V ) ⊂ (−∞, 0],
so we have that required dense set.

Suppose we find one V ∈ C∞(R ν) with specac(−∆ + V ) = ∅. Suppose W is
another potential with W (x) = V (x) for |x| > R for some R. Then specac(−∆ +
W ) = ∅ by using Dirichlet decoupling as in Deift-Simon [2]. Any W0 ∈ C∞(R ν) is
a limit of functions equal to V outside of some ball, so we get the required density.
Thus we need only find one V.

To find the required V , we choose V spherically symmetric and given by a typical
potential in the analysis of Kotani-Ushiroya [10]. These go to zero at infinity and
are known to have spec(− d2

dx2 + V (r)) pure point. Each partial wave Hamiltonian
− d2

dr2 + c
r2 + V (r) also has no a.c. spectrum by trace class theory, so −∆ + V has

no a.c. spectrum.

Remark. By looking carefully at [10], the result extends to Lp(R ν), p > 2n.
Here is a typical example for random Schrödinger operators.

Theorem 4.6. For v ∈ [−a, a]Z
ν

, define V on R ν by

V (x) = v(i(x))

where i(x) is defined by

i(x) = j if jα ≤ xα < jα + 1.

Then for a Baire typical v, −∆ + V has spectrum [−a,∞) and is purely singular
continuous there.

Proof. By using periodic v, we see that Baire typically V has no point spectrum.
As in the last theorem, we need only find a single v with no a.c. spectrum. Take
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v(i) = ṽi1 + · · ·+ ṽin for a one-dimensional ṽ. If − d2

dx2 + Ṽ has point spectrum,
so does −∆+ V . Thus localization in the one-dimensional case [5,9] completes the
proof.

Finally, we want to say something about the almost periodic case with a series
of remarks.

1. Consider the almost Mathieu equation, the Jacobi matrix with v, λ cos(παn+
θ) for λ, θ fixed. For α rational, the potential is periodic and there is no point
spectrum. It follows that for Baire typical α, there is no point spectrum either.
This is a soft version of Gordon’s theorem (Gordon [6], Avron-Simon [1]).

2. Fix λ, α in the almost Mathieu equation with α irrational. Suppose that there
is a single θ0 leading to purely s.c. spectrum. Then its translates are dense and so
Baire typically, there will be only s.c. spectrum. It may well happen that for α with
good Diophantine properties and λ > 2, we have pure point spectrum for Lebesgue
typical θ and purely s.c. spectrum for Baire typical θ.

3. The argument in Remark 1 applies to generic potentials, v, in spaces of limit
periodic potentials.
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