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Almost exactly forty years ago, Kruskall and collaborators revolu-
tionized significant parts of applied mathematics by discovering ra
emarkable structure in the KdV equation. Their main discovery is
that KdV is completely integrable, with the resulting infinite number
of conservation laws. Deeper aspects concern the connection to the 1D
Schrödinger equation
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where the potential, V , is actually fixed time data for KdV.
In particular, the conserved quantities, which are integrals of poly-

nomials in V and its derivatives, can also be expressed in terms of
spectral data (eigenvalues and scattering information). Thus one gets
a sum rule, an equality between coefficient data on one side and spec-
tral data on the other side. The most celebrated KdV sum rule is that
of Gardner et al.:
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where {En} are the negative eigenvalues and t(E) the scattering theory
transmission coefficient. We note that in this sum rule all terms are
positive.

While these are well known, what is not so well known is that there
are much earlier spectral theory sum rules, which, depending on your
point of view, go back to 1915, 1920, or 1936. They go under the rubric
Szegő’s Theorem, which expressed in terms of Toeplitz determinants
goes back to 1915. In 1920, Szegő realized a reformulation in terms of
norms of orthogonal polynomials on the unit circle (OPUC), but it was
Verblunsky in 1936 who first proved the theorem for general measures
on ∂D in C and expressed it as a sum rule.

To explain the sum rule, given a probability measure, µ, on ∂D
which is non–trivial (i.e. not supported on a finite set of points), let
{Φn(z)}∞n=0 be the monic orthogonal polynomials for µ. They obey a
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recursion relation

Φn+1(z) = zΦn(z)− αnΦ∗n(z), Φ0 ≡ 1, Φ∗n(z) = znΦn

(
1

z̄

)
(3)

where {αn}∞n=0 are a sequence of numbers, called Verblunsky coeffi-
cients, in D. Verblunsky’s Theorem proves a 1-1 correspondence be-
tween such µs and such sequences.

The Szegő–Verblunsky sum rule says that if

dµ(θ) = w(θ)
dθ

2π
+ dµs (4)

then ∫
log(w(θ))

dθ

2π
= −

∞∑
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log(1− αn|2) (5)

In particular, the condition that both sides are finite at the same time
implies
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∫
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Simon [3] calls a result like (6) that is an equivalence between coef-
ficient data and measure theoretic data a spectral theory gem. The one
above has a spectacular (albeit perhaps hidden!) consequence. It is
known that if {αn}∞n=0 ∈ `1, then the measure µ is purely a.c. In (6),
dµs is arbitrary, so, as long as the a.c. part yields a finite integral, we
have that {αn}∞n=0 ∈ `2 no matter what µs is. Thus we have arbitrarily
singular mixed spectrum with `2 decay of the recursion coefficients.

In 2000, Killip and I [2] (I know the publication date was 2003, not
2000 but its the Annals – what do you expect!) found an analog of
the Szegő–Verblunsky sum rule for orthogonal polynomials on the real
line (OPRL). One now has non–trivial probability measures on R and
{pn}∞n=0 are orthonormal polynomials whose recursion relation is

xpn(x) = an+1pn+1(x) + bn+1pn(x) + anpn−1(x), p−1 ≡ 0 (7)

where the Jacobi parameters obey bn ∈ R, an ≥ 0. There is now a
bijection of non–trivial probability measures of compact support on R
and uniformly bounded sets of Jacobi paramters (Favard’s Theorem).

If

dµ(x) = w(x)dx+ dµs (8)
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then the gem of Killip–Simon says that

∞∑
n=1

(an − 1)2 + b2n <∞

if and only if

ess supp (dµ) = [−2, 2], Q(µ) <∞ and
∑
m

(|Em| − 2)3/2 <∞

(9)

where
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The sum rule is
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where

F (β + β−1) = 1
4
[β2 + β−2 − log(β4)], β ∈ R \ [−1, 1] (12)

G(a) = a2 − 1− log(a2) (13)

The gem comes from G(a) > 0 on (0,∞) \ {1}, G(a) = 2(a− 1)2 +
O((a− 1)3), F (E) > 0 on R \ [−2, 2], F (E) = 2

3
(|E| − 2)3/2 + O((|E| −

2)5/2). To get gems from the sum rule without worrying about cancel-
lation of infinities, it is critical that all the terms are positive.

It was mysterious why there was any positive combination and if
there was any meaning to the functions G and F which popped out
of calculation and combination. Moreover the weight (4 − x2)1/2 was
mysterious. Prior work had something called the Szegő condition with
the weight (4 − x2)−1/2, which is natural since under x = 2 cos θ one
finds that (4− x2)−1/2 dx goes to dθ, up to a constant.

This situation remained for almost 15 years during which period
there was considerable followup work but no really different alternate
proof of the Killip–Simon result. This situation changed dramatically
in the summer of 2014 when Gamboa, Nagel, and Rouault [1] found a
probabilistic approach using the theory of large deviations from prob-
ability theory.

Their approach shed light on all the mysteries. The measure
(4 − x2)1/2 dx is just (up to scaling and normalization) the celebrated
Wigner semi–circle law. The function G of (13) is just the rate function
for averages of sums of independent exponential random variables, as
one can compute from Cramér’s Theorem. The function F of (12) is
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just the logarithmic potential in a quadratic external field which occurs
in numerous places in the theory of random matrices.

In the first half of my lecture, I’ll discuss sum rules via meromorphic
Herglotz functions and in the second half the large deviations approach
of Gamboa, Nagel and Rouault.

References

[1] F. Gamboa, J. Nagel, and A. Rouault, Sum rules via large deviations, J.
Funct. Anal. 270, (2016), 509–559.

[2] R. Killip and B. Simon, Sum rules for Jacobi matrices and their applications
to spectral theory, Ann. Math. 158 (2003), 253–321.

[3] B. Simon Szego’s Theorem and Its Descendants: Spectral Theory for L2 Per-
turbations of Orthogonal Polynomials, Princeton University Press, Princeton,
NJ, 2011.


