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It is both a pleasure and an honor to write the introduction of this is-
sue in honor of the (recent) sixtieth birthdays of Jürg Fröhlich and Tom
Spencer and to be able to place their joint work in some perspective.

Tom and Jürg have about twenty-five joint papers, several with ad-
ditional authors including two with me. I want to focus here on two
sets of methods: infrared bounds and multiscale analysis, which are
surely among the most significant developments in rigorous statistical
physics in the last quarter of the last century.

Infrared bounds ([29, 30]), discovered in 1975 and proven using reflec-
tion positivity, provide upper bounds on the Fourier transform of the
spin-spin correlation at nonzero momentum and force a macroscopic
occupation of zero momentum at low temperature (aka Bose–Einstein
condensation of spin waves). This implies long-range order, and so, a
phase transition.

The method was used for quantum spin antiferromagnets by Dyson–
Lieb–Simon [20, 21]. Remarkably, after more than thirty years, it re-
mains the only method known to rigorously prove breaking of non-
abelian symmetry—even for the abelian case, there is only one other
approach to the short-range case using multiscale analysis (see below).
For slow decay two-dimensional plane rotors, there are also results of
Kunz–Pfister [49].

Among later applications of infrared bounds are Sokal’s specific heat
bounds [59], Aizenman’s [1] and Fröhlich’s [24] proofs of the triviality of
φ4 theories in five or more dimensions, the Aizenman–Fernández anal-
ysis of long-range models [4], Helffer’s estimates of eigenvalue splitting
for certain Schrödinger operators in the thermodynamic limit [43, 44],
and the work of Biskup–Chayes on mean-field driven phase transitions
[7, 8].

Reflection positivity was introduced in Euclidean field theory by
Osterwalder–Schrader [54] and was a key element, albeit implicitly,
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in the work of FSS [29, 30]. This was a partial motivation for a se-
ries of works on chessboard estimates, many on phase transitions; for
example, [9, 10, 11, 17, 22, 25, 26, 27, 50, 51, 52].

This material is further discussed in the review article of Shlosman
[55] and in four books [42, 39, 23, 57].

We turn next to multiscale analysis. It is, of course, ancient wisdom
to study infinite volume systems by approximating by finite volumes,
say, cubes of length L. Before the Fröhlich–Spencer breakthrough,
the sequence of L’s one looks at were typically Lk+1 = Lk + 1, or if
one were especially brave, Lk+1 = 2Lk. Multiscale analysis looks at
Lk+1 = (Lk)

α for some α > 1.
At any level, there are typically good boxes where one gets estimates

of a convenient form and bad boxes where estimates are much weaker.
One decomposes Lk+1 boxes into (Lk)

ν(α−1) (ν = dimension) boxes of
side Lk. If most of these smaller boxes are good, Lk+1 is good. In
this way, one inductively gets estimates on good boxes, proving that
as k →∞, all boxes but a vanishingly small number are good.

What is particularly fascinating about the situation is that the un-
derlying physics is either scaleless or has a single scale, but the math-
ematical machinery uses these multiple scales.

The breakthrough appeared first in 1981 in their proof of the
Kosterlitz–Thouless transition [31, 32] and was later used by Jürg and
Tom to analyze the phase transition in the one-dimensional Ising model
with 1/r2 interaction energy [33], the deconfinement transition in four-
dimensional U(1) gauge theory [34], the phase transition in the three-
or higher-dimensional plane rotor model (obtained already by FSS)
[35], and localized states for certain quasi-periodic Schrödinger opera-
tors describing a particle hopping on the integers or moving on the real
line [38]. Of course, these papers also used other clever ideas and tech-
niques. Among precursors, one should certainly single out the paper
of Glimm–Jaffe [41].

With Wayne [37], Jürg and Tom applied multiscale analysis to con-
struct invariant tori in some Hamiltonian systems with infinitely many
degrees of freedom; for later work in this direction, see [12, 13]. Ex-
cept for localization, most of the results obtained by multiscale analysis
have not been obtained by other methods. For localization, there is an-
other approach found ten years later: the fractional moment method
of Aizenman–Molchanov [5, 2, 3, 6].
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In [36], Fröhlich and Spencer proved exponential decay of the Green’s
function in the spectrum for the Anderson model and left open the ex-
pected existence of point spectrum with exponentially decaying eigen-
functions. This was supplied by [28]. Shortly thereafter, the now stan-
dard way of going from Green’s function decay to point spectrum was
found by Simon–Wolff [56]. Further important localization criteria go
under the names of dynamical localization and semi-uniform localiza-
tion of eigenfunctions (SULE)—these can be tracked down through the
reviews mentioned below.

Critical reworkings of multiscale analysis were developed by von
Dreifus in his thesis [18] and with Klein [19]. Among extensions to
settings beyond the lattice models that [36] consider, I would mention
[14, 15, 16, 40, 46, 48, 53]; see the review articles mentioned next for
more.

For book or book-length presentations of multiscale analysis for the
Anderson model, see Stollmann [58] and Kirsch [45]. For a comprehen-
sive review, see Klein [47].

Jürg and Tom: you have provided the seed-corn for a generation of
mathematical physicists. So thanks and many happy returns.
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