
GNR Approach

Szegő Coefficient
Side

Szegő Measure
Side

Killip Simon via
LDP

Further
Developements

Large Deviations and Sum Rules for
Orthogonal Polynomials

CLAPEM XIV

Universidad de Costa Rica, December, 2016

Barry Simon
IBM Professor of Mathematics and Theoretical Physics, Emeritus

California Institute of Technology
Pasadena, CA, U.S.A.

Lecture 4: GNR Proof of Sum Rules



GNR Approach

Szegő Coefficient
Side

Szegő Measure
Side

Killip Simon via
LDP

Further
Developements

GNR Proof of Sum Rules

Lecture 1: OPRL, OPUC and Sum Rules
Lecture 2: Meromorphic Herglotz Functions and Proof
of KS Sum Rule
Lecture 3: The Theory of Large Deviations
Lecture 4: GNR Proof of Sum Rules



GNR Approach

Szegő Coefficient
Side

Szegő Measure
Side

Killip Simon via
LDP

Further
Developements

References

[GNR1] F. Gamboa, J. Nagel, and A. Rouault, Sum rules
via large deviations, J. Funct. Anal. 270, (2016), 509–559.

[BSZ1] J. Breuer, B. Simon and O. Zeitouni Large
Deviations and Sum Rules for Spectral Theory – A
Pedagogical Approach, J. Spec. Th, to appear

[AGZ] G. Anderson, A. Guionnet and O. Zeitouni, An
Introduction to Random Matrics, Cambridge University
Press, 2010

[BAG] G. Ben Arous and A. Guionnet, Large deviations for
Wigner’s law and Voiculescu’s non-commutative entropy,
Probab. Theory Rel. Fields, 108 (1997), 517–542.

[DE] I. Dumitriu, and A. Edelman, A. (2002). Matrix
models for beta ensembles, J. Math. Phys. 43 (2002),
5830–5847.



GNR Approach

Szegő Coefficient
Side

Szegő Measure
Side

Killip Simon via
LDP

Further
Developements

LDP and Sum Rules

Gamboa, Nagel and Rouault had the following lovely idea.
Let X be the set of probability measures on ∂D or on R
(with some song and dance to handle measures which don’t
have compact support) and suppose we have a sequence of
probability measures on X with an LDP.

The Verblunsky
and Jacobi maps are continuous to sequences of Verblunsky
coefficients or Jacobi parameters and so one has an LDP on
sequence space. But the rate functions are clearly the same,
so we have the equality of a function of the spectral
measures and of a function of the parameters and as rate
functions, these functions are automatically
non-negative!!!!! We thus have a way to generate positive
sum rules and demanding they be finite gives us a gem.
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GNR had the further idea that the measures on the spectral
measures should come from random matrix measures with a
cyclic vector in the limit as the matrix dimension goes to
infinity.

Of course, the issue becomes to effectively compute the rate
function on both sides and alas, we haven’t yet found a
magic way to do these calculations in a general context.

The reception of the GNR paper illustrates the dangers of
working in between two disparate areas. They wrote the
paper in a way that only experts on large deviations could
understand it, but such experts didn’t understand the
spectral theory context.
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Jonathan Breuer and I couldn’t understand the paper, so we
consulted Ofer Zeitouni, who said he’d looked quickly at the
paper and there didn’t seem to be much new there!

In fact,
the calculations of rate functions on the two sides wasn’t so
far from prior calculations of rate functions. What was new
was the realization that because a rate function could be
computed in two ways, one is able to prove interesting
equalities. So they had some troubles getting published
what I regard as one of the more interesting recent papers
in spectral theory. In the end, Jonathan, Ofer and I used
their methods to study higher order sum rules and we also
wrote a pedagogic translation of their paper accessible to
spectral theorists.
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To be explicit about the random matrix models:

the Szegő–Verblunsky sum rule comes from CUE, aka
Circular Unitary Ensemble, the family on the spectral
measures induced by Haar measure on U(n).
the Killip–Simon sum rules comes from GUE, aka
Gaussian Unitary Ensemble, the measure on random
n× n self–adjoint matrices has {ReM (n)

ij }1≤i≤j≤n and

{ImM (n)
ij }1≤i<j≤n Gaussian iid with mean zero and

E([M
(n)
ii ]2) = n−1.

(GNR use GOE rather than GUE but that only means our
sum rules are twice theirs). Note the curious fact that on
the support of the measures Pn (which is easily seen to be
the measures with at most n pure points (only)), we have
that I =∞ because there is no a.c. part.
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Topology of VCs

In the rest of the lectures, we’ll describe the CUE proof in
some detail and then sketch the GUE proof.

We begin by
describing the set of Verblunsky coefficients and the
topology on it. Let

Y∞ = D∞ Yn =

n−2∏
j=0

D

× ∂D Y = Y∞ ∪
∞⋃
n=1

Yn

The topology is metrizable with convergence given by
α(n) → α(∞) with α(∞) ∈ Y∞ ⇐⇒ α

(n)
j → α

(∞)
j for all j

and if α(∞) ∈ Ym, then for eventually, α(n)

∈ Y∞ ∪ (∪∞n=mYn) and α(n)
j → α

(∞)
j , j = 0, . . . ,m− 1.

This topology is such that the map from probability
measures to Y is a homeomorphism.

Let X = D∞. Then the map H : X → Y by dropping all
αj after the first one in ∂D is continuous.
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Computation of I on Y

Let PN by the measure on X given by the Killip–Nenciu
formula on the first N factors and a point mass at 0 on the
remaining coordinates.

Let Xj be Dj and πj : X → Xj

projection onto the first j coordinates. By our result on and
LDP for measures of the form F (x)e−NG(x)dνx, we see
that π∗j (PN ) obeys and LDP with speed N and rate
Ij({αk}j−1k=0) = −

∑j−1
k=0 log(1− |αk|2). It follows by the

projective limit theorem that PN has an LDP with speed N
and rate function I({αk}∞k=0) = −

∑∞
k=0 log(1− |αk|2).
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Distribution of Haar distributed
spectral measures

We begin our presentation of the calculation of the rate
function on the measure side by specifying the distribution
of spectral measures induced by CUE(n) which we’ll also
call CUE(n).

Let {ej}nj=1 be the standard basis for Cn. It is
easy to see that for a.e. U , e1 is a cyclic vector for U so
that U and e1 define a spectral measure

dµ(θ) =

n∑
j=1

wjδλj

on ∂D, with precisely n pure points (aka atoms)
λj = eiθj , j = 1, . . . , n. Letting {ϕj}nj=1 be the orthonormal
basis of eigenvectors of U , so that Uϕj = λjϕj , we have
wj = |〈ϕj , e1〉|2. Of course, since ‖e1‖ = 1,

n∑
j=1

wj = 1
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For Ũ an arbitrary unitary, ŨUŨ−1 has the same
eigenvalues as U and 〈ϕj(ŨUŨ−1), e1〉 = 〈Ũϕj(U), e1〉.

Since U 7→ ŨUŨ−1 leaves Haar measure invariant, we see
that the distribution of the unit vector
(〈ϕ1(U), e1〉, 〈ϕ2(U), e1〉, . . . , 〈ϕn(U), e1〉) ∈ Cn is
invariant under unitary transformations, which implies it is
the Euclidean measure restricted to the sphere. By using
the fact that that d2z = 1

2dθd(|z|2) (which shows it is
essential we work in C), it is not hard to show that the
squares of the components of a complex n–vector uniformly
distributed on the sphere are uniformly distributed on the
simplex. Thus we get that the {wj}nj=1 are independent of
the eigenvalues and have Pn-distribution.

(n− 1)!χ{
∑n−1

j=1 wj ≤1 ;wj≥0}(w)dw1 . . . dwn−1
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eigenvalues as U and 〈ϕj(ŨUŨ−1), e1〉 = 〈Ũϕj(U), e1〉.
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Weyl Integration Formula

The distribution of the eigenvalues is given by the
celebrated Weyl integration formula which says that the
distribution of the eigenvalues under Haar measure is

1

n!
|∆(eiθ1 , . . . , eiθn)|2

n∏
j=1

dθj
2π

∆(λ1, . . . , λn) ≡
∏
i<j

(λi − λj)

For proofs of this formula from two different points of view,
see Anderson et al Random Matrices book or my group
representation book. Summarizing

dPn(θ1, . . . , θn, w1, . . . , wn) =
1

n(2π)n
χ{

∑n−1
j=1 wj ≤1 ;wj≥0}(w)

|∆(eiθ1 , . . . , eiθn |2dθ1 . . . dθn dw1 . . . dwn−1
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LDP for the Empirical Measure

As a preliminary to computing the measure side rate, one
needs to look at what spectral theorists call the density of
states, OP workers the density of zeroes and probabilists the
empirical measure, namely

µ(E) =
1

n

n∑
j=1

δλj

where λj are the atoms of µ. That is, we drop the weights
from the spectral measure.

Pn induces a distribution P(E)
n on point measures of the

above form, essentially given by the Weyl Integration
Formula.
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One has the following result of Ben Arous and Guionnet –
their results discuss GUE, not CUE – the analog for CUE
uses the same ideas and is even simpler:

BAG Theorem P(E)
n obeys a LDP with speed n2 and good

rate function

I(µ) = −
∫

log(|z − w|) dµ(z) dµ(w)

Remark. In the formula for I, z and w lie in the unit circle
and |z − w| is a two dimensional distance. This is a 2D
Coulomb energy. There is a close connection between this
result and Johansson’s proof of the Strong Szegő Theorem.
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LDP for the Empirical Measure

We will not give a formal proof of the BAG Theorem but
instead indicate the basic intuition.

For distinct λis,∏
i<j

|eiθi − eiθj |2 = exp
(
−n2Jn(λ1, . . . , λn)

)
Jn(λ1, . . . , λn) = − 2

n2

∑
i<j

log(|λi − λj |)

= − 1

n2

∑
i 6=j

log(|λi − λj |)

If µ(E) is an n–point measure near µ and the λ have
reasonable local spacing, the final sum, which is a discrete
Coulomb energy should be near the integral which gives a
continuum Coulomb energy.
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Slightly Simplified Problem

The weights and eigenvalues are independent. We’ll
consider a fixed triangular array of eigenvalues
{λ(n)` }1≤`≤n;n=1,... where we suppose that

1

n

n∑
`=1

δ
λ
(n)
`

→ dθ

2π

weakly. We distribute weights uniformly on the simplex and
look at

{w`}n`=1 7→
n∑
`=1

w`δλ(n)
`

≡ µn(w`)

This gives a distribution, P(λ)
n , on measures and we’ll prove

these measures obey a LDP with speed n and rate function
H( dθ2π , µ), the KL divergence. A full analysis depends on
proving for each ε > 0, j and k = 1, . . . , 2j , the probability
that

∣∣∣2jn #(` |λ(n)` ∈ I(j)k )− 1
∣∣∣ ≥ ε (with

I
(j)
k ≡ {e

2πiθ | k−1
2j
≤ θ < k

2j
}) goes to zero faster than

exponentially in n. This depends on the BAG Theorem.
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LDP for Projected Haar Distribution

The proof will be to use projective limits with the maps
πj :M+,1(∂D)→ R2j given by µ 7→ µ(I

(j)
k ).

We’ll get a
LDP for the projections using our LDP for sums of
exponential random variables and control the sup of the
projected rate functions by a general continuity result. It is
this last fact that will show singular parts of the measure
only change the rate by their impact on the total weight of
the a.c. part.

For each j = 1, . . . and k = 1, . . . , 2j , let I(j)k be given as
above and πj(µ) the measure with constant a.c. weight on
each I(j)k which gives the same weight to each I(j)k as µ.
This is exactly the setup we described in Lecture 3 for an
example of projective limits.
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Given {w`}n`=1, let µ̃
j
n(w`) be the measure on ∂D with

constant a.c. weight on each I(j)k so that

µ̃jn(I
(j)
k ) =

∑
λ
(n)
` ∈I

(j)
k

w`

Thus we have that πj(µn(w`)) = µ̃jn(w`). The wj are
almost independent except for the bothersome
normalization condition. We will deal this by noting that if
{Wj}nj=1 are iidrv with exponential distribution, then
wj = Wj/

∑n
k=1Wk are distributed uniformly on a simplex.
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We will be able to prove a LDP for subsums of W ’s and
then use the contraction principle to pass to w’s.

So let P̃(j)
n be the measure on R2j but where now the w`

are replaced by iid exponential random variables, W`. Thus,
P̃(j)
n is the probability measure for the R2j -valued random

variable given by
βnk =

∑
λ
(n)
` ∈I

(j)
k

W`

Fix j and take n→∞. By our analysis of sums of
exponential iidrvs, P̃(j)

n obeys a LDP with speed n and rate
function at the point ~β ≡ {β`}2

j

`=1 ∈ R2j

ϕ(~β) =
2j∑
`=1

[
(β` − 2−j)− 2−j log(2jβ`)

]
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Recall that given two probability measures µ and ν on the
same space, their KL divergence, H(µ|ν), is given by the
negative of a log integral.

Write β` = βs` with
β =

∑2j

q=1 βq so that ~s lies in a 2j-simplex. Write µ~s for

the probability measure giving uniform weight sk to I(j)k and
let ν be normalized Lebesgue measure on the circle (i.e. µ~s
for the ~s with equal components, 2−j). Then ϕ can be
rewritten:

ϕ(~β) = β − 1− log(β) +H(ν|µ~s)
Note this is the sum of a function of β only and a function
of the s’s only. This is a consequence of the fact that for
independent exponential random variables,

∑N
k=1Xk is

independent of {Xj/
∑N

k=1Xk}Nj=1. It makes the use of the
contraction principle (which, in general, is already simple),
extremely simple.
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For fixed λ’s, let P(j)
n = π∗j

(
P(λ)
n

)
. This is just the

contraction of P̃(j)
n under the map G(~β) ≡ ~β/β from R2j to

the 2j–simplex. By the contraction principle and

inf
β>0

[β − 1− log(β)] = 0

(as it must as the rate function, for averages of
exponentials), we see that for each fixed j, P(j)

n obeys a
LDP with speed n and rate function H(ν|µ~s).
Given the projection theorem, the following completes the
proof that the measure theory rate function is H(ν|µ).

Key Fact. Let µ be an arbitrary probability measure on ∂D
and ν = dθ

2π . Then
lim
k→∞

H(πj(ν)|πj(µ)) = H(ν|µ)
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Limit Theorem for KL Divergences

Before turning to the proof of the Key Fact, a quick remark:
πj(ν) = ν for this ν.

We write it this way because with a
slight change in the proof, it holds for any ν (and µ). This
extended version is needed for the Killip–Simon theorem
and other cases where the limiting empirical measure is not
unweighted Lebesgue measure.

We’ll prove the limit result in two parts. We’ll prove a
general upper bound: H(πj(ν)|πj(µ)) ≤ H(ν|µ). (By
slightly expanding the argument, one sees that
H(πj(ν)|πj(µ)) is monotone increasing in j.)

The other direction – that
H(ν|µ) ≤ lim inf H(πj(ν)|πj(µ)) comes from weak
convergence, limπj(η) = η (for any probability measure η)
and the lower semi–continuity.
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To get the upper bound, note that by convexity of
y 7→ − log y and Jensen’s inequality, for any positive
function h and probability measure dη(y), we have that

−
∫

log h(y) dη(y) ≥ − log

(∫
h(y) dη(y)

)
In just the same way that this implies that H(ν|µ) ≥ 0, it
implies that

−
∫
I
(j)
k

log(w(θ)) 2j
dθ

2π
≥ − log

(
2jµ(I

(j)
k )
)

Summing this yields the upper bound.
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Killip Simon via LDP

The large deviation proof of the Killip–Simon sum rule is
similar to the one I just presented for Szegő–Verblunsky
sum rule with some changes and additions which we briefly
describe.

1 One uses GUE instead of CUE. Thus the measure on
random n× n self–adjoint matrices has
{ReM (n)

ij }1≤i≤j≤n and {ImM (n)
ij }1≤i<j≤n Gaussian iid

with mean zero and E([M
(n)
ii ]2) = n−1.



GNR Approach

Szegő Coefficient
Side

Szegő Measure
Side

Killip Simon via
LDP

Further
Developements

Killip Simon via LDP

The large deviation proof of the Killip–Simon sum rule is
similar to the one I just presented for Szegő–Verblunsky
sum rule with some changes and additions which we briefly
describe.

1 One uses GUE instead of CUE. Thus the measure on
random n× n self–adjoint matrices has
{ReM (n)

ij }1≤i≤j≤n and {ImM (n)
ij }1≤i<j≤n Gaussian iid

with mean zero and E([M
(n)
ii ]2) = n−1.



GNR Approach

Szegő Coefficient
Side

Szegő Measure
Side

Killip Simon via
LDP

Further
Developements

Killip Simon via LDP

2 The eigenvalue distribution has λj ∈ R with
distribution ∏

i<j

|λi − λj |2
 e−n∑n

j=1 λ
2
j (4.1)

so the empirical measure converges to the equilibrium
measure in a quadratic external field, i.e. the minimizer
for −

∫
log |x− y| dµ(x) dµ(y) + 2

∫
x2 dµ(x). It is

well–known that this minimizer is the semicircle law
dν0(x) ≡ π−1(1− x2)1/2χ[−1,1](x)dx. To agree with
the Killip–Simon notation, one rescales the matrix so
the support is [−2, 2].
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measure in a quadratic external field, i.e. the minimizer
for −

∫
log |x− y| dµ(x) dµ(y) + 2

∫
x2 dµ(x). It is

well–known that this minimizer is the semicircle law
dν0(x) ≡ π−1(1− x2)1/2χ[−1,1](x)dx.

To agree with
the Killip–Simon notation, one rescales the matrix so
the support is [−2, 2].
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3 The empirical measure converges to ν0.

By mimicking
the argument above, the contribution of the part of the
spectral measure on [−2, 2] is just H(ν0|µ). Thus the
weight in the Killip–Simon quasi–Szegő integral is
exactly the Wigner semicircle weight.
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4 As we’ve seen, a single point in the measure, if the
point is in the bulk, involves the increase of H(ν|µ)
due to the weight having a smaller integral.

But if the
point is outside [−2, 2], there is a contribution due to
the location, λ0, of the eigenvalue. By looking at the
log of the part of the weight depending on λ0, one sees
that the decrease in the eigenvalue density involves λ0
interacting with n eigenvalues. The decrease is
approximately exp(−nF (λ0)) where F is the potential
in the quadratic external field in the equilibrium
measure (this idea is due to Ben Arous, Dembo and
Guionnet). It is known that this function is the same
as the Killip–Simon F .
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5 For finitely many eigenvalues outside [−2, 2] you just
get the sums of single costs since the interaction
between eigenvalues is O(1), not O(n).

Handling
infinitely many eigenvalues converging to ±2 requires a
careful use of projective limits.

6 For the coefficient side, Killip–Nenciu is replaced by
earlier results of Dumitriu–Edelman (whose work
motivated Killip and Nenciu) who found the
distribution of Jacobi parameters for GUE and GOE.
The {bj}nj=1 are Gaussian (with O(n) widths leading
to the b2j term in the Killip–Simon sum rule). The
{a2j}

n−1
j=1 are gamma distributed, essentially behaving

like sums of exponential random variables and so we
get the G(aj) terms. Thus G occurs in the sum rule as
the rate function for suitable gamma distributions.
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7 There is a technical issue involving the equality of the
two sides of the sum rule that we want to discuss,
addressed in related ways by Gamboa-Rouault and by
BSZ.

The natural setting for the LDP for measures is
the space, X ′, of all probability measures on R, and for
Jacobi parameters the Polish space Y ′ ≡ [R× (0,∞)]∞

with finite sequences added to it. The issue is that the
inverse Jacobi map isn’t defined for all measures but
only those with all moments finite and, in general, this
inverse map is many–to–one in certain cases where the
measure has unbounded support. BSZ handle this by
restricting to measures supported in [−k − 2, k + 2]
and its image under the Jacobi map.



GNR Approach

Szegő Coefficient
Side

Szegő Measure
Side

Killip Simon via
LDP

Further
Developements

Killip Simon via LDP

7 There is a technical issue involving the equality of the
two sides of the sum rule that we want to discuss,
addressed in related ways by Gamboa-Rouault and by
BSZ. The natural setting for the LDP for measures is
the space, X ′, of all probability measures on R, and for
Jacobi parameters the Polish space Y ′ ≡ [R× (0,∞)]∞

with finite sequences added to it.

The issue is that the
inverse Jacobi map isn’t defined for all measures but
only those with all moments finite and, in general, this
inverse map is many–to–one in certain cases where the
measure has unbounded support. BSZ handle this by
restricting to measures supported in [−k − 2, k + 2]
and its image under the Jacobi map.



GNR Approach

Szegő Coefficient
Side

Szegő Measure
Side

Killip Simon via
LDP

Further
Developements

Killip Simon via LDP

7 There is a technical issue involving the equality of the
two sides of the sum rule that we want to discuss,
addressed in related ways by Gamboa-Rouault and by
BSZ. The natural setting for the LDP for measures is
the space, X ′, of all probability measures on R, and for
Jacobi parameters the Polish space Y ′ ≡ [R× (0,∞)]∞

with finite sequences added to it. The issue is that the
inverse Jacobi map isn’t defined for all measures but
only those with all moments finite and, in general, this
inverse map is many–to–one in certain cases where the
measure has unbounded support.

BSZ handle this by
restricting to measures supported in [−k − 2, k + 2]
and its image under the Jacobi map.



GNR Approach

Szegő Coefficient
Side

Szegő Measure
Side

Killip Simon via
LDP

Further
Developements

Killip Simon via LDP

7 There is a technical issue involving the equality of the
two sides of the sum rule that we want to discuss,
addressed in related ways by Gamboa-Rouault and by
BSZ. The natural setting for the LDP for measures is
the space, X ′, of all probability measures on R, and for
Jacobi parameters the Polish space Y ′ ≡ [R× (0,∞)]∞

with finite sequences added to it. The issue is that the
inverse Jacobi map isn’t defined for all measures but
only those with all moments finite and, in general, this
inverse map is many–to–one in certain cases where the
measure has unbounded support. BSZ handle this by
restricting to measures supported in [−k − 2, k + 2]

and its image under the Jacobi map.



GNR Approach

Szegő Coefficient
Side

Szegő Measure
Side

Killip Simon via
LDP

Further
Developements

Killip Simon via LDP

7 There is a technical issue involving the equality of the
two sides of the sum rule that we want to discuss,
addressed in related ways by Gamboa-Rouault and by
BSZ. The natural setting for the LDP for measures is
the space, X ′, of all probability measures on R, and for
Jacobi parameters the Polish space Y ′ ≡ [R× (0,∞)]∞

with finite sequences added to it. The issue is that the
inverse Jacobi map isn’t defined for all measures but
only those with all moments finite and, in general, this
inverse map is many–to–one in certain cases where the
measure has unbounded support. BSZ handle this by
restricting to measures supported in [−k − 2, k + 2]
and its image under the Jacobi map.



GNR Approach

Szegő Coefficient
Side

Szegő Measure
Side

Killip Simon via
LDP

Further
Developements

Mysteries Solved

We can now solve the mysteries:
1 Why are there any positive combinations?

This is the
basic GNR theory of positive sum rules.

2 It is easy to understand the (4− x2)−1/2 dx of the
Szegő condition but where the heck does the
(4− x2)1/2 dx come from? This is the Wigner
semi–circle law; essentially the measure is the potential
theory equilibrium measure in quadratic external field.

3 What does the function
G(a) = a2 − 1− log(a2)

mean? As we’ve seen, this is the rate function for
square roots of sums of exponential RVs.

4 What does the function

F (E) = 1
4 [β2 − β−2 − log β4]; E = β + β−1

mean? This is the Coulomb potential of the Wigner
semi–circle distribution plus a quadratic external field.
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Higher Order Sum Rules

In OPUC1, I found a sum rule involving
−
∫

(1− cos(θ)) log(w(θ)) dθ2π on the measure side and
made a conjecture concerning

−
∫

log(w(θ)) dη(θ)

where

dη(θ) = Z−1
k∏
j=1

(1− cos(θ − θj))mjdθ

where Z is a normalization factor to make dη into a
probability measure. There developed a huge literature on
these so called higher order sum rules for OPUC and OPRL
including papers by Denissov, Golinskii, Kupin, Laptev et al,
Lukic and Nazarov et al.
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where V is a function on ∂D and {λj}Nj=1 are the
eigenvalues. It is well known in the random matrix literature
that when V is nice enough, we will get dη as the empirical
measure if

V (eiθ) = 2

∫
log |eiθ − eiψ| dη(ψ)
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Higher Order Sum Rules

In a forthcoming paper BSZ study this when dη is given as
above.

In the cases we study, V (eiθ) is a finite linear
combination of cos(mθ). In terms of U , if eiθj are the
eigenvalues,

∑n
j=1 cos(mθj) = Re(Tr(Um)) which one can

write in terms of Verblunsky coefficients using the CMV (or
the GGT) representation of U . We obtain a large deviations
proof of the (1− cos(θ)) sum rule of Simon and the gems
of Simon–Zlatoš. In addition, we prove a partial special case
of a conjecture of Lukic that replaces a wrong conjecture of
Simon, providing evidence for Lukic’s conjecture.
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GNR have a paper that discusses in some detail the case
V (θ) = cos(θ) where the random matrix model has been
studied by Gross–Witten whose names GNR apply to the
model.

They note that formally the large deviations
argument leads to a sum rule but for technical reasons, they
aren’t able to provide a proof. By using some results from
the theory of OPUC, we do prove sum rules in this and the
other cases.
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Finite Gap OPUC

There has been very little work on Killip–Simon type
theorems for finite gap sets in OPUC.

In a recent preprint,
GNR obtain a sum rule and gem for
e = {eiθ |α ≤ θ ≤ 2π − α} for 0 < α < π. For real α, the
Verblunsky side has the expected

∑
|αj − a|2 form but for

general α, it has the form
∑
|γj − a|2 where γj is a

non–local function of the α’s. In particular, it is not clear if
the finiteness of their Verblunsky side only depends on the
behavior near j =∞. At least for the real case, it would be
interesting to get the sum rule via the Poisson–Jensen
methods used in the original Killip–Simon proof. It would
also be interesting to understand the γj ’s in a more
conventional setting.

Understanding perturbations of periodic and the more
general finite gap OPUC remains open.
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Finally, we note that Killip–Simon have proven a sum rule
and gem for half–line Schrödinger operators when
V ∈ L2((0,∞); dx).

It would be very interesting to find a
large deviation proof of this result. In particular, what is the
analog of random matrix models for the study of
Schrödinger operators?
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A Comprehensive Course in Analysis by Poincaré Prize 
winner Barry Simon is a fi ve-volume set that can serve as 
a graduate-level analysis textbook with a lot of additional 
bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 1 is devoted to real analysis. From one point of view, 
it presents the infi nitesimal calculus of the twentieth century with the ultimate 
integral calculus (measure theory) and the ultimate differential calculus (distribu-
tion theory). From another, it shows the triumph of abstract spaces: topological 
spaces, Banach and Hilbert spaces, measure spaces, Riesz spaces, Polish spaces, 
locally convex spaces, Fréchet spaces, Schwartz space, and Lp  spaces. Finally it 
is the study of big techniques, including the Fourier series and transform, dual 
spaces, the Baire category, fi xed point theorems, probability ideas, and Hausdorff 
dimension. Applications include the constructions of nowhere differentiable func-
tions, Brownian motion, space-fi lling curves, solutions of the moment problem, 
Haar measure, and equilibrium measures in potential theory.
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A Comprehensive Course in Analysis by Poincaré Prize 
winner Barry Simon is a fi ve-volume set that can serve as 
a graduate-level analysis textbook with a lot of additional 
bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 2A is devoted to basic complex analysis. It inter-
weaves three analytic threads associated with Cauchy, Riemann, and Weierstrass, 
respectively. Cauchy’s view focuses on the differential and integral calculus of 
functions of a complex variable, with the key topics being the Cauchy integral 
formula and contour integration. For Riemann, the geometry of the complex plane 
is central, with key topics being fractional linear transformations and conformal 
mapping. For Weierstrass, the power series is king, with key topics being spaces 
of analytic functions, the product formulas of Weierstrass and Hadamard, and 
the Weierstrass theory of elliptic functions. Subjects in this volume that are often 
missing in other texts include the Cauchy integral theorem when the contour is 
the boundary of a Jordan region, continued fractions, two proofs of the big Picard 
theorem, the uniformization theorem, Ahlfors’s function, the sheaf of analytic 
germs, and Jacobi, as well as Weierstrass, elliptic functions.
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A Comprehensive Course in Analysis by Poincaré Prize 
winner Barry Simon is a fi ve-volume set that can serve as 
a graduate-level analysis textbook with a lot of additional 
bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 2B provides a comprehensive look at a number of 
subjects of complex analysis not included in Part 2A. Presented in this volume 
are the theory of conformal metrics (including the Poincaré metric, the Ahlfors-
Robinson proof of Picard’s theorem, and Bell’s proof of the Painlevé smoothness 
theorem), topics in analytic number theory (including Jacobi’s two- and four-
square theorems, the Dirichlet prime progression theorem, the prime number 
theorem, and the Hardy-Littlewood asymptotics for the number of partitions), the 
theory of Fuschian differential equations, asymptotic methods (including Euler’s 
method, stationary phase, the saddle-point method, and the WKB method), univa-
lent functions (including an introduction to SLE), and Nevanlinna theory. The 
chapters on Fuschian differential equations and on asymptotic methods can be 
viewed as a minicourse on the theory of special functions.
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A Comprehensive Course in Analysis by Poincaré Prize 
winner Barry Simon is a fi ve-volume set that can serve as 
a graduate-level analysis textbook with a lot of additional 
bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 3 returns to the themes of Part 1 by discussing point-
wise limits (going beyond the usual focus on the Hardy-Littlewood maximal 
function by including ergodic theorems and martingale convergence), harmonic 
functions and potential theory, frames and wavelets, H p  spaces (including bounded 
mean oscillation (BMO)) and, in the fi nal chapter, lots of inequalities, including 
Sobolev spaces, Calderon-Zygmund estimates, and hypercontractive semigroups.
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A Comprehensive Course in Analysis by Poincaré Prize 
winner Barry Simon is a fi ve-volume set that can serve as 
a graduate-level analysis textbook with a lot of additional 
bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 4 focuses on operator theory, especially on a Hilbert 
space. Central topics are the spectral theorem, the theory of trace class and 
Fredholm determinants, and the study of unbounded self-adjoint operators. There 
is also an introduction to the theory of orthogonal polynomials and a long chapter 
on Banach algebras, including the commutative and non-commutative Gel’fand-
Naimark theorems and Fourier analysis on general locally compact abelian groups.
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