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Killip–Simon functions

Given a measure dµ = w(x) dx+ dµs with pure points
{E±j }

N±
j=1 outside [−2, 2] (with + above 2 and - below -2)

one defines (with m(z) =
∫
(x− z)−1dµ(x) and

m(x) ≡ limy↓0m(x+ iy)).

Q(µ) =
1

2π

∫ 2π

0
log

(
sin(θ)

Imm(2 cos(θ))

)
sin2(θ)dθ

G(a) = a2 − 1− log(a2) and

F (E) ≡ 1
4 [β

2−β−2− log(β4)] E = β+β−1 |β| > 1

The gem will come from the fact that F ≥ 0, vanishes
exactly at E = ±2 and is O((|E| − 2)3/2) there and that
G ≥ 0, vanishes exactly at a = 1 and is O((a− 1)2) there.
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Killip–Simon sum rule

The Killip–Simon rule says that

Q(µ) +
∑
j,±

F (E±j ) =

∞∑
n=1

1
4b

2
n +

1
2G(an)

An important point is that it always holds although both
sides may be +∞. Our main goal in Lecture 2 will be to
sketch a variant of the original proof of this sum rule. I
know of many proofs of Szegő’s Theorem but until recently
all proofs of the Killip–Simon sum rule were variants of this
proof. We’ll need a Poisson-Jensen formula for certain
meromorphic functions, so I start by recalling the classical
PJ formula in the subtle form found by Smirnov and
Beurling.
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Nevanlinna Class and Blaschke
Products

I’ll remind you of the classical results without proofs which
you can find in my Basic Complex Analysis, Sections 9.8
and 9.9 and Harmonic Analysis, Sections 5.3, 5.6 and 5.7.

Let f be an analytic function on the unit disk, D. We say
that f ∈ N , the Nevanlinna class, if and only if,
sup0<r<1

∫ 2π
0 log+ |f(reiθ)|dθ <∞. It is a basic fact that if

{zj} is a listing of the zero’s of f counting multiplicity, then

f ∈ N ⇒
∑

(1− |zj |) <∞
and this implies that the Blaschke product
B(z) =

∏N
j=1 b(z, zj) converges absolutely on the unit disk

to an analytic function vanishing precisely at the zj . Here:

b(z, w) =

{
z, if w = 0

− |w|(z−w)
w(1−w̄z) if w 6= 0
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Hardy Class and Smirnov–Beurling
Representation

For 0 < p <∞, the Hardy class, Hp, is the set of f
analytic on D with sup0<r<1

∫ 2π
0 |f(re

iθ)|pdθ <∞ and
H∞ is the bounded analytic functions.

For p < p′, one has
H∞ ⊂ Hp′ ⊂ Hp ⊂ N , so, in particular, the Blaschke
product converges. For any function, f in N and, in
particular in any Hp, there is a function, f∗, on ∂D so for
a.e. θ, f∗(eiθ) = limr↑1 f(re

iθ). Any absolutely convergent
Blaschke product, B, lies in H∞ and has |B∗(eiθ)| = 1 for
a.e. θ. For p ≥ 1, f∗ determines f via a complex Poisson
representation but not necessarily if p < 1.

For p ≥ 1, hp is defined like Hp but its elements, u, are
real–valued harmonic, rather than analytic functions. If
u ∈ h1, then the measure u(reiθ)dθ/2π has a weak–* limit
dµ and u can be recovered via a Poisson formula.
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H∞ is the bounded analytic functions. For p < p′, one has
H∞ ⊂ Hp′ ⊂ Hp ⊂ N , so, in particular, the Blaschke
product converges. For any function, f in N and, in
particular in any Hp, there is a function, f∗, on ∂D so for
a.e. θ, f∗(eiθ) = limr↑1 f(re

iθ). Any absolutely convergent
Blaschke product, B, lies in H∞ and has |B∗(eiθ)| = 1 for
a.e. θ. For p ≥ 1, f∗ determines f via a complex Poisson
representation but not necessarily if p < 1.
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Moreover, the a.e. pointwise limit u∗ exists and
u∗(eiθ)dθ/2π is the a.c. part of dµ

although there can also
be a singular part. If u ∈ hp, p > 1, this singular part is
absent.

If f ∈ N , then f/B ∈ N so log(|f/B|) ∈ h1 and we obtain
the Poisson–Jensen representation of Smirnov and Beurling

f(z) = ωB(z) exp

(∫
eiθ + z

eiθ − z
dµ(θ)

)
where |ω| = 1. If f ∈ Hp, then the singular part of the
measure is negative and one has Beurling’s inner/outer
factorization. If log(|f/B|) is in some hp, p > 1, there is no
inner factor and the PJ formula takes the form

f(z) = ωB(z) exp

(∫
eiθ + z

eiθ − z
log |f(eiθ)|dθ

2π

)
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Meromorphic Herglotz Functions

By a meromorphic Herglotz function, we mean a function
meromorphic on D, real on (−1, 1) with
Im z > 0⇒ Im f(z) > 0.

It is easy to see that such
functions have zeros and poles only on (−1, 1) and the
zeros and poles are simple and interlace. If one looks at the
product of Blaschke factors and their inverses for the zeros
and poles in (−r, r), it can be shown that they have a limit
as r ↑ 1 – an analog of alternating sums converging. Let’s
suppose f(0) = 0 and let B(z) be the limiting product of
zero and pole Blashcke factors other than the zero at 0.
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Meromorphic Herglotz Functions

One can prove that in D ∩ C+, one has that
|argzB(z)| ≤ 2π so that arg(f(z)/zB(z)) is bounded on
D.

Since arg(g) = Im(log g), M. Riesz’s Theorem implies
that log(f(z)/zB(z)) is in all Hp with p <∞ so it obeys a
Poisson–Jensen formula (with no singular inner part). Thus

f(z) = zB(z) exp

(∫
eiθ + z

eiθ − z
log |f(eiθ)|dθ

2π

)
Taking log’s, one gets relations between Taylor coefficients
of log(f(z)/z), certain sums involving logs or powers of
zeros and poles and integrals cos(nθ) log |f(eiθ)|.
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Case Step–by-Step Sum Rules

Recall that m(z) =
∫
dµ(x)/(x− z). It defines a Herglotz

function on C+, real on R.

The map z 7→ z + z−1 maps D
to (C ∪∞) \ [−2, 2] flipping the sign of Imz. Thus, if
σess(J) ⊂ [−2, 2], M(z) = −m(z + z−1) is what we called
a meromorphic Herglotz function. Its poles are the
eigenvalues of J under the inverse image of the map
z 7→ z + z−1 and its zeros are the same for J1. The Taylor
coefficients of log M(z) about zero are related to those of
m(z) at infinity and so polynomials in the Jacobi
parameters. We use πw(x) = limε↓0 Imm(x+ iε).

The above procedure thus yields a relation between
polynomials of Jacobi parameters, the difference of
functions of the eigenvalues of J and J1 and integral of
log |M(eiθ)|. Because m(z)−1 = b1 − z − a2

1m1(z), one
finds that |M(eiθ)|−2ImM(eiθ) = a2

1ImM1(e
iθ) so the log

integral is a log of ratios of w and w1.
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coefficients of log M(z) about zero are related to those of
m(z) at infinity and so polynomials in the Jacobi
parameters. We use πw(x) = limε↓0 Imm(x+ iε).

The above procedure thus yields a relation between
polynomials of Jacobi parameters, the difference of
functions of the eigenvalues of J and J1 and integral of
log |M(eiθ)|. Because m(z)−1 = b1 − z − a2

1m1(z), one
finds that |M(eiθ)|−2ImM(eiθ) = a2

1ImM1(e
iθ) so the log

integral is a log of ratios of w and w1.
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What results is a step–by–step sum rule which if iterated
with boundary terms dropped yields the formal sum rules
stated by Case

(although, unlike Case, Killip and I had
explicit formulae for the polynomials in the Jacobi
parameters). These Cn step–by–step sum rules, especially
C0 have turned out to be useful in spectral theory, but to
get a gem, one needs positivity and Killip and I found that
none of the Case rules had the required positivity.

However, we discovered that C0 +
1
2C2 had the required

positivity. We had no explanation of why this was so but
observed it. We called this the P2 sum rule (P for positive)
and it is now known as the Killip–Simon sum rule. The
rather complicated functions F and G just arose by taking
the functions from the Case sum rule and combining them.
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The explicit result is:

1
4b

2
1 +

1
2G(a1) = Q(J |J1) +

∑
j,±

[
F (E±j (J))− F (E

±
j (J1))

]
where

Q(J |J1) =
1

2π

∫ 2π

0
log

(
ImM1(2 cos(θ))

ImM(2 cos(θ))

)
sin2(θ)dθ

By interlacing, the sum of F terms is always convergent.
And one can prove that the integral defining Q is always
convergent. The log terms in F and G comes from the
leading, i.e. C0 rule. sin2 θ enters as 1

2 [1− cos(2θ)], the 1
from C0 and cos(2θ) from C2. Iterating
n∑
j=1

1
4b

2
j+

1
2G(aj) = Q(J |Jn)+

∑
j,±

[
F (E±j (J))− F (E

±
j (Jn))

]
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Upper Bound on Jacobi Sum

We’ll prove the sum rule by proving two inequalities. First
that

∞∑
j=1

[
1
4b

2
j +

1
2G(aj)

]
≤ Q(J) +

∑
j,±

F (E±j (J))

If either Q(J) or
∑

j,± F (E
±
j (J)) is infinite, then there is

nothing to prove. If both are finite, the same is true for
Q(Jn) and

∑
j,± F (E

±
j (Jn)) so in the iterated

step–by–step sum rule, we can write
Q(J |Jn) = Q(J)−Q(Jn) and move both Jn terms to the
other side and drop them to get the inequality for

∑n
j=1

and then take n→∞. The fact that all functions are
positive is clearly needed in the dropping argument.
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Lower Semicontinuity of the KL
Divergence

Given a pair of probability measures, µ and ν on the same
space, one defines their Kullback–Leibler (KL) divergence by

H(ν |µ) =

{∫
log
(
dν
dµ

)
dν, if ν is µ–a.c.

∞, otherwise.

One has H(ν |µ) ≥ 0 with equality only if µ = ν. The name
Kullback–Leibler (KL) divergence is used by statisticians
and has been taken over in the probability literature. In the
information theory literature it is called the relative entropy
although in some of the statistical mechanics literature its
negative is often called by that name.

Notice that the OPUC Szegő integral is precisely
−H( dθ2π |µ) and what we called Q(µ) in the KS sum rule is
precisely H(ν |µ) where
dν(x) = (2π)−1(4− x2)1/2χ[−2,2](x)dx.
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Lower Semicontinuity of the KL
Divergence

An important property of the KL divergence is lower
semicontinuity.

One proves the following variational
principle

H(ν |µ) = sup
f

(
−
∫
f dµ(x) +

∫
[1 + log(f(x))] dν(x)

)
where the sup is taken over all strictly positive continuous
functions. If dν = g dµ with g continuous and strictly
positive, then the quantity in the sup when f = g is H and
Jensen’s inequality implies the sup is always great than H.
Some approximation arguments complete the proof of the
variation principle. The variational principle says H is a sup
of continuous linear functionals so

H(ν |µ) is jointly convex and jointly
lower semicontinuous in µ and ν
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Lower Bound on Jacobi Sum

We defined Jn as what one gets by striping off the first n
Jacobi pairs, i.e. subtracting from the left. Complementary
is J (n) which builds up by adding on the right, i.e. it has
Jacobi parameters:

a
(n)
k , b

(n)
k =

{
ak, bk, if k = 1, . . . , n

0, 1, if k ≥ n

The point is that
[
J (n)

]
n
is the free Jacobi matrix, which

has no eigenvalues outside [−2, 2], no non–trivial Jacobi
parameters and the the free m–function. By looking at the
n–times iterated sum rule for J (n), we find that

n∑
j=1

[
1
4b

2
j +

1
2G(aj)

]
= Q(J (n)) +

∑
j,±

F (E±j (J
(n)))
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Lower Bound on Jacobi Sum

We get a lower bound on these equal term by replacing the
full eigenvalue sum which might have more and more terms
as n increases by the sum for j = 1, . . . ,K for K fixed.

Having done that, take n→∞. The left side converges to
the infinite sum (which might be infinite but the summands
are positive). One can show the spectral measures for J (n)

converge weakly to that of J so, by lower semincontinity,
Q(J) is smaller than the lim inf. For each fixed j, one can
prove that E±j (J

(n)) converges to E±j (J) so the sums up to
K converge. Then taking K →∞, we get that

∞∑
j=1

[
1
4b

2
j +

1
2G(aj)

]
≥ Q(J) +

∑
j,±

F (E±j (J))

This complements the upper bound and proves the full KS
sum rule. Note the importance of the positivity of F and G
in proving the lower bound.
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∞∑
j=1

[
1
4b

2
j +

1
2G(aj)

]
≥ Q(J) +

∑
j,±

F (E±j (J))

This complements the upper bound and proves the full KS
sum rule. Note the importance of the positivity of F and G
in proving the lower bound.
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Mysteries

While the gem one gets from the P2 sum rule is simple and
elegant, the proof has lots of mysteries:

1 Why are there any positive combinations?
2 It is easy to understand the (4− x2)−1/2 dx of the

Szegő condition. It is dθ under x = cos(θ).
Equivalently, it is the potential theoretic equilibrium
measure for [−2, 2] but where the heck does the
(4− x2)1/2 dx come from?

3 What does the function
G(a) = a2 − 1− log(a2)

mean?
4 What does the function

F (E) = 1
4 [β

2 − β−2 − log β4]; E = β + β−1

mean?
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And Now a Word from Our Sponsor

SIMON/1
AMS on the Web  
www.ams.org

816 pages on 50lb stock  •  Backspace: 2 5/16''  4-color process

For additional information
and updates on this book, visit

www.ams.org/bookpages/simon

A Comprehensive Course in Analysis by Poincaré Prize 
winner Barry Simon is a fi ve-volume set that can serve as 
a graduate-level analysis textbook with a lot of additional 
bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 1 is devoted to real analysis. From one point of view, 
it presents the infi nitesimal calculus of the twentieth century with the ultimate 
integral calculus (measure theory) and the ultimate differential calculus (distribu-
tion theory). From another, it shows the triumph of abstract spaces: topological 
spaces, Banach and Hilbert spaces, measure spaces, Riesz spaces, Polish spaces, 
locally convex spaces, Fréchet spaces, Schwartz space, and Lp  spaces. Finally it 
is the study of big techniques, including the Fourier series and transform, dual 
spaces, the Baire category, fi xed point theorems, probability ideas, and Hausdorff 
dimension. Applications include the constructions of nowhere differentiable func-
tions, Brownian motion, space-fi lling curves, solutions of the moment problem, 
Haar measure, and equilibrium measures in potential theory.
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For additional information
and updates on this book, visit

www.ams.org/bookpages/simon

A Comprehensive Course in Analysis by Poincaré Prize 
winner Barry Simon is a fi ve-volume set that can serve as 
a graduate-level analysis textbook with a lot of additional 
bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 2A is devoted to basic complex analysis. It inter-
weaves three analytic threads associated with Cauchy, Riemann, and Weierstrass, 
respectively. Cauchy’s view focuses on the differential and integral calculus of 
functions of a complex variable, with the key topics being the Cauchy integral 
formula and contour integration. For Riemann, the geometry of the complex plane 
is central, with key topics being fractional linear transformations and conformal 
mapping. For Weierstrass, the power series is king, with key topics being spaces 
of analytic functions, the product formulas of Weierstrass and Hadamard, and 
the Weierstrass theory of elliptic functions. Subjects in this volume that are often 
missing in other texts include the Cauchy integral theorem when the contour is 
the boundary of a Jordan region, continued fractions, two proofs of the big Picard 
theorem, the uniformization theorem, Ahlfors’s function, the sheaf of analytic 
germs, and Jacobi, as well as Weierstrass, elliptic functions.
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SIMON/2.2
AMS on the Web  
www.ams.org

344 pages on 50lb stock  •  Backspace: 1 3/8''  4-color process

For additional information
and updates on this book, visit

www.ams.org/bookpages/simon

A Comprehensive Course in Analysis by Poincaré Prize 
winner Barry Simon is a fi ve-volume set that can serve as 
a graduate-level analysis textbook with a lot of additional 
bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 2B provides a comprehensive look at a number of 
subjects of complex analysis not included in Part 2A. Presented in this volume 
are the theory of conformal metrics (including the Poincaré metric, the Ahlfors-
Robinson proof of Picard’s theorem, and Bell’s proof of the Painlevé smoothness 
theorem), topics in analytic number theory (including Jacobi’s two- and four-
square theorems, the Dirichlet prime progression theorem, the prime number 
theorem, and the Hardy-Littlewood asymptotics for the number of partitions), the 
theory of Fuschian differential equations, asymptotic methods (including Euler’s 
method, stationary phase, the saddle-point method, and the WKB method), univa-
lent functions (including an introduction to SLE), and Nevanlinna theory. The 
chapters on Fuschian differential equations and on asymptotic methods can be 
viewed as a minicourse on the theory of special functions.
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For additional information
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www.ams.org/bookpages/simon

A Comprehensive Course in Analysis by Poincaré Prize 
winner Barry Simon is a fi ve-volume set that can serve as 
a graduate-level analysis textbook with a lot of additional 
bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 3 returns to the themes of Part 1 by discussing point-
wise limits (going beyond the usual focus on the Hardy-Littlewood maximal 
function by including ergodic theorems and martingale convergence), harmonic 
functions and potential theory, frames and wavelets, H p  spaces (including bounded 
mean oscillation (BMO)) and, in the fi nal chapter, lots of inequalities, including 
Sobolev spaces, Calderon-Zygmund estimates, and hypercontractive semigroups.
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A Comprehensive Course in Analysis by Poincaré Prize 
winner Barry Simon is a fi ve-volume set that can serve as 
a graduate-level analysis textbook with a lot of additional 
bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 4 focuses on operator theory, especially on a Hilbert 
space. Central topics are the spectral theorem, the theory of trace class and 
Fredholm determinants, and the study of unbounded self-adjoint operators. There 
is also an introduction to the theory of orthogonal polynomials and a long chapter 
on Banach algebras, including the commutative and non-commutative Gel’fand-
Naimark theorems and Fourier analysis on general locally compact abelian groups.
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