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AMENABLE ACTIONS AND ALMOST INVARIANT SETS

ALEXANDER S. KECHRIS AND TODOR TSANKOV

Abstract. In this paper, we study the connections between properties of the

action of a countable group Γ on a countable set X and the ergodic theoretic

properties of the corresponding generalized Bernoulli shift, i.e., the correspond-
ing shift action of Γ on MX , where M is a measure space. In particular, we

show that the action of Γ on X is amenable iff the shift Γ y MX has almost

invariant sets.

1. Introduction

Let X be a countable set and Γ a countable, infinite group acting on X. Let
M be a standard Borel space and ν an arbitrary Borel, probability measure on M
which does not concentrate on a single point. Consider the measure space (MX , νX)
where νX stands for the product measure (which we will also denote by µ). The
action of Γ on X gives rise to an action on MX (called a generalized Bernoulli shift)
by measure preserving transformations:

(γ · c)(x) = c(γ−1 · x), for c ∈ MX .

The classical Bernoulli shifts are obtained by letting Z act on itself by translation.
There are natural connections between many properties of the action of Γ on X

and ergodic theoretic properties of the corresponding Bernoulli shift. We summarize
some of those in Section 2. In studying generalized Bernoulli shifts, it is often useful
to consider the unitary representations of Γ arising from the actions, namely the
representation λX on `2(X) given by

(λX(γ) · f)(x) = f(γ−1 · x), for f ∈ `2(X),

and the Koopman representation κ on L2(MX , µ) given by

(κ(γ) · f)(c) = f(γ−1 · c), for f ∈ L2(MX , µ).

Since the representation κ trivially fixes the constants, we will often also consider its
restriction κ0 to L2

0(M
X , µ) =

{
f ∈ L2 :

∫
f = 0

}
. We recall some basic definitions

about unitary representations. Let π, σ be representations of a countable group Γ.
If σ is isomorphic to a subrepresentation of π, we write σ ≤ π. In particular, if
σ = 1Γ, the trivial (one-dimensional) representation of Γ, and σ ≤ π, we say that
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π has invariant vectors. If Q ⊆ Γ is finite, and ε > 0, we say that a unit vector
v ∈ H is (Q, ε, π)-invariant if

∀γ ∈ Q ‖π(γ) · v − v‖ < ε.

If for all pairs (Q, ε), there exists a (Q, ε, π)-invariant vector, we say that π has
almost invariant vectors and write 1Γ ≺ π.

Recall that the action of Γ on X is called amenable if there exists a Γ-invariant
mean on `∞(X). The action is said to satisfy the Følner condition if for all finite
Q ⊆ Γ and all ε > 0, there exists a finite F ⊆ X such that

(1.1) ∀γ ∈ Q |F 4 γ · F | < ε|F |.
The following equivalences are well known and can be proved in exactly the same
way as the corresponding ones for amenability of groups (see, for example, Bekka–de
la Harpe–Valette [2]).

Theorem 1.1. The following are equivalent for an action of Γ on X:
(i) the action is amenable;
(ii) the action satisfies the Følner condition;
(iii) 1Γ ≺ λX .

Clearly, all actions of amenable groups are amenable and if an action has a
finite orbit, it is automatically amenable. There are also non-amenable groups
which admit amenable actions with infinite orbits. Important examples are the
non-amenable, inner amenable groups with infinite conjugacy classes (consider the
action of Γ on Γ \ {1} by conjugation; see Bédos–de la Harpe [1] for definitions
and examples). Interestingly, free groups also admit transitive, faithful, amenable
actions (van Douwen [3]). Y. Glasner and N. Monod in a recent paper [5] study the
class of groups which admit transitive, faithful, amenable actions and give some
history, references, and further examples. Grigorchuk–Nekrashevych [6] describe
yet another example of faithful, transitive, amenable actions of free groups. On the
other hand, every amenable action of a group with Kazhdan’s property (T) has a
finite orbit.

An action of a countable group Γ on a measure space (Y, µ) by measure preserving
transformations has almost invariant sets if there is a sequence {An} of measurable
sets with measures bounded away from 0 and 1 such that for all γ ∈ Γ,

µ(γ ·An4An) → 0 as n →∞.

It is easy to see that the existence of almost invariant sets implies the existence of
almost invariant vectors for the Koopman representation κ0 (look at the charac-
teristic functions) but the converse may fail, as was first proved by Schmidt [11]
(for another example, see Hjorth–Kechris [7, Theorem A3.2]). In fact, the existence
of almost invariant sets depends only on the orbit equivalence relation which, in
the ergodic case, is equivalent to non E0-ergodicity (Jones–Schmidt [9]), while the
existence of almost invariant vectors depends on the group action (see [7] again).
Recall that E0 is the equivalence relation on 2N defined by

(xn) E0 (yn) ⇐⇒ ∃m∀n > m xn = yn.

An equivalence relation E on a measure space (Y, µ) is E0-ergodic if for every Borel
map f : Y → 2N which satisfies

xE y =⇒ f(x)E0 f(y),
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there is a single E0 equivalence class whose preimage is µ-conull. For a discussion
on E0-ergodicity and the related concepts of almost invariant vectors and sets, see
[7, Appendix A].

Now we can state the main theorem of this paper which connects the amenability
of the action of Γ on X and the existence of almost invariant sets for the correspond-
ing Bernoulli shift and almost invariant vectors for the Koopman representation.

Theorem 1.2. Let an infinite, countable group Γ act on a countable set X. The
following are equivalent:

(i) the action of Γ on X is amenable;
(ii) the action of Γ on MX has almost invariant sets;
(iii) the Koopman representation κ0 has almost invariant vectors.

This result has an implication concerning orbit equivalence. Schmidt [11] showed
that every non-amenable group Γ that does not have property (T) has at least two
non-orbit equivalent, ergodic actions (this was extended later by Hjorth [8] to all
non-amenable groups). The preceding result shows that if Γ is non-amenable but
admits an action on X which is amenable and has infinite orbits (this class of groups
is a subclass of non-property (T) groups), then one in fact has two ergodic, free a.e.
generalized shifts which are not orbit equivalent: the generalized shift on 2X and
the usual shift on 2Γ (ergodicity follows from Proposition 2.1 below and freeness
can easily be achieved by adding an additional orbit to X, see Proposition 2.4). For
example, for non-amenable, inner amenable groups Γ, the usual shift on 2Γ and the
conjugacy shift on 2Γ\{1} are not orbit equivalent. Also any non-abelian free group
admits two non-orbit equivalent free, ergodic generalized shifts.

Since in most cases the existence of almost invariant vectors is easier to check
than the existence of almost invariant sets, it will be interesting to know whether
there are other cases in which the two concepts coincide. A relatively broad class of
examples of measure preserving actions, studied by several authors (see the mono-
graph Schmidt [12] for discussion and references and also Kechris [10]), consists of
the actions by automorphisms on compact Polish groups (equipped with the Haar
measure). The generalized Bernoulli shifts with a homogeneous base space M also
fall into that class.

Question 1.3. Let Γ act on a compact Polish group G by automorphisms (which
necessarily preserve the Haar measure). Is it true that the action has almost in-
variant sets iff the corresponding Koopman representation κ0 has almost invariant
vectors?

The rest of the paper is organized as follows: in Section 2, we recall some nec-
essary and sufficient conditions for a Bernoulli shift to be ergodic, mixing, etc.; in
Section 3, we carry out a detailed spectral analysis of the Koopman representation
of generalized Bernoulli shifts and prove a few preliminary lemmas; and finally, in
Section 4, we give a proof of Theorem 1.2.

Below Γ and G will always be countable, infinite groups and Q will denote a
finite subset of the group.

2. Group actions and generalized shifts

In this section, we record several known facts which characterize when a gener-
alized Bernoulli shift is ergodic, weakly mixing, mixing, or free a.e.
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Proposition 2.1. The following are equivalent:
(i) the action of Γ on MX is ergodic;
(ii) the action of Γ on MX is weakly mixing;
(iii) the action of Γ on X has infinite orbits;
(iv) 1Γ � λX .

Proof. We shall need the following standard lemma from group theory (for a proof,
see, e.g., [10, Lemma 4.4]):

Lemma 2.2 (Neumann). Let Γ be a group acting on a set X. Then the following
are equivalent:

(a) all orbits are infinite;
(b) for all finite F1, F2 ⊆ X, there exists γ ∈ Γ such that γ · F1 ∩ F2 = ∅.

(i) ⇒ (iii) Suppose that there is a finite orbit F ⊆ X. Let A ⊆ M , 0 < ν(A) < 1.
Then the set

{
c ∈ MX : c(F ) ⊆ A

}
is non-trivial and invariant under the action.

(iii) ⇒ (ii) It suffices to show that the diagonal action of Γ on MX × MX is
ergodic. This action is the same as the Bernoulli shift corresponding to the disjoint
sum of the action of Γ on X with itself. The latter action has infinite orbits by (iii).
Suppose A ⊆ MXtX is invariant and 0 < µ(A) < 1. Then we can find A′ ⊆ MXtX

depending only on a finite set of coordinates F ⊆ X tX such that µ(A′4A) < ε/3
and µ(A′) − µ(A′)2 > ε for some ε > 0. By Lemma 2.2, there is γ ∈ Γ such that
γ · F ∩ F = ∅. By independence, µ(A′ ∩ γ ·A′) = µ(A′)2. On the other hand,

µ(A′ ∩ γ ·A′) ≥ µ(A′)− 3µ(A4A′) > µ(A′)− ε,

a contradiction.
(ii) ⇒ (i) and (iii) ⇔ (iv) are obvious. �

Recall that π is called a c0-representation if for all v ∈ Hπ, limγ→∞ 〈π(γ) · v, v〉 =
0.

Proposition 2.3. The following are equivalent:
(i) the action of Γ on MX is mixing;
(ii) κ0 is a c0-representation;
(iii) λX is a c0-representation;
(iv) the stabilizers Γx = {γ ∈ Γ : γ · x = x} for x ∈ X are finite.

Proof. (ii) ⇒ (iv) Let A ⊆ M , 0 < ν(A) < 1. Suppose Γx is infinite for some x and
consider the set B =

{
c ∈ MX : c(x) ∈ A

}
. Then 0 < µ(B) < 1 and γ ·B = B for

infinitely many γ so the shift is not mixing.
(iv) ⇒ (ii) It suffices to show that the mixing condition is satisfied for sets

A,B ⊆ MX depending only on finitely many coordinates. Let F1, F2 ⊆ X be
finite, A depend on F1, and B depend on F2. By (iv), there are only finitely γ ∈ Γ
for which γ · F1 ∩ F2 6= ∅, hence

lim
γ→∞

µ(γ ·A ∩B) = µ(A)µ(B)

and we are done.
Finally, the equivalences (i) ⇔ (ii) and (iii) ⇔ (iv) are easy to prove. �

Proposition 2.4. If the measure ν has atoms, the following are equivalent:
(i) the action of Γ on MX is free a.e.;
(ii) for each γ ∈ Γ \ {1}, the set {x ∈ X : γ · x 6= x} is infinite.
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If ν is non-atomic, (i) is equivalent to

(iii) the action of Γ on X is faithful.

Proof. Suppose first that ν has an atom a ∈ M . If for some γ 6= 1 the set Hγ =
{x : γ · x 6= x} is finite, then

µ(γ · c = c) ≥ µ(∀x ∈ Hγ c(x) = a) = ν({a})|Hγ | > 0,

so the action of Γ on MX is not free a.e.
Conversely, if Hγ is infinite for all γ 6= 1, find infinite sets Yγ ⊆ X such that

γ · Yγ ∩ Yγ = ∅. Then

µ(γ · c = c) ≤ µ
(
∀x ∈ Yγ c(x) = c(γ−1 · x)

)
=

∏
x∈Yγ

µ
(
c(x) = c(γ−1 · x)

)
= 0.

If the action of Γ on X is not faithful, then the action on MX is not faithful
either, so in particular it is not free. Conversely, if ν is non-atomic and γ · x 6= x
for some x ∈ X,

µ(γ · c = c) ≤ µ
(
c(x) = c(γ−1 · x)

)
= 0.

�

3. Spectral analysis of the Koopman representation

For each subgroup ∆ ≤ Γ, we have the quasi-regular representation λΓ/∆ on
`2(Γ/∆) given by

(λΓ/∆(γ) · f)(δ∆) = f(γ−1δ∆).

Notice that if S is a transversal for the action of Γ on X (i.e., S ⊆ X and S
intersects each orbit in exactly one point), then

(3.1) λX
∼=

⊕
x∈S λΓ/Γx

,

where Γx denotes the stabilizer of the point x. The first aim of this section is to
verify that κ is also equivalent to a sum of quasi-regular representations. This is
well-known but the authors were unable to find a specific reference.

Let {fi : i ∈ I} be a (finite or countably infinite) orthonormal basis for L2(M,ν)
such that fi0 ≡ 1 for some i0 ∈ I. Set I0 = I \ {i0} and notice that since ν does
not concentrate on a single point, I0 6= ∅. For a function q : X → I, write

supp q = q−1(I0)

and let A = {q : | supp q| < ∞}. For q ∈ A, define hq ∈ L2(MX , µ) by

hq(c) =
∏
x∈X

fq(x)(c(x)).

Lemma 3.1. The collection {hq : q ∈ A} forms an orthonormal basis for L2(MX).
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Proof. First we check that ‖hq‖ = 1. Indeed,

‖hq‖2 = 〈hq, hq〉 =
∫
|hq|2 dµ

=
∏
x∈X

∫
|fq(x)(z)|2 dν(z)

=
∏
x∈X

∥∥fq(x)

∥∥2

= 1.

Now suppose q1 6= q2. Then

〈hq1 , hq2〉 =
∫

hq1hq2 dµ

=
∏
x∈X

∫
fq1(x)(z)fq2(x)(z) dν(z)

= 0

because
∫

fq1(x0)(z)fq2(x0)(z) dν(z) =
〈
fq1(x0), fq2(x0)

〉
= 0 for some x0 for which

q1(x0) 6= q2(x0).
Finally, we verify that the hq’s are total in L2(MX). Let F be the measure

algebra of MX . Fix an exhausting sequence F1 ⊆ F2 ⊆ · · · of finite subsets of X
and denote by Fn the σ-subalgebra of F generated by the projections {px : x ∈ Fn}.
Notice that L2(MX ,Fn) is canonically isomorphic to L2(MFn) which, in turn, is
canonically isomorphic to

⊗
x∈Fn

L2(M). Under this isomorphism, a function hq

with supp q ⊆ Fn corresponds to the tensor
⊗

x∈Fn
fq(x). Hence {hq : supp q ⊆ Fn}

is total in L2(MX ,Fn). But
⋃

n Fn generates F , so
⋃

n L2(MX ,Fn) is dense in
L2(MX) and we are done. �

Notice that Γ acts on A in a natural way:

(γ · q)(x) = q(γ−1 · x).

This action induces a representation on L2(MX) (by permuting the basis {hq : q ∈ A})
and clearly this representation is equal to κ. Let now T be a transversal for the
action of Γ on A (i.e., T ⊆ A and T intersects each orbit in exactly one point). Let
for each q ∈ A, Γq denote the stabilizer of q. The preceding discussion implies that

κ ∼=
⊕

q∈T λΓ/Γq
.

Notice that the constant function q0 ≡ i0 is an orbit of the action of Γ on A
consisting of a single element, so q0 ∈ T . Let T0 = T \ {q0}. We have just proved

Proposition 3.2.

(3.2) κ0
∼=

⊕
q∈T0

λΓ/Γq
.

We also record a few facts about quasi-regular representations which will be used
later.

Lemma 3.3. Let G be a countable group and K ≤ H ≤ G with [H : K] < ∞.
Then λG/H ≤ λG/K .
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Proof. Let n = [H : K] and let p : G/K → G/H be the natural projection. Define
the map Φ: `2(G/H) → `2(G/K) by

Φ(f) =
1√
n

f ◦ p.

It is easy to check that Φ is an isometric embedding which intertwines λG/H and
λG/K . �

Lemma 3.4. Let G be a countable group and K ≤ H ≤ G. Let Q ⊆ G, ε > 0 and
assume there is a (Q, ε, λG/K)-invariant vector. Then there exists a (Q, ε, λG/H)-
invariant vector.

Proof. Let v ∈ `2(G/K) be (Q, ε, λG/K)-invariant. By considering |v| instead of v,
we can assume that v ≥ 0 (|v| is (Q, ε, λG/K)-invariant by the triangle inequality).
Define w ∈ `2(G/H) by

w(D) =
√ ∑

C⊆D

v2(C), D ∈ G/H

where C runs over elements of G/K. We have

‖w‖2 =
∑

D∈G/H

∑
C⊆D

v2(C) =
∑

C∈G/K

v2(C) = ‖v‖2 = 1.

Furthermore, for each γ ∈ Q,

〈γ · w,w〉 =
∑

D∈G/H

w(γ−1D)w(D)

=
∑

D∈G/H

√ ∑
C⊆γ−1D

v2(C)
√ ∑

C⊆D

v2(C)

≥
∑

D∈G/H

∑
C⊆D

v(C)v(γ−1C), by Cauchy-Schwartz,

=
∑

C∈G/K

v(C)v(γ−1C)

= 〈γ · v, v〉 .

Hence,

‖γ · w − w‖2 = 2 ‖w‖2 − 2 〈γ · w,w〉

≤ 2 ‖v‖2 − 2 〈γ · v, v〉 = ‖γ · v − v‖2 < ε2

and w is (Q, ε, λG/H)-invariant. �

Lemma 3.5. Let πi, i = 1, 2, . . . be unitary representations of a countable group G
on the Hilbert spaces Hi. Suppose that 1G ≺

⊕∞
i=1 πi. Then for each Q ⊆ G and

ε > 0, there exists n and vn ∈ Hn which is (Q, ε, πn)-invariant.
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Proof. Fix Q and ε. Let H =
⊕

i Hi. There exists v ∈ H, v =
⊕

i vi, such that
‖π(γ) · v − v‖ < ε/

√
m ‖v‖ where m = |Q|. We have

‖π(γ) ·
⊕

i vi −
⊕

i vi‖2 < ε2/m ‖
⊕

i vi‖2 for all γ ∈ Q,∑
γ∈Q

∑
i

‖πi(γ) · vi − vi‖2 < ε2
∑

i

‖vi‖2∑
i

∑
γ∈Q

‖πi(γ) · vi − vi‖2 <
∑

i

ε2 ‖vi‖2 .

Hence, for some i, ∑
γ∈Q

‖πi(γ) · vi − vi‖2 < ε2 ‖vi‖2 ,

and in particular, for each γ ∈ Q,

‖πi(γ) · vi − vi‖2 < ε2 ‖vi‖2 .

�

4. Proof of Theorem 1.2

We start with the implication (i) ⇒ (ii). We shall need to use the Central
Limit Theorem for random variables several times and we find it convenient to
employ probabilistic notation. For all necessary background in probability theory,
a good reference is Durrett [4]. In this section, we will use P instead of µ to denote
the measure on MX . Recall that a sequence ξk of random variables converges in
distribution to ξ (written as ξk ⇒ ξ) if the distribution measures of ξk converge to
the distribution measure of ξ in the weak∗ topology. For this, it is necessary and
sufficient that P (ξk ∈ A) → P (ξ ∈ A) for every Borel set A for which P (ξ ∈ ∂A) = 0
(∂A denotes the topological boundary of A). The Central Limit Theorem states
that if {ξk} is a sequence of independent, identically distributed random variables
with finite mean m and variance σ2, then∑k

i=1 ξi − km

σ
√

k

converges in distribution to a standard normal random variable (see [4, Theo-
rem 2.4.1]). Recall also that a distribution is continuous if the measure associated
to it is non-atomic. Finally, a sequence ξk converges in probability to ξ if for all
ε > 0, P (|ξk − ξ| > ε) → 0 as k →∞. We need the following two lemmas.

Lemma 4.1. Let ξk, ηk, ζk, k = 1, 2, . . . be random variables such that ξk ⇒ ξ,
where ξ is a random variable with continuous distribution, and ηk, ζk converge in
probability to 0. Then P (ηk ≤ ξk ≤ ζk) → 0 as k →∞.

Proof. Fix ε > 0 and find δ such that P (|ξ| ≤ δ) < ε. Find N so big that for k > N ,∣∣P (|ξk| ≤ δ) − P (|ξ| ≤ δ)
∣∣ < ε, P (ηk < −δ) < ε, and P (ζk > δ) < ε. Then, for all

k > N ,

P (ηk < ξk ≤ ζk) ≤ P (|ξk| ≤ δ) + P (ηk < −δ) + P (ζk > δ) ≤ 4ε.

�

Lemma 4.2. Let ξk ⇒ ξ, αk ∈ R, αk ≥ 0, αk → 0. Then αkξk → 0 in probability.
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Proof. It suffices to show that for all δ > 0, P (αk|ξk| > δ) → 0. Fix ε > 0. Find
a such that P (|ξ| > a) < ε/2 and P (|ξ| = a) = 0. For all large enough k, we will
have

∣∣P (|ξk| > a)−P (|ξ| > a)
∣∣ < ε/2 and δ/αk > a. For all those k (assuming also

αk > 0),
P (|ξk| > δ/αk) ≤ P (|ξk| > a) < P (|ξ| > a) + ε/2 < ε.

�

Suppose now that the action of Γ on X is amenable. Without loss of general-
ity, take M = I = [−1, 1] and assume that the measure ν is centered at 0 (i.e.,∫

I
xdν(x) = 0). We will find a sequence {Ak} of subsets of IX with measures

bounded away from 0 and 1, satisfying for all γ ∈ Γ,

(4.1) P (γ ·Ak 4Ak) → 0 as k →∞.

Enumerate Γ = {γn}. By (1.1), there exists a sequence {Fk} of finite subsets of X
satisfying

(4.2) ∀i ≤ k
|Fk 4 γi · Fk|

|Fk|
< 1/k.

For each x ∈ X, let px : IX → I be the corresponding projection function. We
view the px’s as independent, identically distributed, real random variables with
distribution given by the measure ν. Note that all of their moments are finite
because they are bounded. By our assumptions, the mean E px = 0. Set σ2 =
Var px = E p2

x > 0. Let rk = |Fk| and set

Ak =

{ ∑
x∈Fk

px > 0

}
.

First suppose that the sequence {rk} is bounded by a number K. Notice that
P (Ak) only depends on the number rk and not on the actual set Fk. Therefore, in
this case, we have only finitely many possibilities for P (Ak), so P (Ak) are bounded
away from 0 and 1. Also, by (4.2), for k > K and i ≤ k, γi · Fk = Fk, hence
γi ·Ak = Ak and the sequence {Ak} is almost invariant.

Now consider the case when {rk} is unbounded. By taking a subsequence, we
can assume that rk →∞. We first show that the measures of Ak are bounded away
from 0 and 1. Indeed, by the Central Limit Theorem,

P (Ak) = P

(∑
x∈Fk

px
√

rkσ
> 0

)
→ P (χ > 0) = 1/2,

where χ denotes a standard normal variable. Next we prove that (a subsequence
of) Ak is almost invariant. By taking subsequences, we can assume that for each
γ ∈ Γ, either {|γ · Fk 4Fk|}k is bounded, or |γ · Fk 4Fk| → ∞. Fix γ ∈ Γ and set
nk = |γ · Fk \ Fk| = |Fk \ γ · Fk|, Nk = |γ · Fk ∩ Fk|. Let

ξk =
∑

x∈Fk∩γ·Fk

px,

ηk =
∑

x∈Fk\γ·Fk

px,

ζk =
∑

x∈γ·Fk\Fk

px.
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ξk, ηk, ζk are independent,

E ξk = E ηk = E ζk = 0, Var ξk = Nkσ2, Var ηk = Var ζk = nkσ2,

and
Ak = {ξk + ηk > 0} , γ ·Ak = {ξk + ζk > 0} .

Suppose first that {nk} is bounded and let K be an upper bound for nk. Notice
that |ηk|, |ζk| ≤ K. We have

P (Ak \ γ ·Ak) = P (ξk + ηk > 0 & ξk + ζk ≤ 0)

≤ P (−K < ξk ≤ K)

= P (−K/(σ
√

Nk) < ξk/(σ
√

Nk) ≤ K/(σ
√

Nk)).(4.3)

By the Central Limit Theorem, ξk/(σ
√

Nk) ⇒ χ and clearly K/(σ
√

Nk) → 0. By
Lemma 4.1, the expression (4.3) converges to 0.

Now suppose nk →∞. Let ξ′k = ξk/(σ
√

Nk), η′k = ηk/(σ
√

nk), ζ ′k = ζk/(σ
√

nk).
By the Central Limit Theorem, ξ′k ⇒ χ, η′k ⇒ χ, ζ ′k ⇒ χ. We have

P (Ak \ γ ·Ak) = P (ξk + ηk > 0 & ξk + ζk ≤ 0)

= P (ζk ≤ −ξk < ηk)

= P (
√

nkζ ′k ≤ −
√

Nkξ′k <
√

nkη′k)

= P

(√
nk

Nk
ζ ′k ≤ −ξ′k <

√
nk

Nk
η′k

)
.(4.4)

By (4.2),
√

nk/Nk → 0. By Lemma 4.2,
√

nk/Nkζ ′k,
√

nk/Nkη′k → 0 in probability.
Finally, by Lemma 4.1, (4.4) converges to 0.

The implication (ii) ⇒ (iii) is clear so we proceed to show (iii) ⇒ (i). By
Theorem 1.1, it suffices to show that 1Γ ≺ λX . Fix Q ⊆ Γ and ε > 0. We will
find a (Q, ε, λX)-invariant vector in `2(X). By (iii), (3.2), and Lemma 3.5, there
exists q ∈ A and v1 ∈ `2(Γ/Γq) which is (Q, ε, λΓ/Γq

)-invariant. Let F = supp q and
notice that since q 6= q0, F 6= ∅. Denote by ΓF and Γ(F ) the setwise and pointwise
stabilizers of F , respectively. Since Γq ≤ ΓF ≤ Γ, by Lemma 3.4, there exists v2 ∈
`2(Γ/ΓF ) which is (Q, ε, λΓ/ΓF

)-invariant. Since Γ(F ) ≤ ΓF ≤ Γ and [ΓF : Γ(F )] <

∞, by Lemma 3.3, there exists v3 ∈ `2(Γ/Γ(F )) which is (Q, ε, λΓ/Γ(F )
)-invariant.

Fix x ∈ F . Since Γ(F ) ≤ Γx ≤ Γ, by Lemma 3.4, there exists v4 ∈ `2(Γ/Γx) which
is (Q, ε, λΓ/Γx

)-invariant. Since by (3.1), λΓ/Γx
≤ λX , we are done.
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