7 Linear Equations mod m

Given $a, c \in \mathbb{Z}$, we want to solve

$$ax \equiv c \pmod{m} \tag{*}$$

Note that we can solve the "congruence" (I) iff we can solve

$$ax + my = c$$
 *

with $x, y \in \mathbb{Z}$.

We have looked at \star before.

Recall:

- (i) For \star to have a solution in integers, it is necessary and sufficient to have c be divisible by the gcd, say d, of a, m.
 - (ii) Let u, v satisfy

$$\left(\frac{a}{d}\right)u + \left(\frac{m}{d}\right)v = 1$$

This is possible as $(\frac{a}{d}, \frac{m}{d}) = 1$.

All the solutions for \star' are obtained by first finding one solution, say (u_0, v_0) and writing the general solution as

$$(u, \mathbf{v}) = \left(u_0 + k \frac{m}{d}, \mathbf{v}_0 - k \frac{a}{d}\right)$$

for any $k \in \mathbb{Z}$.

So the general solution of \star is given by

$$(x,y) = \left(c\left(u_0 + \frac{km}{d}\right), \ c\left(v_0 - \frac{ka}{d}\right)\right)$$
$$= \left(cu_0 + k\frac{c}{d}m, \ cv_0 - k\frac{c}{d}a\right)$$

So the general solution to (*) is given by

$$x = cu_0 + k\left(\frac{c}{d}\right)m$$

Suppose x, x' are both solutions of (*) mod m. Then

$$a(x - x') \equiv 0 \mod m$$
,

SO

$$m|a(x-x').$$

Since d = gcd(a, m) we need

$$\frac{m}{d}|(x-x')$$

Example. m = 6, a = 4

$$4(x - x') \equiv 0 \pmod{6}, d = 2 \Leftrightarrow 3|(x - x')$$

So

$$(x - x') \equiv 0 \text{ or } 3 \pmod{6}$$

In general, if (a, m) = d, then

$$a(x-x') \equiv 0 \pmod{m} \Rightarrow x-x'$$
 is divisible by $\frac{m}{d}$

There exists exactly d distinct solutions of (*) mod m. So we have

Lemma. $ax \equiv c \pmod{m}$ has solutions if

$$d = gcd(a, m) \mid c$$
.

When d|c, there are d distinct solutions mod m.

Corollary: $ax \equiv 1 \pmod{m}$ can be solved iff (a, m) = 1. Moreover, the solution is unique in this case.

Definition: If (a, m) = 1, we call the unique $x \pmod{m}$ such that $ax \equiv 1 \pmod{m}$ the **inverse** of $a \pmod{m}$.

Often, people write it as $a' \pmod{m}$.

Example. m = 7, a = 2, $a' = 4 \pmod{7}$.

Recall

$$S_0 = \{0, 1, \dots, m-1\}$$

is a set of reps. for \mathbb{Z}/m . (It is the standard set of reps.)

Definition:

$$(\mathbb{Z}/m)^* = \{\text{Invertible elements of } \mathbb{Z}/m\}$$

$$\varphi(m) = \#(\mathbb{Z}/m)^*$$

Explicitly,

$$\varphi(m) = |\{a \in \{0, 1, \dots, m-1\} \mid (a, m) = 1\}|.$$