6 Congruences

Fix an integer $m > 1$. We say that two integers a, b are congruent modulo m iff $m|(a - b)$.

Remark: If we had done this for $m = 1$, then any pair a, b would be congruent mod 1.

If a, b are congruent mod m, we write

$$a = b \pmod{m}$$

Modular arithmetic:

If a is any integer, we can use the Euclidean algorithm to write

$$a = mq + r, \text{ with } 0 \leq r < m$$

Then $m|(a - r)$, so $a \equiv r \pmod{m}$.

Consequently, we can partition \mathbb{Z} into m blocks, one for each integer r, with $0 \leq r < m$. Suppose B_r is the block corresponding to r. Then, for any a in B_r, $a \equiv r \pmod{m}$. Note: $B_0 = \{-2m, -m, 0, m, 2m, \ldots\}$, $B_1 = \{\ldots, -2m + 1, -m + 1, 1, m + 1, 2m + 1, \ldots\}$, etc.

If $m = 2$, this partition will yield even and odd integers; the even integers are $\equiv 0 \pmod{2}$ and the odd integers are $\equiv 1 \pmod{2}$.

$m=3$: $\begin{array}{c|c}
 a & r \pmod{3} \\
 \hline
 0 & 0 \\
 1 & 1 \\
 2 & 2 \\
 3 & 0 \\
 4 & 1 \\
 5 & 2 \\
 6 & 0
\end{array}$

These blocks are called **congruence classes modulo** m. There are exactly m classes. We write \mathbb{Z}/m for $\{B_0, B_1, \ldots B_{m-1}\}$.

Definition: A set of representatives for \mathbb{Z}/m is a subset $S = \{x_0, x_1, \ldots, x_{n-1}\}$ of \mathbb{Z} such that $x_r \in B_r$ for each $r = 0, 1, \ldots, m - 1$.

Note: There is a natural choice for S, namely $S_0 = \{0, 1, \ldots, m - 1\}$, called the **standard** or **usual** set of representatives.
So for $m = 3$, we can use

$$S_0 = \{0, 1, 2\}$$

or

$$S_1 = \{9, 16, -1\}$$

as a set of representatives.

Claim:
One has addition, subtraction, 0, and multiplication in \mathbb{Z}/m, just like in \mathbb{Z}.

Proof. Consider B_i, B_j. Look at $i + j$. By Euclidean algorithm,

$$i + j = qm + r_{i+j},$$

for some r_{i+j} with $0 \leq r_{i+j} < m$. We put

$$B_i + B_j = B_{r_{i+j}}$$

Similarly, $B_i - B_j = B_{r_{i-j}}$, if $i - j = q'm + r_{i-j}$, with $0 \leq r_{i-j} < m$. B_0 is the “zero” of \mathbb{Z}/m, because

$$B_0 + B_i = B_i = B_i + B_0$$

Multiplication

$$B_iB_j = ?$$

Write $ij = bm + r_{ij}$, $0 \leq r_{ij} < m$. Put $B_iB_j = B_{r_{ij}}$. Note that

$$B_1B_j = B_j$$, for any j.

So B_1 is the “one” element. Also have distributive and associative laws just like in \mathbb{Z}.

Definition: If $a \in \mathbb{Z}$, write $a \pmod{m}$ to denote the block it belongs to. If $a, b \in \mathbb{Z}$, we write $a + b \pmod{m}$ for any element of $B_i + B_j$, if $a \in B_i, b \in B_j$. Similarly, $ab \pmod{m}$ is defined.

Remark. In \mathbb{Z} the only numbers we can divide by, i.e., which have “multiplicative inverses”, are ± 1. The situation is better in \mathbb{Z}/m. In fact, when m is a prime p, all the non-zero elements of \mathbb{Z}/m are invertible (mod m).