6 Congruences

Fix an integer m > 1. We say that two integers a, b are **congruent modulo** m iff m|(a-b).

Remark: If we had done this for m = 1, then any pair a, b would be congruent mod 1.

If a, b are congruent mod m, we write

$$a = b \pmod{m}$$

Modular arithmetic:

If a is any integer, we can use the Euclidean algorithm to write

$$a = mq + r$$
, with $0 \le r < m$

Then m|(a-r), so $a \equiv r \pmod{m}$.

Consequently, we can partition \mathbb{Z} into m blocks, one for each integer r, with $0 \le r < m$. Suppose B_r is the block corresponding to r. Then, for **any** a in B_r , $a \equiv r \pmod{m}$. Note: $B_0 = \{\ldots, -2m, -m, 0, m, 2m, \ldots\}, B_1 = \{\ldots, -2m+1, -m+1, 1, m+1, 2m+1, \ldots\}$, etc.

If m = 2, this partition will yield even and odd integers; the even integers are $\equiv 0 \pmod{2}$ and the odd integers are $\equiv 1 \pmod{2}$.

These blocks are called **congruence classes modulo** m. There are exactly m classes. We write \mathbb{Z}/m for $\{B_0, B_1, \dots B_{m-1}\}$.

Definition: A set of representatives for \mathbb{Z}/m is a subset $S = \{x_0, x_1, \dots, x_{n-1}\}$ of \mathbb{Z} such that $x_r \in B_r$ for each $r = 0, 1, \dots, m-1$.

Note: There is a **natural choice** for S, namely $S_0 = \{0, 1, ..., m - 1\}$, called the **standard** or **usual** set of representatives.

So for m=3, we can use

$$S_0 = \{0, 1, 2\}$$

or

$$S_1 = \{9, 16, -1\}$$

as a set of representatives.

Claim:

One has addition, subtraction, 0, and multiplication in \mathbb{Z}/m , just like in \mathbb{Z} .

Proof. Consider B_i , B_j . Look at i + j. By Euclidean algorithm,

$$i + j = qm + r_{i+j},$$

for some r_{i+j} with $0 \le r_{i+j} < m$. We put

$$B_i + B_j = B_{r_{i+j}}$$

Similarly, $B_i - B_j = B_{r_{i-j}}$, if $i - j = q'm + r_{i-j}$, with $0 \le r_{i-j} < m$. B_0 is the "zero" of \mathbb{Z}/m , because

$$B_0 + B_i = B_i = B_i + B_0$$

Multiplication

$$B_iB_j = ?$$

Write $ij = bm + r_{ij}$, $0 \le r_{ij} < m$. Put $B_i B_j = B_{r_{ij}}$. Note that

$$B_1B_j = B_j$$
, for any j .

So B_1 is the "one" element. Also have distributive and associative laws just like in \mathbb{Z} .

Definition: If $a \in \mathbb{Z}$, write $a \pmod{m}$ to denote the block it belongs to. If $a, b \in \mathbb{Z}$, we write $a+b \pmod{m}$ for any element of B_i+B_j , if $a \in B_i$, $b \in B_j$. Similarly, $ab \pmod{m}$ is defined.

Remark. In \mathbb{Z} the only numbers we can divide by, i.e., which have "multiplicative inverses", are ± 1 . The situation is better in \mathbb{Z}/m . In fact, when m is a prime p, all the non-zero elements of \mathbb{Z}/m are invertible (mod m).