3 More on divisibility and Primes

Proposition 1: Let a_1, a_2, \ldots, a_n be integers. Put

$$M = \{ \sum_{i=1}^{n} a_i x^i | x_i \in \mathbb{Z}, \forall i \}.$$

Then $M = d\mathbb{Z}$, for a unique $d \geq 0$. $(d\mathbb{Z}$ is the set of all integers divisible by d.)

Proof. Certainly, $D \in M$. If $M = \{0\}$, take d = 0. Otherwise, put $M^+ = \{n \in M | n > 0\}$. Then clearly, M^+ is non-empty since $M \neq \{0\}$, and so by WOA, \exists smallest element, call it d, in M^+ . For any n in M, we can write by the Euclidean algorithm: n = dq + r, with $q, r \in \mathbb{Z}$, and $0 \le r < d$.

Note that M is closed under subtraction. So r = n - dq is also in M. If r = 0, we are done because then n = dq as desired.

Suppose r > 0. Then $r \in M^+$. Since r < d, this contradicts the minimality of d. Hence r must be 0, and $n \in d\mathbb{Z}$.

Definition: Let a_1, \ldots, a_n, d be as in Prop. 1. Then d is called the gcd (greatest common divisor) of $\{a_i\}$. For brevity, write

$$d = (a_1, \dots, a_n) = \gcd(a_1, \dots, a_n).$$

Check: $(a_1, (a_2, a_3)) = ((a_1, a_2), a_3)$

Definition: $\{a_i\}$ are mutually relatively prime iff $(a_1, \ldots, a_n) = 1$.

Example: (2,3,9) is mutually relatively prime but not *pairwise* relatively prime.

Proposition 2. a_1, \ldots, a_n are mutually relatively prime iff we can solve the equation

$$\sum_{i=1}^{n} a_i x_i = 1 \tag{*}$$

in integers.

Proof. Suppose $d=(a_1,\ldots,a_n)=1$. Then by Prop.1, $1=d\in M=\{\sum_{i=1}^n a_i x^i | x^i \in \mathbb{Z}\}$. So (*) can be solved in integers. Conversely, suppose

(*) has a solution in integers. Then $1 \in M^+$, and so d = 1.

Proposition 3. Let $a, b, c \in \mathbb{Z}$, (a, b) = 1. Suppose a|bc. Then a|c.

Proof. Since (a, b) = 1, by Prop.2, $\exists x, y \in \mathbb{Z}$. Set ax + by = 1. Then c = c(ax + by) = a(cx) + (bc)y. Since a|bc, a divides the right hand side, hence a|c.

Proof of unique factorization in \mathbb{Z} .

Existence

As shown before, every $n \ge 1$ is a product of primes.

Uniqueness (second proof)

Let n > 1 be the smallest counterexample. So we can write $n = p_1 \dots p_r = q_1 \dots q_s$, with p_i, q_j primes and $p_1 \neq q_j$ for any (i, j). So

$$p_1|n = q_1 \dots q_s = q_1(q_2 \dots q_s).$$

Since $p_1 \neq q_1$, $(p_1, q_1) = 1$, and by Prop. 3, $p_1 | (q_2 \dots q_s)$. Again, since $p_1 \neq q_2$, applying Prop.3 again, $p_1 | (q_3 \dots q_s)$. Finally get $p_1 | q_s$. So there is no such counterexample.

Third Proof of the Infinitude of Primes in \mathbb{Z} (Polya)

For every $n \ge 1$, put $F_n = 2^{2^n} + 1$, called the *n*th Fermat number.

Lemma. If $n \neq m$, $(F_n, F_m) = 1$.

Proof of Lemma. We may assume m > n. Write m = n + k, for some k > 0. To show:

$$(F_n, F_{n+k}) = 1 \text{ (for } k > 0.)$$

Suppose $d|F_n$ and $d|F_{n+k}$. Put $x=2^{2^n}$. Then, since

$$F_{n+k} = 2^{2^{n+k}} + 1 = 2^{2^{n}2^{k}} + 1,$$

$$\frac{F_{n+k} - 2}{F_n} = \frac{x^{2^k} - 1}{x+1}$$
$$= x^{2^{k-1}} - x^{2^{k-2}} + \dots - 1 \in \mathbb{Z}$$

$$\Rightarrow F_n|(F_{n+l}-2) \Rightarrow d|2.$$

But F_n, F_{n+k} are odd. So d=1. Hence the lemma.

Proof of Infinitude of primes

Consider $F_1, F_2, \ldots, F_n \ldots$ By lemma, each F_n is divisible by a prime, call it p_n , not dividing the previous F_k , k < n. The sequence $\{p_1, p_2, \ldots\}$ is infinite.

One has: $F_1 = 5$, $F_2 = 17$, $F_3 = 257$, $F_4 = 65537$ (Fermat), $F_5 = (641)(6700417)$,...

Primes in "Arithmetic Progressions":

Fix m > 1, and $a \in \mathbb{Z}$ such that (a, m) = 1.

Theorem (Dirichlet) \exists infinitely many primes p which are $\equiv a \pmod{m}$.

We cannot possibly prove it in this class. But we can prove the following: **Baby Lemma** \exists infinitely many primes p which are $\equiv 3 \pmod{4}$.

Proof: Suppose \exists only a finite number of such primes, say 3, p_1, p_2, \dots, p_r . Consider

$$N = 4p_1 p_2 \cdots p_r + 3.$$

By unique factorization in \mathbb{Z} we can write $N = q_1 q_2 \cdots q_s$, with the q_j 's being primes.

Claim 1: Some q_i must $be \equiv 3 \pmod{4}$.

Indeed, every q_j is an odd prime as N is odd, and moreover if $q_j \equiv 1 \pmod{4}$ \forall_j , then N will also be $\equiv 1 \pmod{4}$, contradiction! Hence Claim 1. Say $q_1 \equiv 3 \pmod{4}$.

Claim 2: $q_1 \notin \{3, p_1, \cdots, p_r\}.$

Indeed, if $q_1 = 3$, then 3|N, and since $N = 4p_1 \cdots p_r + 3$, 3 must divide $4p_1 \cdots p_r$, $\rightarrow \leftarrow$. So $q_1 \neq 3$. Suppose $q_1 = p_i$ for some $1 \leq i \leq r$. Then $p_i \mid N$, and since $N = 4p_1 \cdots p_r + 3$, $p_i \mid 3$, $\rightarrow \leftarrow$. So $q_1 \neq p_i$. Hence Claim 2.

So we have produced a new prime $q_1 \equiv 3 \pmod{4}$ which is not in the original list, $\rightarrow \leftarrow$.

Remark: There is no such simple argument to prove Dirichlet's theorem for primes $\equiv 1 \pmod{4}$. We can try to start the same way by assuming that we have a finite list of primes $\equiv 1 \pmod{4}$, say p_1, p_2, \dots, p_r , and we can consider $N = 4p_1 \cdots p_r + 1$. Factor N as $q_1 \cdots q_s$. Now the analog of Claim 1 will in general fail as the product of an even number of numbers congruent to 3 $\pmod{4}$ is 1 $\pmod{4}$. However, we will prove the infinitude of such primes later after studying squares mod p.

Earlier we saw a heuristic reason for expecting there to be an infinite number of **twin primes**, e.g. $\{3, 5\}, \{5, 7\}, \{11, 13\}, \cdots$ Expectation:

$$\pi_2(x) := \# \left(\begin{array}{c} \text{twin primes} \\ \leq x \end{array} \right) \approx C \frac{x}{\log^2 x}, \quad \text{as } x \to \infty.$$

This means $\pi_2(x) - \frac{cx}{\log^2 x}$ goes to 0 as x goes to ∞ . This twin prime problem is closely related to the **Goldbach problem**, which asks if every even number ≥ 4 is a sum of 2 primes. Best known result: (Chen)

 $2n = a_1 + a_2$, with a_i prime or a product of 2 primes.

A similar heuristic reason makes one expect that there are infinitely many primes p of the form $n^2 + 1$.

Best known result: (Iwaniec)

 \exists an infinite of sequence $\{m_1, m_2, \cdots\}$

such that

(i)

$$m_j = n_j^2 + 1, \quad \forall j$$

and for every j,

(ii)

 m_i is a prime or a product of 2 primes

The proof is quite hard and beyond the scope of our class.