15 Squares mod p

Fix a prime p.

Basic question: Given a, how can we determine if $\exists b \in \mathbb{Z}$ such that $a \equiv b^2 \pmod{p}$?

Trivial case if p|a, take $b \equiv 0$. So from now on take (a, p) = 1.

of squares in $(\mathbb{Z}/p)^* = \#$ of non-squares in $(\mathbb{Z}/p)^*$

p odd, $p \not | a$.

Definition: the Legendre symbol of $a \mod p$ is given by

$$\left(\frac{a}{p}\right) = \begin{cases} 1, & \text{if } a \equiv \text{ and } p\\ -1, & \text{if } a \not\equiv \mod p \end{cases}$$

We say a is a quadratic residule mod p if it is a , otherwise a quadratic non-residue. (Some would allow a to be divisible by p and set $(\frac{a}{p}) = 0$ if p|a.)

Lemma: the guess is on the money.

Proof: Let $S = \{1, 2, \dots, p-1\}$. We know that S is a set of reps. for $(\frac{\mathbb{Z}}{p})^*$. Put

$$T = \left\{1, 2, \dots, \frac{p-1}{2}\right\}$$

and

$$T^2 = \{b^2 | b \in T\}$$

Claim 1: $\#(T^2 \mod p) = \frac{p-1}{2}$, i.e., if $b, c \in T$, $b \neq c$, then $b^2 \not\equiv c^2 \pmod p$. Indeed, if $p^2 \equiv c^2 \pmod p$ then $b = \pm c \pmod p$. This cannot happen as, $\forall b \in T$, $\exists!b'$ in S - T such that $b' \equiv -b \pmod p$, unless b = c.

Claim 2: $T^2 \equiv S^2 \pmod{p}$

Proof: Let $a \in S - T$. Then $\exists ! a' \in T$ such that $a' \equiv a \pmod{p}$. Then $a^2 \equiv (a')^2 \pmod{p}$. Hence $a^2 \in T^2 \mod p \Rightarrow$ the equare of any elt. of S is in $T^2 \mod p$. Hence the claim.

But $\#\{\text{quad res. mod } p = \#S^2 \pmod{p}$. By claims 1 and 2, there is $\frac{p-1}{2} \Rightarrow \#\{\text{non}\} = p-1 - \frac{p-1}{2} = \frac{p-1}{2}$.

Corollary of Lemma: Let p be an odd prime. then

$$\sum_{a \in (\frac{\mathbb{Z}}{p})^*} \left(\frac{a}{p} \right) = 0.$$

Proof:

LHS =
$$\sum_{\text{quad res}} \underbrace{\left(\frac{a}{p}\right)}_{1} + \sum_{\text{quad non-res}} \underbrace{\left(\frac{a}{p}\right)}_{-1}$$
= $1\#\{\text{quad res.}\} - 1\#\{\text{quad non-res.}\}$
= $\frac{p-1}{2} - \frac{p-1}{2} = 0$.

Lemma: Let a, b be integers prime to p. Then

$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$$

Proof:

Case 1: a, b are both q, r, m, p, i.e. $a \equiv a_1^2, b \equiv b^2 \pmod{p}$ for some a, b. Hence $ab \equiv (a_1b_1)^2 \pmod{p}$, and $(\frac{ab}{p}) = (\frac{a}{p})(\frac{b}{p}) = 1 \cdot 1$.

Case 2: $(\frac{a}{p}) = 1$, $(\frac{b}{p} = -1$. Suppose $(\frac{ab}{p}) = 1$. Then $\exists c$ such that $ab \equiv c^2$. Since $(\frac{a}{p}) = 1$, $\exists a_1$ such that $a_1^2 \equiv a \ (\div p)$. $\Rightarrow a_1^2 b \equiv c \div p$.

Since $p \not| a_1$, a_1 is invertible mod p, i.e., $\exists a_2$ such that $a_1a_2 \equiv 1$. Then $a_1^2a_1^2 \equiv 1$.

$$\Rightarrow b \equiv a_2^2 c^2 \pmod{p} \Rightarrow \left(\frac{b}{p}\right) = 1.$$

So $\left(\frac{ab}{p}\right) = -1$ when $\left(\frac{a}{p}\right) = 1$ and $\left(\frac{b}{p}\right) = -1$.

Case (iii)
$$\left(\frac{a}{p}\right) = -1$$
, $\left(\frac{b}{p}\right) = 1$ same as (ii). Case (iv) $\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right) - 1$ (Try this!)

Lemma 3 (Wilson's Theorem) For any prime p, $(p-1)! \equiv -1 \pmod{p}$.

Proof: If p = 2, both sides $= 1 \pmod{2}$, done. So assume p odd. Look at $S = \{1, \ldots, p-1\}$, set of resp. $foralla \in S$, let a' be the unique elt. of S such that $aa' = 1 \pmod{p}$.

$$a = a'$$
 iff $a^2 = 1 \pmod{p}$, i.e., iff $a = 1$ or $a = p - 1$. So,

$$\forall a \in \{2, \dots, p-2\} a' \not\supset a \text{ and } a' \in \{2, \dots, p-1\}.$$

$$\Rightarrow (2)(3) \cdot (p-2) \equiv 1 \pmod{p}.$$

$$\Rightarrow (p-1)! \equiv 1(p-1) \pmod{p}.$$

$$\equiv -1 \pmod{p}.$$

Proposition (Euler's criterion) Let p be an odd prime, and let $a \in \mathbb{Z}$ with (a, p) = 1. Then

$$\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p}$$

Recall that the Little Fermat theorem says that

$$a^{p-1} \equiv +1 \pmod{p}$$
 since $p \nmid a$;

so $a^{\frac{p-1}{2}} \equiv \pm 1 \pmod{p}$.

Corollary of Proposition (Strict multiplicativity)

$$\left(\frac{ap}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right), \quad \forall a, b \in \mathbb{Z} \text{ with } p \not | ab.$$

Proposition \Rightarrow Corollary 1: By Euler,

$$\left(\frac{ab}{p}\right) = (ab)^{\frac{p-1}{2}}$$

$$\equiv \left(a^{\frac{p-1}{2}}\right) \left(b^{\frac{p-1}{2}}\right)$$

$$= \left(\frac{a}{p}\right) \left(\frac{b}{p}\right).$$

Corollary 2 of Proposition: If p = odd prime, -1 is a square mod p iff $p \equiv 1 \pmod{4}$.

Proposition \Rightarrow **Corollary 2**: By Euler, $(\frac{-1}{p}) = 1$ iff $(-1)^{\frac{p-1}{2}} \equiv 1 \pmod{p}$. Since p is odd, $p \equiv 1 \pmod{4}$ are $-1 \pmod{4}$.

 $p \equiv 1 \pmod{4}$:

p = 4m + 1, some $m \in \mathbb{Z}$:

$$\Rightarrow (-1)^{\frac{p-1}{2}} = (-1)^{2m} = 1$$

 $p \equiv -1 \pmod{4}$:

p = 4m - 1:

$$(-1)^{\frac{p-1}{2}} = (-1)^{-1} \equiv -1 \pmod{p}.$$

Proof of proposition: By Fermat, $a^{p-1} \equiv 1 \pmod{p}$. Since p is odd, $\frac{p-1}{2} \in \mathbb{Z}$ and we can factor:

$$\underbrace{a^{p-1} - 1}_{\equiv 0 \text{ by Fermat}} = \left(a^{\frac{p-1}{2}} - 1\right) \left(a^{\frac{p-1}{2}} - 1\right)$$

$$\Rightarrow \left(a^{\frac{p-1}{2}} - 1\right) \left(a^{\frac{p-1}{2}} + 1\right) \equiv 0 \mod p$$
$$\Rightarrow a^{\frac{p-1}{2}} \equiv \pm 1 \pmod p.$$

Now suppose a is a square mod p. Then $\exists b$ such that $a \equiv b^2 \pmod{p}$. So

$$a^{\frac{p-1}{2}} \equiv (b^2)^{\frac{p-1}{2}} \equiv b^{p-1} \equiv 1 \pmod{p}.$$

So:

$$\left(\frac{a}{p}\right) = 1 \Rightarrow a^{\frac{p-1}{2}} \equiv 1 \pmod{p}.$$

On the other hand, the congruence $X^{\frac{p-1}{2}}-1\equiv 0\ (\mathrm{mod}\ p)$ has at most $\frac{p-1}{2}$ solutions mod p by Lagrange. We have just proved that, given any quadratic residue $a\ \mathrm{mod}\ p$,

$$a^{\frac{p-1}{2}} \equiv 1 \pmod{p},$$

i.e., a is a solution of

$$X^{\frac{p-1}{2}} - 1 \equiv 0 \pmod{p}.$$

By lemma 1, there exists exactly $\frac{p-1}{2}$ quadratic residues mod p. Consequently,

$$X^{\frac{p-1}{2}} - 1 \equiv 0 \pmod{p}$$

has exactly $\frac{p-1}{2}$ solutions, and each of them is a quadratic residue mod p. In other words, if a is a quad. non-residue mod p, then a is not a solution of $X^{\frac{p-1}{2}} \equiv 0 \pmod{p}$.

$$\Rightarrow a^{\frac{p-1}{2}} \equiv -1 \pmod{p} \equiv \left(\frac{a}{p}\right) \pmod{p}$$

if $a \not\equiv \pmod{p}$.

To summarize, we have the following properties of $(\frac{\cdot}{n})$:

(i)
$$\left(\frac{ab}{n}\right) = \left(\frac{a}{n}\right)\left(\frac{b}{n}\right)$$
 Product formula

(ii)
$$\left(\frac{-1}{p} \equiv (-1)^{\frac{p-1}{2}} \pmod{p}\right)$$
, i.e., -1 is a square \pmod{p} iff $p \equiv 1 \pmod{4}$.

Remark:

Thanks to (i) and the unique factorization in \mathbb{Z} , in order to find $(\frac{a}{p})$ for any a, (a, p) = 1, we need only know

$$\left(\frac{-1}{p}\right)$$
, $\left(\frac{2}{p}\right)$, and $\left(\frac{q}{p}\right)$, $q \neq p$ an odd prime.

We have already found a formula for $(\frac{-1}{p})$.

As an application of (ii) we will prove the following, special case of Dirichlet's theorem:

Proposition: There are infinitely many primes p which are congruent to 1 modulo 4.

Earlier we proved that there exists infinitely many primes $\equiv 3 \pmod{4}$ in the following way: Suppose there exists a finite number of such primes. List them as $3, p_1, \ldots, p_r$. Consider

$$N=4p_1\dots p_r+3.$$

Factor N as $q_1, \ldots z_s$, q_j prime for all j. Since N is odd, each q_j is an odd prime. Moreover, since $N \equiv e \pmod 4$, since q_j must be $\equiv 1 \ [3?] \pmod 4$. But this q_j cannot be among $\{3, p_1, \ldots, p_r\}$.

Suppose we tried this for primes $\equiv 1 \pmod{4}$. Assume there exists only finitely many such primes p_1, \ldots, p_m . Put $N = 4p_1 \ldots p_m + 1$. Factor N as $q_1 \ldots q_s$. Since N is odd, each q_j is an odd prime. But, if s is even, we cannot hope to say that some q_j must be $\equiv 1 \pmod{4}$. The method breaks down.

Proof of Proposition: Now we try again using (ii). Again start by assuming there exists only a finite number of primes $\equiv 1 \pmod{4}$, say p_1, \ldots, p_m . Let $N = 4(p_1p_2 \ldots p_m)^2 + 1$. Factor N as $q_1 \ldots q_k$, q_j prime for all j. Evidently, each q_j is an odd prime because N is odd.

Claim:

Every
$$q_i$$
 is $\equiv 1 \pmod{4}$.

Proof of Claim: Pick any odd prime q_j dividing N. Then, since $N = (2p_1 \dots p_m)^2 + 1$, we get $-1 \equiv b^2 \pmod{q_j}$, where $b = 2p_1 \dots p_m$. By the criterion (ii), -1 is a square mod q_j iff $q_j \equiv 1 \pmod{4}$. Hence the claim.

So q_j is a prime which is $\equiv 1 \pmod{4}$, and it cannot be among $\{p_1, \ldots, p_m\}$ because if $p_1 = q_j$ for some i, we will get $1 \equiv 0 \pmod{q_j}$, a contradiction, proving the proposition.

Remark: This proof tells us a way to generate new primes which are $\equiv 1 \pmod{4}$ from known ones. Here are some simple examples:

- 1. Start with 5, and consider $N = 4(5)^2 + 1 = 101$; this is a prime.
- 2. Start with 13, and consider $N = 4(13)^2 + 1$. Then N = 677, also prime.
- 3. Start with 17. $N = 4(17)^2 + 1 = 1157 = (13)(89)$. Note: 13 and 89 are both $\equiv 1 \pmod{4}$.

Next Question: When is 2 a square mod p? To answer this question, Gauss proved a very useful lemma:

Proposition A (Gauss' Lemma) Fix a, prime to p. Let S be a subst of \mathbb{N} such that $S \cup (-S)$ is a set of reps. for $(\mathbb{Z}/p)^*$. Given any $s \in S$, we can then write $as \equiv e_s(a)s_a \pmod{p}$, where $s \in S$ and $e_s(a) \in \{\pm 1\}$. Then

$$\left(\frac{a}{p}\right) = \prod_{s \in S} e_s(a).$$

Proof: Let s, s' be distinct numbers in S. Then

$$as \not\equiv as' \pmod{p}$$
, i.e., $s_a \not\equiv s'_a$.

Hence the map $S \to S$ given by $s \to s_a$ has to be a bijection, i.e., 1-1 and out. (This is also called a pem. or a rearrangement of S.) We get

$$\prod_{s \in S} (as) \equiv \prod_{s \in S} e_s(a) s_a \pmod{p}$$

$$a^{\frac{p-1}{2}} \prod_{s \in S} s$$

$$\equiv \left(\prod_{s \in S} e_s(a)\right) \left(\prod_{s \in S} s_a\right) \pmod{p}$$

$$\equiv \prod_{s \in S} \mathcal{S} \pmod{p}$$

So $a^{\frac{p-1}{2}}(\prod_{s\in S} s) \equiv (\prod_{s\in S} e_s(a))(\prod_{s\in S} s) \pmod{p} \equiv 0 \mod p$ Cancelling $(\prod_{s\in S} \mathcal{S})$, which is invertible mod p from each side, get

$$a^{\frac{p-1}{2}} \equiv \prod_{S \in S} e_{S}(0)$$

Done because

$$a^{\frac{p-1}{2}} \equiv \left(\frac{a}{p}\right) \mod p.$$

Remark: people very often take S to be the "canonical" half set of reps for $(\mathbb{Z}/p)^*$, namely $S = \{1, 2, \dots, \frac{p-1}{2}\}$.

Formulation (II) of Gauss' Lemma: Let $S = \{1, 2, ..., \frac{p-1}{2}\}$. For each $j \in S$, find the smallest positive residue \bar{a}_j of $a_j \mod p$. This is well defined, and

$$\bar{a}_j \in \{1, 2, \dots, p-1\}.$$

Let

$$k = \#\{j \in S | \bar{a}_j \not\in S\}.$$

Then Gauss' Lemma says

$$\left(\frac{a}{p}\right) = (-1)^k.$$

Corollary of Gauss' lemma:

$$\left(\frac{2}{p}\right) = (-1)^{n(p)},$$

n(p) is the number of integers s such that

$$\frac{p-1}{4} < s < \frac{p-1}{2}$$
.

Explicitly,

$$\left(\frac{2}{p}\right) = \begin{cases} 1, & p = \pm 1 \pmod{8} \\ -1, & \text{if } p = \pm 5 \pmod{8} \end{cases}$$

Proof. Apply Gauss' lemma to $S = \{1, 2, \dots, \frac{p-1}{2}\}$ with a = 2. Then

$$e_{\rm s}(2) = \begin{cases} 1, & \text{if } 2s \leq \frac{p-1}{2} \\ -1, & \text{otherwise} \end{cases}$$

Since $(\frac{2}{p} = \prod_{s \in S} e_s(a) \pmod{p}, (\frac{2}{p}) = (-1)^{n(p)}$. The rest follows.

Definition: If $x \in \mathbb{R}$, its integral part [x] is the largest integer $\leq x$.

Proposition (Formulation III of Gauss' Lemma) Let p odd prime, and $a \in \mathbb{Z}$ with $p \nmid a$. Then

$$\left(\frac{a}{p}\right) = (-1)^t$$
, where $t = \sum_{j=1}^{(p-1)/2} \left[\frac{ja}{p}\right]$.

Proof: For every $j \in \{1, 2, \dots, \frac{p-1}{2}\}$ it is easy to see that

$$a_j = q_j p + \bar{a}_j$$
, with $0 < \bar{a}_j < p$.

Easy exercise:

$$q_j = \left\lceil \frac{a_j}{p} \right\rceil.$$

So $\bar{a}_j = a_j - \left[\frac{a_j}{p}\right]$.

Summing over all the j's from 1 to $\frac{p-1}{2}$, we get

$$\sum_{j=1}^{\frac{p-1}{2}} a_j = \sum_{j=1}^{\frac{p-1}{2}} \left[\frac{a_j}{p} \right] p + \sum_{i=1}^k r_i + \sum_{i=1}^{k'} \ell_i, \tag{1}$$

where $k' = \frac{p-1}{2} - k$, $\{r_i\} = \text{residues } \bar{a}_j \text{ not in } S$, $\{\ell_i\} = \text{residues in } S$.

Also

$$\sum_{i=1}^{\frac{(p-1)}{2}} j = \sum_{i=1}^{k} (p - r_i) - \sum_{i=1}^{k} \ell_i.$$
 (2)

Subtracting equation (2) from equation (1), we get

$$(a-1)\sum_{j=1}^{\frac{(p-1)}{2}} = p\left(\sum_{j=1} \left[\frac{ja}{p}\right] - k\right) + 2\sum_{i=1}^{k} r,$$
$$= \frac{1}{2} \left(\frac{p-1}{2}\right) \left(\frac{p+1}{2}\right) = \frac{p^2 - 1}{8}$$

Thus

$$\underbrace{(a-1)}_{\text{ven since } a \text{ is odd}} \left(\frac{p^2-1}{8}\right) = \sum_{j=1}^{\frac{(p^2-1}{2}} \left[\frac{ja}{p}\right] - k \pmod{2}$$

Consequently, k has the same parity as

$$\sum_{j=1}^{\frac{(p-1)}{2}} \left[\frac{ja}{p} \right].$$

Review: p prime, $a \in \mathbb{Z}$, $p \nmid a$:

$$\left(\frac{a}{p}\right) = \begin{cases} 1, & a \equiv \mod p \\ -1, & a \not\equiv \mod p \end{cases}$$

(Some also define $\frac{a}{p}$ for all \mathbb{Z} by setting $(\frac{a}{p})=0$ if p|a.) p=2: Everything is a square mod p. So assume p odd from now on. One has the multiplicativity property

$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right) \tag{*}$$

This follows from Euler's result that

$$\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p}.$$

Note: Since p is odd, if $a^{\frac{p-1}{2}} \equiv b^{\frac{p-1}{2}} \pmod{p}$, for some a, b prime to p, then $\left(\frac{a}{b}\right) = \left(\frac{b}{p}\right)$. (*) reduces finding $\left(\frac{a}{p}\right)$ to the three cases

- (i) a = -1
- (ii) a = 2
- (iii) a = q, an odd prime $\neq p$

We have already proved

(i)
$$\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}} = \begin{cases} 1, & \text{if } p \equiv 1 \pmod{4} \\ -1, & \text{if } p \equiv -1 \pmod{4} \end{cases}$$

(ii)
$$\left(\frac{2}{p}\right) = \begin{cases} 1, & \text{if } p \equiv \pm 1 \pmod{8} \\ -1, & \text{if } p \equiv \pm 5 \pmod{8} \end{cases}$$

(iii)
$$q$$
: odd prime $\neq p$.

$$\left(\frac{q}{p}\right) = ?$$