11 Remarks on Fermat’s Last Theorem and an approach of Gauss

Recall the Fermat equation $x^n + y^n = z^n$. For $n = 2$, this leads to Pythagorean triples and we classified all the solutions in this case.

Theorem (A. Wiles) (’97): For $n \geq 3$, $x^n + y^n = z^n$ has no positive integral solutions.

There is no way we can prove this magnificent result in this class.

Note: To prove this, it suffices to prove in the cases where $n = 4$ and when $n = p$, where p is any odd prime.

Reason: If $m|n$, then any solution of $u^n + v^n = w^n$ will give a solution for m, namely $(u^{n/m})^m + (v^{n/m})^m = (w^{n/m})^m$.

Moreover, for any $n \geq 3$, n will be divisible by 4 or by an odd prime p.

We also proved in the first week that $x^4 + y^4 = z^4$ has no integral solutions for. (In fact, we showed Fermat’s result that $x^4 + y^4 = w^2$ has no integral solutions.) Consequently, the key fact needed to be proven is that $x^p + y^p = z^p$ has no solution for any odd prime.

This gets split into two cases:

- **Case I:** $p \nmid x y z$.
- **Case II:** $p | x y z$.

Proposition (Gauss). Suppose the congruence

\[(\ast) \quad x^p + y^p \equiv (x + y)^p \pmod{p^2}\]

has no *non-trivial* solutions, i.e. with none of x, y, $x + y \equiv 0 \pmod{p}$. Then Case I of FLT holds for p, i.e.

\[\nexists x, y, z \in \mathbb{Z}_{>0}, \quad p \nmid x y z, \text{ such that } x^p + y^p = z^p.\]

Note:

\[(x + y)^p = \sum_{j=p}^{p} \binom{p}{j} x^j y^{p-j}, \quad \binom{p}{j} = \frac{p!}{(p-j)!j!}\]
If \(j \neq 0 \) or \(p \), then \({p \choose j} \) is divisible by \(p \). Since \((x + y)^p = x^p + y^p + \sum_{j=1}^{p-1} {p \choose j} x^j y^{p-j} \), we get

\[
(x + y)^p \equiv x^p + y^p \pmod{p}.
\]

Proof of Prop.

Suppose we have positive integers \(x, y, z \), with \(p \nmid xyz \), such that \(x^p + y^p = z^p \). We have just seen that \(x^p + y^p \equiv (x + y)^p \pmod{p} \), so \(z^p \equiv (x + y)^p \pmod{p} \).

Moreover, we have the Little Fermat Theorem, which says that \(x^p \equiv x \pmod{p} \), \(z^p \equiv z \pmod{p} \), \(y^p \equiv y \pmod{p} \), and \((x + y)^p \equiv x + y \pmod{p} \). Consequently, \(z \equiv x + y \pmod{p} \), i.e. \(z = x + y + mp \), for some \(m \in \mathbb{Z} \).

Since \(x^p + y^p = z^p \), we get

\[
x^p + y^p = (x + y + mp)^p = \sum_{i=0}^{p} {p \choose i} (x + y)^i (mp)^{p-i}
= (mp)^p + p(x + y)(mp)^{p-1} + \cdots + p(x + y)^{p-1}(mp) + (x + y)^p.
\]

Therefore \(x^p + y^p \equiv (x + y)^p \pmod{p^2} \)

Difficulty:

If \(p \equiv 1 \pmod{3} \), one can always solve the congruence \(x^p + y^p \equiv (x + y)^p \pmod{p^2} \). So Gauss’s Proposition doesn’t help us. On the other hand, when \(p \equiv 2 \pmod{3} \), for many small primes, \(x^p + y^p \equiv (x + y)^p \pmod{p^2} \) has no solution.

Still, there are primes \(p \equiv 2 \pmod{3} \) for which \(\exists \) solutions to this congruence. This happens for 13 primes less than 1000. For example, when \(p = 59 \), \(1^{59} + 3^{59} \equiv 4^{59} \pmod{59^2} \).