10 Number of solutions modulo a prime

Theorem (Lagrange) Fix a prime p and integer $n \ge 1$. Let $f(x) = a_n x^n + \cdots + a_0$ be a polynomial with coefficients $a_i \in \mathbb{Z}$, such that some a_j is prime to p. Then the congruence

$$f(x) \equiv 0 \, (mod \, p) \tag{1}$$

has at most n solutions mod p.

Proof: Suppose $n \equiv 1$. Then the congruence is $a_1x \equiv -a_0 \pmod{p}$. By hypothesis, either a_1 or a_0 is not divisible by p. The former case must happen as otherwise we would have $0 \equiv -a_0 \pmod{p}$, implying a_0 is also $\equiv 0 \pmod{p}$, leading to a contradiction. Thus a_1 is invertible mod p; let a'_1 be such that $a'_1 a_1 \equiv 1 \pmod{p}$. Multiplying $a_1x \equiv -a_0 \pmod{p}$ by a'_1 , get

$$(a_1'a_1)x \equiv x \equiv -a_1'a_0(\operatorname{mod} p)$$

Thus we get a unique solution, and the Theorem is O.K. for n = 1.

Now let n > 1, and assume by induction that the Theorem holds for all k < n. Suppose (1) has no solutions mod p. Then there is nothing to prove. So we may assume that there is at least one solution, say $x \equiv x_1 \pmod{p}$. Then we get

$$f(x_1) \equiv 0 \,(\text{mod } p). \tag{2}$$

Subtracting (2) from (1), we get

$$f(x) - f(x_1) \equiv a_n(x^n - x_1^n) + a_{n-1}(x^{n-1} - x_1^{n-1}) + \cdots + a_1(x - x_1) \equiv 0 \pmod{p}$$
.
But for any $k \geq 1$, $(x - x_1) \mid (x^k - x_1^k)$, so $f(x) - f(x_1) = (x - x_1)g(x)$, where $g(x)$ is a polynomial in x of degree $k - 1$. Thus, $f(x) - f(x_1) \equiv 0 \pmod{p}$ holds iff

$$(x - x_1)g(x) \equiv 0 \pmod{p}.$$
 (3)

Then either $x - x_1 \equiv 0$ or

$$g(x) \equiv 0 \pmod{p} \tag{4}$$

The coefficients of g cannot all be $\equiv 0 \pmod{p}$, for otherwise f(x) would be congruent to $0 \pmod{p}$. Since the degree of g is < n, we then have by the inductive hypothesis, that the number of solutions of (4) mod p is bounded above by n-1. Then the number of solutions mod p of (1) is $\leq 1+n-1=n$.