1 Basic Notions

Notation:

$$\mathbb{N} = \{1, 2, \dots\}, \mathbb{Z} = \{0, \pm 1, \pm 2, \dots\} \supset \mathbb{Z}_+ = \{0, 1, 2, \dots\} = \mathbb{N} \cup \{0\}$$

 $\mathbb{Q} = \{\text{rational numbers}\}$
 $\mathbb{R} = \{\text{real numbers}\} \subset \mathbb{C} = \{\text{complex numbers}\}.$

Principle of Mathematical Induction (PMI): A statement P about \mathbb{Z}_+ is true if

(i)
$$P$$
 holds for $n = 0$;

and

(ii) If
$$P$$
 holds for all $m < n$, then P holds for n . (*)

Inputs for Number Theory:

Logic

Algebra

Analysis (Advanced Calculus)

Geometry

A slightly different principle from induction:

Well ordering axiom (WOA): Every non-empty subset of \mathbb{Z}_+ contains a smallest element.

Note: if S is finite then WOA is obvious and can be checked. *Intuitively*, we often apply it to infinite sets; this is accepting the WOA.

Lemma: WOA \Rightarrow PMI (for \mathbb{Z}_+).

Proof: Suppose (*) (i), (ii) hold for some property P.

To show: P is true for all non-negative integers.

Prove by contradiction. Suppose P is false. Let S be the subset of \mathbb{Z}_+ for which P is false. Since P is assumed to be false S is non-empty. By WOA, $\exists n \geq 0$ such that n is in S, and it is the **smallest** element of S. If n = 0, we would get a contradiction by (i). So n > 0. Since n is the smallest for which P is false, it is true for all m < n. By (ii), P holds for n as well. Contradiction! So P holds.

Note: First couple of weeks will be very easy, so use them to learn how to write a proof. (People lose more points on easy problems than hard ones.)

Remark: In fact, PMI and WOA are equivalent. Try to show PMI⇔ WOA.

Theorem: (Euclidean Algorithm) Let a, b be integers ≥ 1 . Then we can write a = bq + r with $q, r \in \mathbb{Z}, \ 0 \leq r < b$.

Proof: Put $S = \{a - bn | n \in \mathbb{Z}\} \cap \mathbb{Z}_+$. Claim: $S \neq \emptyset$. (Easy) Reason: we can take n negative. So by WOA, S has a smallest element r. Since $r \in S$, we can write

$$r = a - bq$$
, for some $q \in \mathbb{Z}$

Since $S \subset \mathbb{Z}_+$, $r \geq 0$. Only thing to check: r < b. Suppose $r \geq b$. Then let

$$r' = a - b(q+1) = r - b \ge 0$$
 since $r \ge b$.

Thus $r' \in S$ and r' < r, a contradiction.

Definition: b divides a, written b|a, iff a = bq for some $q \in \mathbb{Z}$. If not, write b|a.

Definition: An integer p > 1 is **prime iff** the only positive integers dividing p are 1 and p.

Examples: 2, 3, 5, 7, 11, 13,... 37,... 691,...

A positive integer which is not a prime is called a **composite** number.

Theorem: Every $n \in \mathbb{N}$ is uniquely written as

$$n = \prod_{i=1}^{r} p_i^{m_i},$$

with each p_i prime and $m_i > 0$.

Proof of unique factorization:

Step 1: Show that any $n \in \mathbb{N}$ is a product of primes.

Proof: If n = 1, OK (empty product =1 by convention). So let n > 1. If n is a prime, there is nothing to do. So we may assume that n is composite. This means that \exists prime p such that p|n. So n = pq, some $q \ge 1$. Use induction on n. Since q < n, by induction q is a product of primes. Hence n is a product of primes.

Step 2: Uniqueness of factorization

Suppose this is false. By WOA, \exists smallest n for which it is false. Write $n = p_1 \dots p_r = q_1 \dots q_s$ with p_i, q_j primes, $1 \le i \le r$, $1 \le j \le s$, $p_i \ne q_j$

for any (i, j). We may assume $p_1 \leq p_2 \leq \cdots \leq p_r$, $q_1 \leq q_2 \leq \cdots \leq q_s$ and $p_1 < q_1$. Now set $n' = p_1 q_2 \dots q_s < n$. Since p_1 divides n and n', it divides (n - n'). We can write

$$n - n' = p_1 \ell_1 \dots \ell_k \tag{1}$$

for some primes ℓ_1, \ldots, ℓ_k since n - n' < n and n is the smallest counterexample. We can also write

$$q_1 - p_1 = r_1 r_2 \dots r_t \tag{2}$$

for primes r_1, \ldots, r_t . On the other hand, $n - n' = q_1 \ldots q_s - p_1 q_2 \ldots q_s$, i.e., $n - n' = (q_1 - p_1)q_2 \ldots q_s$. Then

$$n - n' = r_1 r_2 \dots r_t q_2 \dots q_s \tag{3}$$

Since n - n' < n, and since n is the smallest counterexample, the two fractorizations of n - n' given by (1) and (3) must coincide.

$$p_1 \in \{r_1, r_3 \dots, r_t, q_2, \dots, q_s\}$$

But $p_1 \neq q_j$; for any j. Thus

$$p_1 = r_i$$
, for some i .

Then p_1 divides $(q_1 - p_1) \Rightarrow p_1 | q_1$, contradiction!

Analysis enters when we ask questions about the number and distribution of primes.

Theorem. (Euclid) There exist infinitely many primes in \mathbb{Z} .

Proof: Suppose not. Then there exist only a finite number of primes; list them as p_1, p_2, \ldots, p_m . Put $n = p_1 p_2 \ldots p_m + 1$. If n is prime we get a contradiction since $n > p_m$. So n cannot be prime. Let q be a prime divisor of n. Since $\{p_1, \ldots, p_m\}$ is the set of all primes, q must equal p_j ; for some j. Then q divides $n = p_1 \ldots p_m + 1$ and $p_1 \ldots p_m \Rightarrow q | 1$, a contradiction.

Euler's attempted proof. (This can be made rigorous!) Let P be the set of all primes in \mathbb{Z} . **Euler's idea**: If P were finite, then $X = \prod_{p \in P} \frac{1}{(1-\frac{1}{p})} < \infty$.

Lemma.

Let s be any real number > 1. Then

$$\zeta(s) = \prod_{p \in P} \frac{1}{(1 - \frac{1}{p^8})} = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

(called the "Riemann" zeta function, though Euler studied it a century earlier).

Proof of Lemma. Recall: If |x| < 1, then $\frac{1}{1-x} = 1 + x + x^2 + \dots$ (geometric series). If s > 1, $\frac{1}{p^s} < 1$. So $\frac{1}{1-\frac{1}{p^s}} = 1 + \frac{1}{p^s} + \frac{1}{p^{2s}} + \dots$ Then

$$\prod_{p} \left(1 + \frac{1}{p^s} + \frac{1}{p^{2s}} + \dots \right) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

by unique factorization.

Euler then argued as follows: let $s \to 1$ from right. $X = \lim_{s \to 1^+} \sum_{n=1}^{\infty} \frac{1}{n^s} \to \sum_{n=1}^{\infty} \frac{1}{n}$, which diverges. But if P is finite, then X is a finite rational number, a contradiction. (To make this rigorous, we need to be careful about limits and uniform convergence.)

The Prime Number Theorem (PNT)

For any $x \geq 2$, put

$$\pi(x) = \#\{p : \text{ prime } | p \le x\}.$$

What does $\pi(x)$ look like for x very large? The **prime number theorem** (PNT) says:

$$\pi(x) \sim \frac{x}{\log x}$$
, as $x \to \infty$

In other words, the fraction of integers in [1, x] which are prime is roughly $\frac{1}{\log x}$ for x large. (Can't prove it in this class.)

Twin Primes These are prime pairs (p, q) with q = p + 2.

Examples: (3,5), (5,7), (11, 13),...

Conjecture: There exist infinitely many twin primes.

Stronger conjecture: If $\pi_2(x)$ denotes the number of twin primes $\leq x$, then

$$\pi_2(x) \sim \frac{x}{(\log x)^2}$$
 as $x \to \infty$.