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Abstract. We consider the Lyapunov exponent of those continuous SL(2, R)-

valued cocycles over irrational rotations that appear in the study of
Schrödinger operators and prove generic results related to large coupling

asymptotics and uniform convergence.

1. Introduction

We consider Schrödinger cocycles of the form

(1) Af,E(ω) =
(
E − f(ω) −1

1 0

)
over irrational rotations ω 7→ ω + α on T = R/Z. Let us denote the associated
Lyapunov exponent by γf (E), that is,

(2) γf (E) = inf
n≥1

1
n

∫
T

log ‖An
f,E(ω)‖ dω,

where An
f,E(ω) is given by

(3) An
f,E(ω) = Af,E((n− 1)α+ ω)× · · · ×Af,E(ω).

We also write An
f = An

f,0 and γf = γf (0).
The dynamics of these cocycles are crucial in the study of the spectral properties

of the discrete quasi-periodic Schrödinger operator

(4) [Hα,fψ](n) = ψ(n+ 1) + ψ(n− 1) + f(nα+ ω)ψ(n).

Given an energy E, one often considers the one-parameter family of cocycles,
An

λf,E(ω), where λ ∈ (0,∞). Many papers have been devoted to the problem of
proving that γλf (E) is positive for λ sufficiently large, possibly along with quanti-
tative estimates that show that the large λ behavior is of order log λ; for example,
[2, 5, 11, 12, 18]. It is especially desirable to prove such quantitative bounds uni-
formly in the energy E.

Our first result shows that such uniform bounds are extremely unstable:

Theorem 1. Let α ∈ T be irrational. For every countable set {λm}m∈Z+ ⊂ (0,∞),
we have that for a residual set of f ’s in C(T),

inf
E∈R

γλmf (E) = 0

for every m ∈ Z+.
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If Af,E is replaced by an arbitrary continuous map A : T → SL(2,R), we obtain a
general quasi-periodic SL(2,R)-valued cocycle. Motivated by Mañé [16, 17], Bochi
has shown that there is a residual set R ⊂ C(T,SL(2,R)) such that for A ∈ R,
either A is uniformly hyperbolic or γ(A) = 0 [3]; also see the paper [9] by Fabbri
and Johnson for a similar result that holds for a generic set of pairs (α, f). Here, a
cocycle An is called uniformly hyperbolic if γ(A) > 0 and

lim
n→∞

1
n

log ‖An(ω)‖ = γ(A)

uniformly in ω ∈ T. Our second result shows that the analogue of the Bochi-Mañé
result holds for the specific case of Schrödinger cocycles:

Theorem 2. Let α ∈ T be irrational. The set{
f ∈ C(T) : An

f is uniformly hyperbolic or γf = 0
}

is residual.

Theorem 2 is a special case of a recent result of Bochi and Viana that is obtained
by completely different methods [4]. We feel that it is worthwhile to present our
alternate proof since it appears to be somewhat simpler and is closely related to
our arguments that lead to Theorem 1.

We note that Fabbri [8] has worked out the Schrödinger cocycle analogue of the
Fabbri-Johnson result, that is, she proves this dichotomy for generic pairs (α, f).
Her approach uses rational approximation and does not seem suitable to prove a
result like Theorem 2.

Since we want to keep the frequency α fixed, we cannot work with rational
approximations. Rather, we will approximate continuous f ’s by discontinuous ones.
The key ingredients in our approach are recent results for f ’s taking on finitely many
values [6, 7], along with a description of the spectrum of the operator Hα,f in terms
of zero exponents or non-uniform hyperbolicity [15].

We will recall the results from [6, 7, 15] used in the proofs of Theorems 1 and 2
in Section 2 and then prove the two theorems in Section 3.

2. Preliminaries

In this section we recount some known results that we will need in our proofs
of Theorems 1 and 2. The relevant papers are [6, 7, 15]. We only state the results
in the form we will need later in the paper. Each theorem in this section holds
in greater generality. We refer the interested reader to the papers listed above for
more information and more general statements.

Consider a Schrödinger operator Hα,f of the form given in (4) with α ∈ T
irrational, ω ∈ T arbitrary and f ∈ C(T). Since f is continuous, the spectrum of
Hα,f is independent of ω. Recall the definition of the cocycle An

f,E as given in (1)
and (3) and the associated Lyapunov exponent γf (E). Here, E is a real number,
called the energy.

Consider an energy E with γf (E) > 0. The cocycle An
f,E is called uniformly

hyperbolic if

(5) lim
n→∞

1
n

log ‖An
f,E(ω)‖ = γf (E) uniformly in ω ∈ T,

and it is called non-uniformly hyperbolic otherwise. Lenz [15] (see also Johnson
[13]) has shown the following:
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Theorem 3 ([15]). Suppose α ∈ T is irrational. Then,

(6) σ (Hα,f ) = {E : γf (E) = 0 or An
f,E is non-uniformly hyperbolic}.

This shows in particular that σ (Hα,f ) = {E : γf (E) = 0} if (5) holds for every
E ∈ R. The papers [6, 7, 14] are devoted to proving the latter property for certain
classes of base dynamics and Schrödinger cocycles. We only recall one specific
consequence; compare [6, Theorem 1] and [7, Theorem 10].

Theorem 4 ([6, 7]). Suppose α ∈ T is irrational and f : T → R is of the form

f(ω) =
M∑

m=1

fmχ[βm−1,βm)(ω),

where 0 = β0 < β1 < · · · < βM = 1 are rational numbers and f1, . . . , fM are real.
Then (5) holds for every E ∈ R and, consequently, σ (Hα,f ) = {E : γf (E) = 0}.

Remark. The characterization (6) of the spectrum does not require f to be con-
tinuous. Even if σ (Hα,f ) is not ω-independent, it is by general principles always
ω-independent on a full measure subset of T and (6) gives a description of this set.
The functions f from Theorem 4, however, lead to operators Hα,f whose spectra
are ω-independent. This can be shown using minimality of the base dynamics and
semi-continuity of the spectrum with respect to strong approximation by translates.

3. Proofs

In this section we prove Theorems 1 and 2. We begin with a result that will
quickly yield Theorem 1. Its proof, which is inspired by [1], will also suggest how
to prove Theorem 2.

Proposition 1. The set {
f ∈ C(T) : inf

E∈R
γf (E) = 0

}
is residual.

Proof. Denote

Mδ = {f ∈ C(T) : γf (E) < δ for some E ∈ R}.

We will to show that Mδ is open and dense for every δ > 0. It follows that

M0 =
⋂
δ>0

Mδ

is residual.
It follows from upper-semicontinuity of the Lyapunov exponent that Mδ is open.

Indeed, if f ∈ Mδ and there exist fn ∈ C(T) \Mδ with ‖f − fn‖∞ → 0, then pick
E ∈ R with γf (E) < δ. But

γf (E) ≥ lim sup
n→∞

γfn(E) ≥ δ,

which is a contradiction.
To show that Mδ is dense, we will approximate a given g ∈ C(T) by a step

function s whose points of discontinuity are all rational. This will ensure that
γs(E) = 0 for some energy E. Then we approximate s by a continuous function
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and use upper-semicontinuity again. This will yield f ∈ C(T) for which we have
‖f − g‖∞ as small as prescribed and γf (E) < δ.

Fix some δ > 0 and let ε > 0 be given. For g ∈ C(T), we need to find f ∈ Mδ

such that ‖f − g‖∞ < ε. Choose a step function s that has finitely many points of
discontinuity, all of which are rational, such that ‖s− g‖∞ < ε

2 and the jumps of s
are bounded by ε

2 . By Theorem 4, γs vanishes on the spectrum of −∆+ s(nα+ω),
which is a non-empty subset of R. Thus, choose a value of E with γs(E) = 0.
Approximate s in L1-sense by continuous functions fn that obey ‖s − fn‖∞ < ε

2 .
By upper semi-continuity, we have that

0 = γs(E) ≥ lim sup
n→∞

γfn
(E),

and hence we can choose a value of n such that the function f = fn has the desired
properties, f ∈Mδ and ‖f − g‖∞ < ε. �

Proof of Theorem 1. A slight modification of the proof just given shows that, for
each fixed λ > 0, the set

Gλ =
{
f ∈ C(T) : inf

E∈R
γλf (E) = 0

}
is residual. Taking countable intersections, the assertion of the theorem thus follows
from the Baire Category Theorem. �

Proof of Theorem 2. The proof is a refinement of the argument from the proof of
Proposition 1. We have to show that{

f ∈ C(T) : An
f is non-uniformly hyperbolic

}
is nowhere dense. This will follow once we prove that

Mγ =
{
f ∈ C(T) : An

f is non-uniformly hyperbolic and γf ≥ γ
}

is nowhere dense for every γ > 0. By upper-semicontinuity, Mγ is closed. We
therefore need to prove that Mγ does not contain an open set.

The assertion will follow once we can find, for any given γ > 0, f ∈ Mγ , and
ε > 0, a function g ∈ C(T) with ‖f − g‖∞ < ε and γg < γ. Choose a sequence of
step functions sm subject to the following conditions:

• For every m, ‖f − sm‖∞ < ε
4 and sm has a finite number of points of

discontinuity, all of which are rational, and the jumps of sm are bounded
by ε

2 .
• ‖f − sm‖∞ → 0 as m→∞.

The second condition guarantees that, for each ω ∈ T, the operator Hm = ∆ +
sm(·α + ω) converges strongly to the operator H = ∆ + f(·α + ω). Since An

f is
non-uniformly hyperbolic, we have that 0 ∈ σ(H). By strong convergence, there
are Em ∈ σ(Hm) such that Em → 0. Choose m large enough so that |Em| < ε

4 .
Then s = sm − Em is a step function satisfying

• ‖f − s‖∞ < ε
2 and s has a finite number of points of discontinuity, all of

which are rational, and the jumps of s are bounded by ε
2 .

• 0 belongs to the spectrum of H̃ = ∆ + s(·α+ ω).
Consequently, γs = 0 by Theorem 4. Approximate s in L1-sense by continuous
functions gk that obey ‖s− gk‖∞ < ε

2 . By upper semi-continuity, we have that

0 = γs ≥ lim sup
k→∞

γgk
,
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and hence we can choose a value of k such that the function g = gk has the desired
properties, γg < γ and ‖f − g‖∞ < ε. �
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[17] R. Mañé, The Lyapunov exponents of generic area preserving diffeomorphisms, In Interna-
tional Conference on Dynamical Systems (Montevideo, 1995 ), 110–119, Pitman Res. Notes

Math. Ser. 362, Longman, Harlow, 1996

[18] E. Sorets and T. Spencer, Positive Lyapunov exponents for Schrödinger operators with quasi-
periodic potentials, Commun. Math. Phys. 142 (1991), 543–566

Department of Mathematics, University of Toronto, Canada

E-mail address: bjerklov@math.toronto.edu

Mathematics 253–37, California Institute of Technology, Pasadena, CA 91125, USA
E-mail address: damanik@caltech.edu

Dipartimento di Sistemi e Informatica, Università di Firenze, 50139 Firenze, Italy
E-mail address: johnson@dsi.unifi.it


